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Radiomics‑based machine learning 
differentiates “ground‑glass” 
opacities due to COVID‑19 
from acute non‑COVID‑19 lung 
disease
Andrea Delli Pizzi1,2, Antonio Maria Chiarelli1, Piero Chiacchiaretta  3,4*, Cristina Valdesi2, 
Pierpaolo Croce1, Domenico Mastrodicasa5, Michela Villani2, Stefano Trebeschi6, 
Francesco Lorenzo Serafini1, Consuelo Rosa7, Giulio Cocco8, Riccardo Luberti2, 
Sabrina Conte2, Lucia Mazzamurro2, Manuela Mereu2, Rosa Lucia Patea2, Valentina Panara2, 
Stefano Marinari9, Jacopo Vecchiet10 & Massimo Caulo1,2

Ground-glass opacities (GGOs) are a non-specific high-resolution computed tomography (HRCT) 
finding tipically observed in early Coronavirus disesase 19 (COVID-19) pneumonia. However, GGOs 
are also seen in other acute lung diseases, thus making challenging the differential diagnosis. To this 
aim, we investigated the performance of a radiomics-based machine learning method to discriminate 
GGOs due to COVID-19 from those due to other acute lung diseases. Two sets of patients were 
included: a first set of 28 patients (COVID) diagnosed with COVID-19 infection confirmed by real-
time polymerase chain reaction (RT-PCR) between March and April 2020 having (a) baseline HRCT at 
hospital admission and (b) predominant GGOs pattern on HRCT; a second set of 30 patients (nCOVID) 
showing (a) predominant GGOs pattern on HRCT performed between August 2019 and April 2020 
and (b) availability of final diagnosis. Two readers independently segmented GGOs on HRCTs using 
a semi-automated approach, and radiomics features were extracted using a standard open source 
software (PyRadiomics). Partial least square (PLS) regression was used as the multivariate machine-
learning algorithm. A leave-one-out nested cross-validation was implemented. PLS β-weights of 
radiomics features, including the 5% features with the largest β-weights in magnitude (top 5%), 
were obtained. The diagnostic performance of the radiomics model was assessed through receiver 
operating characteristic (ROC) analysis. The Youden’s test assessed sensitivity and specificity of the 
classification. A null hypothesis probability threshold of 5% was chosen (p < 0.05). The predictive 
model delivered an AUC of 0.868 (Youden’s index = 0.68, sensitivity = 93%, specificity 75%, p = 4.2 × 10–

7). Of the seven features included in the top 5% features, five were texture-related. A radiomics-based 
machine learning signature showed the potential to accurately differentiate GGOs due to COVID-19 
pneumonia from those due to other acute lung diseases. Most of the discriminant radiomics features 
were texture-related. This approach may assist clinician to adopt the appropriate management early, 
while improving the triage of patients.
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Abbreviations
AUC​	� Area under the curve
ARDS	� Acute Respiratory Distress Syndrome
CMV	� Citomegalovirus
CNN	� Convolutional Neural Network
COVID-19	� Coronavirus disease 2019
GGO	� Ground glass opacity
HRCT​	� High-resolution computed tomography
HU	� Hounsfield unit
kvP	� Kilovoltage peak
LoG	� Laplacian of Gaussian
PLS	� Partial least square
ROC	� Receiver operating characteristic curve
ROI	� Region of interest
RT-PCR	� Real-time polymerase chain reaction
SARS-CoV-2	� Severe Acute Respiratory Syndrome Coronavirus 2

Coronavirus disease 2019 (COVID-19) is a viral infectious disease caused by Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2), which has gradually spread worldwide since December 20191,2. The clinical pres-
entation is extremely variable and ranges from asymptomatic or paucisymptomatic infection to severe pneumonia 
with respiratory failure3,4. Typical chest computed tomography (CT) pattern presentation is bilateral and periph-
eral predominant ground glass opacities (GGOs) with or without superimposed septal thickening (“crazy paving” 
pattern), and parenchymal consolidations5–10. A recent metanalysis demonstrated that the most common CT 
findings in asymptomatic COVID-19 patients were GGOs, presenting as the only CT finding in 71% of patients11. 
Despite the reported high sensitivity of CT (94.5%), its sensitivity was relatively low (46%)12,13. This is partially 
explained to the fact that GGOs are a non-specific CT finding7,10. In fact, they can be found in the early, exudative 
phase of COVID-19 pneumonia as well as in interstitial and alveolar diseases such as pulmonary edema, alveolar 
hemorrhage, infectious pneumonia, hypersensitivity pneumonia, and others acute lung diseases14–16. For this 
reason, although the context of the current pandemic and the previous CT findings can be indicative of COVID-
19 pneumonia, the differential diagnosis of GGOs remains a challenge10,17. Recently, a few studies outlined a 
growing interest toward imaging-based tools aimed to assist physicians in patient management18–24. Radiomics 
is one of these tools and it allows the extraction of large amounts of quantitative data from medical images25. A 
radiomics analysis includes the evaluation of the size, shape, and textural features containing spatial information 
on pixel or voxel intensity distribution and patterns. Radiomics features can be further integrated into machine 
learning models with the aim to improve diagnosis and patient management. This approach was recently investi-
gated to improve the detection and the differential diagnosis of COVID-19 pneumonia20,21,23,24,26–29. For example, 
Zhang et al. proposed a CT-based deep learning integrated radiomics model for the differentiation of COVID-19 
pneumonia from other community acquired pneumonias. They demonstrated an area under the curve (AUC) of 
0.959 with a sensitivity and specificity of 0.879 and 0.887 respectively24. Gangloff et al., evaluated machine learn-
ing models including logistic regression, random forest and neural networks, using routine clinical and labora-
tory data to improve the performance of RT-PCR and chest-CT for COVID-19 diagnosis. In this way, the AUC 
values of chest-CT and RT-PCR was 0.892 and became 0.930 with the contribution of artificial neural network 
and logistic regression20. All the above-mentioned studies investigated the CT pattern presentation of COVID-
19 considering GGOs in association with other imaging findings such as consolidation and “crazy paving”. A 
CT radiomics analysis of COVID-19-related GGOs and consolidation was recently proposed in a differential 
diagnosis with other atypical pneumonias. In this study, lesions were classified according to their skewness and 
the best AUC, sensitivity and specificity were 0.907, 0.830 and 0.795, respectively21. Since the GGOs are usually 
found at the early stage of COVID-19 pneumonia, we hypothesized that the early identification of their etiology, 
especially in patients with high clinical suspicion and negative swab, could help clinicians to promptly adopt the 
appropriate patient management and improve the triage activity at hospital admission.

In this study, we present a machine learning signature, based on radiomics features extracted exclusively from 
the GGOs on CT images, for the early differential diagnosis of GGOs due to COVID-19 pneumonia and those 
due to other acute lung diseases.

Materials and methods
Study population.  The study received formal approval from the Ethical Committee of the University G. 
d’Annunzio of Chieti-Pescara, Italy; informed consent was waived by the same ethics committee that approved 
the study (Comitato Etico per la Ricerca Biomedica delle Province di Chieti e Pescara e dell’Università degli 
Studi “G. d’Annunzio” di Chieti e Pescara, Italy). The study was conducted according to ethical principles laid 
down by the latest version of the Declaration of Helsinki. We retrospectively included a total of 120 consecutive 
patients diagnosed with SARS-CoV-2 infection based on RT-PCR who underwent a clinically indicated high-
resolution chest CT (HRCT) between March 2020 and April 2020 at our institution. Patients were included if 
they met all the following criteria: (a) baseline HRCT performed at hospital admission, (b) GGO as predomi-
nant feature on chest CT scans. Another set of 310 patients (nCOVID) with clinically indicated HRCT for acute 
respiratory disease performed between August 2019 and April 2020 was retrospectively included in the study 
(nCOVID). For this second set, patients were included if they met all the following criteria: (a) GGO as pre-
dominant feature on chest CT scans, (b) availability of final diagnosis (clinical, laboratory, or pathology). The 
presence of a predominant GGOs pattern was assessed by two radiologists (M.M. and R.L.P.) with more than 
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10 years of experience in chest imaging, in consensus. More in detail, the readers assessed the presence of GGOs, 
consolidations, and “crazy paving” on CT images. In this regard, apart when the GGOs were the only CT finding, 
the predominant GGOs pattern was defined as present when the GGOs were considered like the major finding 
compared to consolidation and/or crazy paving pattern10,30–33. In the first set (COVID), we excluded 92 patients: 
14 had severe respiratory artefacts, 78 had a non-predominant GGO pattern. In the second set (nCOVID) we 
excluded 280 patients: 32 had severe respiratory artefacts, 210 had a non-predominant GGO alteration and 38 
were treated in another hospital and the final diagnosis was not available. None of the patients considered eligi-
ble for the study had a concomitant malignancy. The final study population was composed of 28 COVID and 30 
nCOVID for a total of 58 patients (Fig. 1).

CT protocol.  Non-enhanced chest CT scans were performed in a supine position, during inspiratory breath-
hold, from the apex to the lung bases, on a 128-slice multi-detector CT scanner (Somatom Definition AS, Sie-
mens Healthineers, Germany). The field of view ranged between 35 and 40 cm according to the body size. The 
electronic window values were amplitude (W) 1200–1600 HU and window or center level (L) between − 600 
and − 750 HU. The main scan parameters were: tube voltage = 120  kVp, automatic tube current modulation 
(30–70 mAs), pitch = 0.9–1.5 mm (0.9, 1.2 and 1.5 mm for 6, 47 and 5 patients respectively), matrix = 512 × 512. 
The images were reconstructed with a slice thickness of 0.625–1.250 mm (0.625, 1.000, and 1.250 mm for 46, 
8, and 4 patients respectively) with the same increment with a high spatial frequency reconstruction algorithm 
(B50, I50).

Image segmentation.  A whole-volume semi-automated GGOs delineation was independently performed 
by two fourth year senior radiology residents (C.V. and M.V.) that were blinded from swabs results using an 
open-source medical image computing platform, 3DSlicer Version 4.8 (www.​3dsli​cer.​org) (Fig. 2a). In detail, 
the GGOs were segmented using a “threshold-effect” tool and manually setting the threshold between − 1350 
and − 700 HU8,34,35. If necessary, the segmentation was further manually corrected by each reader in order to 
exclude automated segmented pixels beyond the GGOs. Once the semiautomated segmentation of GGOs was 
concluded, the lungs were automatically extracted via Convolutional Neural Network (CNN) algorithms to cre-
ate binary mask36. Then, a logical “and”, between these masks and the segmentations obtained by the radiology 
residents, was performed (using “3dcalc”) to exclude automated segmented pixels beyond the lungs, thus obtain-
ing the final ROIs37. All the ROIs were verified by a senior radiologist with more than 10 years of experience in 
chest imaging (M.M.) to confrirm the correct position and correspondence with the underlying CT findings.

Radiomics analysis.  The extraction of the radiomics features was conducted using PyRadiomics (https://​
pyrad​iomics.​readt​hedocs.​io), a flexible open-source platform capable of extracting a large panel of engineered 
features from medical images; this radiomics quantification platform enables the standardization of both feature 
definitions and image processing38. To avoid data heterogeneity bias and minimize acquisition-related radiom-
ics variability, HRCT images were subjected to imaging resampling (2 × 2 × 2 mm) 39. For each ROI, ten built-in 
filters (Original, wavelet, Laplacian of Gaussian (LoG), square, square root, logarithm, exponential, Gradient, 

Figure 1.   Study flowchart.

http://www.3dslicer.org
https://pyradiomics.readthedocs.io
https://pyradiomics.readthedocs.io
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LBP2D, LBP3D) were applied and seven feature classes (first order statistics, shape descriptors, glcm, glrlm, 
ngtdm, gldm, glszm) were calculated, for a total of 1409 radiomics features. The reproducibility assessment of 
the features extracted from segmentations of all patients was performed.

Machine learning approach: partial least square (PLS) regression.  A machine learning (i.e. mul-
tivariate) approach was implemented to exploit radiomics features multidimensionality (Fig.  2b). Two main 
approaches were implemented to improve and correctly assess the generalization performance of the machine 
learning model40–42. The first approach was to reduce the number of features by selecting only those that were 
highly repeatable (r > 0.95) between the two masks delineated by the senior radiology residents. The second 
approach was to implement a machine learning framework based on a linear regression analysis that employed a 
space dimension reduction procedure, namely the partial least square (PLS) regression40,43–45. The PLS was used 
to differentiate COVID from nCOVID patients. Moreover, in this work, a leave-one-out nested cross-valida-
tion (nCV) was implemented to optimize the PLS number of components and to assess the PLS generalization 
performance42,46–48. The β-weights of the PLS analysis were obtained by running the algorithm on the complete 
dataset with the optimal number of components delivered by the nCV analysis. They linked the original inde-
pendent variables with the dependent variable thus depicting the importance and sign of the original variables 
in the prediction. Among β-weights, top 5% features were calculated. Those features included the 5% features 
with the largest β-weights in magnitude thus representing the features with the highest predictive capability. The 
machine learning analyses were implemented in Matlab.

Statistical analysis.  The inter-reader correlation of radiomics features was assessed using an across-sub-
jects Person correlation coefficient. Only radiomics features with high correlation coefficient (above 0.95) were 
used within the machine learning model49. The COVID vs nCOVID classification performance was assessed 
through Receiver Operating Characteristic (ROC) analysis comparing the inferred (out-of-training-sample) 
with the true group. COVID patients were attributed to the “positive” group, whereas nCOVID patients were 
attributed to the “negative” group. The ROC analysis was also performed on random shuffled group labels to 
simulate the null hypothesis and evaluate its confidence interval (repeated 106 times). The ROC analysis deliv-
ered an Area Under the Curve (AUC), which could be transformed into a z-score for assessing its statistical 
significance by using the random shuffled group labels. The Youden’s test was used to calculate the sensitivity and 
specificity of the ROC analysis. 5% null hypothesis probability threshold was chosen (p < 0.05). The statistical 
analysis was performed in MATLAB.

Ethical statement.  This study was approved by the local ethics committee. The study used only pre-exist-
ing medical data, therefore patient consent was waived.

Figure 2.   (a) Ground glass opacities segmentations of COVID and nCOVID on chest high-resolution 
computed tomography. (b) Schematic representation of the radiomics features extraction and the machine 
learning framework implemented.
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Results
Study population.  The majority of patients included in the study were male (n = 34, 59%), and the median 
age was 66 years (interquartile range 55–81). Out of the total patient population (n = 58), 28 (48%) were assigned 
to the COVID group, and 30 (52%) to the nCOVID group. The nCOVID group (n = 30) included four with Cyto-
megalovirus (CMV) pneumonia, two with pulmonary edema, five with Acute Respiratory Distress Syndrome 
(ARDS), eight with Organizing Pneumonia, three with Pneumocystis Jirovecii pneumonia, two with Influenza 
A pneumonia, two with Legionella pneumonia, three with alveolar hemorrhage and one with hypersensitivity 
pneumonia (Table 1).

Radiomics‑based machine learning.  A total of 1409 radiomics features were extracted. 153 of these 
features showed an inter-reader correlation of r > 0.95 and were used for further analysis. When employing radi-
omics features with an r > 0.95, i.e., 153 radiomics features, an AUC = 0.868 was obtained (z = 5.1, p = 4.2 × 10–7, 
Fig. 3). A Youden’s index of 0.68 was associated with a sensitivity and specificity of 93% and 75% respectively 
(Table  2). The estimated optimal number of PLS components, evaluated within the nCV framework, was 7. 
The weights of the PLS (β-weights) are shown in (Fig. 4a,b). Since a value of “1” was attributed to the COVID 
patients and a value of “0” was attributed to the nCOVID patients during the machine learning training, a posi-
tive weight suggests a higher feature value in COVID compared to nCOVID patients with an opposite behavior 
for a negative weight. Of the top 5% features, 5 (wavelet_LLH_glrlm_GrayLevelNonUniformity, wavelet_LHH_
glcm_DifferenceVariance, wavelet_LHH_glrlm_GrayLevelVariance, wavelet_HLH_glcm_DifferenceVariance, 
wavelet_HHL_glrlm_RunEntropy), were associated to glrlm and glcm texture matrices (second second order 
features), and 2 (wavelet_LLH_firstorder_Skewness, Ibp_2D_firstorder_10Percentile) were related to the image 
intensity distribution (first order features). All, except one, second order features had a negative weight, meaning 
that COVID-19 patients (labelled as 1 in the classification algorithm) tended to have a more homogeneous tex-
ture. Of the two first order features, one had positive weight (the skweness, larger value in COVID-19 patients) 
and one had a negative weight (the 10th percentile, smaller value in COVID-19 patients) indicating that COVID 
group, although having a distribution of image intensities with average equal values that nCOVID group, had a 
larger occurrence of low intensity pixels.

Discussion
Our results demonstrated that a machine learning signature based on radiomics features extracted from GGOs on 
CT images is an accurate method to early differentiate COVID-19 pneumonia from other acute non-COVID-19 
lung diseases. These results confirm the promising role of radiomics in the diagnosis of COVID-19 pneumonia 
and are in line with the most recent literature on this topic21–24. For example, Huang et al. used radiomics to 
discriminate COVID-19 and influenza pneumonia by combining CT signs and quantitative features extracted 
from the initial unenhanced CT images22. The resulting AUC was 0.959 and it was associated with 89.9% sensitiv-
ity and 90.7% specificity. On the other hand, Gulbay et al. focused on radiomics-based features extracted from 
GGOs and consolidation to differentiate COVID-19 and other atypical pneumonia. They classified the lesions 
according their skewness and the group-specific models that were creaded showed an AUC ranging between 
0.774 and 0.907.

Table 1.   Descriptive baseline characteristics of our study population (n = 58). IQR Inter-Quartile Range, 
HRCT​ High-Resolution CT.

Variable Value (%)

Gender

Male 34/58 (59%)

Female 24/58 (41%)

Median age (IQR) 66 (55–81)

HRCT exam 58

nCOVID group (n = 30)

Citomegalovirus pneumonia 4 (6.9%)

Pulmonary edema 2 (3.4%)

Acute distress respiratory syndrome 5 (8.6%)

Organizing pneumonia 8 (13.8%)

Alveolar hemorrage 3 (5.2%)

Hypersensitivity pneumonia 1 (1.7%)

Influenza A pneumonia 2 (3.4%)

Legionella pneumonia 2 (3.4%)

Pneumocysisi jirovecii pneumonia 3 (5.2%)

COVID group (n = 28)

COVID-19 pneumonia 28 (48.4%)
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Of note, none of the above-mentioned studies was specifically focused on GGOs and other previous studies 
investigating the differential diagnosis of GGOs were conducted in pre-COVID-19 era50,51. In this regard, over-
coming the limited specificity of GGOs on CT images assumes even more relevance in the pandemic scenario 
since they represent the most common CT findings in the early phase of COVID-19 pneumonia10. In fact, the 
early identification of the GGOs etiology could help to promptly adopt the appropriate management and reduce 
the burden on the emergency department. For instance, patients admitted to the hospital for suspected COVID-
19 pneumonia are temporarily placed in dedicated COVID-19 rule-out units, and they may experience a delay 
in care or intervention10. In this scenario, chest CT is used as a surrogate for the early identification of COVID-
19 pneumonia and may help the triage activity by identifying an alternative diagnosis and by improving the 
patient selection for intensive/non-intensive care in case of clinical worsening. Furthermore, the treatment of 
GGOs varies according to their etiology. For example, patients with organizing pneumonia are usually treated 
with corticosteroid therapy with the occasional addition of antibiotics52. On the other hand, corticosteroids are 
recommended only in patients with severe and critical COVID-19 infection53.

Interestingly, five of the seven features included in the top 5% predictive features of our study were texture 
related, thus indicating that the lesion hetereogeneity may help the differential diagnosis of GGOs. These results 

Figure 3.   ROC analysis of the machine learning (PLS) classification performance (COVID patients were 
labelled as “positive”, nCOVID patients as “negative”).

Table 2.   Diagnostic performance of the radiomics-based machine learning signature including area under 
the curve (AUC), Youden’s index, sensitivity, specificity and p-value. In the last two columns on the right, the 
5% features with the largest β-weights in magnitude (top 5% features) and their β-weights. a Youden’s test. b 5% 
features with the largest β-weights in magnitude in Partial Least Square analysis.

Area under the curve (AUC) Youden’s indexa Sensitivitya Specificitya p-value Top 5% featuresb β-Weights

0.868 0.68 0.930 0.750 4.2 × 10–7

wavelet_LLH_glrlm_GrayLev-
elNonUniformity − 0.08

wavelet_LHH_glcm_Differ-
enceVariance − 0.12

wavelet_LHH_glrlm_GrayLev-
elVariance − 0.11

wavelet_HLH_glcm_Differ-
enceVariance − 0.09

wavelet_HHL_glrlm_RunEn-
tropy 0.07

wavelet_LLH_firstorder_Skew-
ness 0.23

Ibp_2D_
firstorder_10Percentile − 0.23
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are in line with recent studies on the differential diagnosis of COVID-19 pneumonia21,54,55. For instance, Gulbay 
et al. showed that the mean skewness and texture features were significantly different in GGOs when comparing 
COVID-19 and atypical pneumonia21. Moreover, four out of five texure-related features included in our model 
revealed a higher homogeneity in GGOs of COVID-19 than in those of non-COVID-19 patients. We speculated 
that the higher homogeneity in COVID-19 pneumonia may reflect the degree of inflammatory infiltrate in the 
early stage of diffuse alveolar damage. In fact, GGOs are typically observed in the exudative phase of COVID-
19 pneumonia, which is characterized by interstitial and alveolar oedema, hemorrhage, and hyaline membrane 
formation. With the progression of the disease, GGOs increase in density and heterogeneity, thus evolving in a 
more consolidative pattern or with a “crazy paving” pattern16.

Although our results are promising, there are some limitations. First, our study included a relatively low 
number of patients. Nonetheless, our investigation was intended as a proof-of-concept study and, since our aim 
was focused on GGOs, our inclusion criteria were necessarily strict, considering only patients with predomi-
nant GGOs pattern. Moreover, GGOs are typically found in the acute phase of the disease, which may not cor-
respond with the timing of CT and this may have further reduced the study population. Second, compared to 
the number of patients included in the study, we analyzed a large number of predictive features. In this regard, 
the PLS exploited the high collinearity of the different radiomics features, thus delivering a high prediction 
performance. Moreover, the cross-validation modality delivered an evaluation of the out-of-training sample 
performance using the sample numerosity available that is unbiased. Hence, we expect that by reducing the 
ratio between features and subject, the model prediction may further increase. Third, this is a retrospectively 
designed, single-center study. Further prospective and possibly multicentric studies are warranted to define a 
more standardized approach.

Conclusion
A radiomics-based machine learning signature showed the potential to accurately differentiate GGOs due to 
COVID-19 pneumonia from those due to other acute lung diseases on HRCT scans. Most of the discriminant 
radiomics features were related to the texture analysis. After a careful prospective evaluation in larger multi-
centric studies, this approach may assist clinicians to adopt the appropriate management early, while improving 
the triage of patients.

Data availability
The datasets generated during and/or analyzed during the current study are not publicly available due to the 
clinical and confidential nature of the material but can be made available from the corresponding author on 
reasonable request.
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