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Abstract: Rotator cuff tendon (RCT) disease results from multifactorial mechanisms, in which inflam-
mation plays a key role. Pro-inflammatory cytokines and tendon stem cell / progenitor cells (TSPCs)
have been shown to participate in the inflammatory response. However, the underlying molecular
mechanism is still not clear. In this study, flow cytometry analyses of different subpopulations of
RCT-derived TSPCs demonstrate that after three days of administration, TNFx alone or in combina-
tion with IFNYy significantly decreases the percentage of CD146+CD49d+ and CD146+CD49f+ but not
CD146+CD109+ TSPCs populations. In parallel, the same pro-inflammatory cytokines upregulate the
expression of CD200 in the CD146+ TSPCs population. Additionally, the TNFot/IFNy combination
modulates the protein expression of STAT1, STAT3, and MMP9, but not fibromodulin. At the gene
level, IRF1, CAAT (CAAT/EBPbeta), and DOK2 but not NF-xb, TGRF2 (TGFBR2), and RAS-GAP are
modulated. In conclusion, although our study has several important limitations, the results highlight
a new potential role of CD200 in regulating inflammation during tendon injuries. In addition, the
genes analyzed here might be new potential players in the inflammatory response of TSPCs.

Keywords: tendons; rotator cuff disease; inflammation; CD200; TNFe; IFNy; tendon stem cells;
CD146; IRF1; C/EBPbeta; DOK2

1. Introduction

Tendon healing after an acute injury is an ineffective process, rarely restoring complete
mechanical functionality of the damaged tissue. Studies suggest that the early inflammatory
response during the first stage of tendon healing plays a crucial role in the onset and progres-
sion of tendinopathy [1-3]. Indeed, the enhanced expression of pro-inflammatory cytokines
and the consequent persistent inflammatory response has been linked to tendinopathy [2].
However, the role of sustained cytokine signaling under inflammatory conditions in the
development, progression, and resolution of tendon injuries remains controversial [4,5].

Resident tendon stem /progenitor-cells (TSPCs) represent 1% to 4% of the total tendon
cell population and express a cluster of differentiation (CD)146, CD90, and CD44 [6,7], as
well as tenocyte-specific markers, such as scleraxis (Scx) [8].

Although it has been shown that cytokines secreted at the injured site during inflam-
mation affect resident TSPCs, which regulate tendon repair through the c-Jun N-terminal
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kinase (JNK)/signal transducer and activator of transcription 3 (STAT3) signaling path-
ways, most of the mechanisms are still unclear [9,10]. The glycoprotein CD200 type-1,
belonging to the immunoglobulin supergene family, is one of several cell transmembrane
proteins playing an active role during inflammation. Recently, CD200 was found to in-
hibit immune responses by engaging the CD200 inhibitory receptor (CD200R1), whose
expression is restricted to myeloid-derived antigen-presenting cells (APCs) and some T-cell
populations [11-14]. CD200 expression can be induced by pro-inflammatory cytokines,
such as TNF-« and IFN-y, in an NF-kB-, STAT1-, and IRF-1-dependent manner [14,15].
Interestingly, CD200 is expressed in several tissues/cells, including CD146+ stem cells
originating from the Achilles and patellar tendons [16]. However, there are no data for
CD200 expression and cytokine response in rotator cuff-derived tendon cells (RCTCs).

Moreover, given the ability of stem/progenitor cells from other sources to modulate
inflammation [7,17], the role of TSPCs in the process of tendon inflammation deserves
further investigation.

The aim of the present study was to analyze in vitro response of RCTCs to TNFx
and IFNy pro-inflammatory cytokines. We herein report the effect of pro-inflammatory
cytokines on TSPCs surface-markers expression, as well as on the mRNA and protein levels
of selected target genes that are involved in inflammation.

2. Results
2.1. Identification of Cell Surface Markers Characterizing the TSPC Population

Since we found that RCTCs modify their antigen expression during serial passaging
(P), especially after P5, we only used cells at P2 for reproducible outcomes. To identify a
TSPC subpopulation in isolated RCTCs, we found that most cells expressed high levels of
CD146, CD90, CD44, and known TSPC markers [7,8]. Moreover, we found low expression of
o4 and o6 integrins (CD49d, CD49f) and a medium expression of glycophosphatidylinositol-
anchored protein CD109, which is known to bind and regulate transforming growth
factor-beta (TGF-beta) signaling. Interestingly, we found low expression of CD200 and
no expression of CD45, which was consistent with the connective tissue origin of tendon-
derived cells (Figure 1A). Our data confirm the presence of a subpopulation of TSPCs
(named CD146+TSPCs) [6,7] in isolated RCTCs expressing low basal surface CD200.

2.2. CD146+TSPCs Response to TNFa and IFNvy

To analyze the effects of TNFx and IFNYy stimulation on CD146+TSPCs in the RCTCs,
we treated RCTCs with TNFa or IFNYy or both for 3 days. We observed RCTCs morphology
changing from a spindle shape to a rather roundish one, only with the combination of TNFo
and IFNYy, and not with either cytokine alone (Figure 1B). Neither single nor combination
cytokine treatment altered CD146 marker expression in TSPCs (Figure 1C,D).

2.3. TNFua and IFNvy Increased the Expression of CD146+CD200+ TSPCs

The percentage of CD146+CD49d+ cells decreased significantly after TNFa stimula-
tion (p < 0.04), but did not change after IFNy administration (Figure 2B), and decreased
only slightly with combination treatment. Analogously, the MFI values for CD146+CD49d+
cells decreased significantly with TNFax alone (p < 0.05) or TNFa in combination with
IFNY (p < 0.01), but not with IFNYy alone (Figure 2B). The percentage of CD146+CD49f+
cells decreased significantly with TNF« (p < 0.03), increased moderately with IFNvy alone,
and remained largely unchanged with the TNF«/IFNy combination. A similar trend was
observed in the corresponding MFI values. TNFx or TNFa+IFNy did not significantly
affect the proportion of CD146+ CD109+ TSPCs (Figure 2A,B). Finally, a significant increase
in the percentage of the CD146+CD200+ cell population was observed upon TNF« stimu-
lation (p < 0.0017) and combination TNFo/IFNYy treatment (p < 0.01) but not with IFNy
alone (Figure 2A). MFI values for this cell subpopulation showed analogous results, with
a significant increase only after TNF«x stimulation (p < 0.032) (Figure 2B).
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Figure 1. Immunophenotypic profile of human rotator-cuff-tendon-derived cells (RCTCs) by flow
cytometry. (A) Cells were stained for a panel of the cluster of designation (CD): CD146, CD90, CD44,
CD49d, CD49f, CD109, CD200, and CD45. Peaks of fluorescence emission were obtained by flow
cytometry, and their right-shifted peak (blue) represents the positivity for the marker analyzed with
respect to the isotype negative control (grey peak). CD146 (74% =+ 16.1), CD90 (99% =+ 0.3), CD44
(100% == 0.4), CD49d (58% =+ 26.6), CD49f (74% =+ 8.8), and CD109 (73% =+ 19.8). (B) Microscopic analysis
of cell morphology after 3 days of in vitro stimulation of proinflammatory cytokines. Representative images
of cells exposed to treatments were acquired by phase-contrast microscopy. 100 x magnification. (C) Gating
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strategy. The SSC (side scatter)/FSC (forward scatter) dot plot allows the gating of the cell pop-
ulation by means of its morphological parameters. Cells were afterward stained with the 7-AAD
(7-aminoactinomycin) to exclude dead cells from further analyses (CD146). No altered expression
of CD146 was promoted after stimulation with single or combined pro-inflammatory cytokines.
(D) Graphs represent the percentage of CD146 expression and the MFI (mean fluorescence intensity)
of cells exposed to treatments. Fluorescence emission peaks related to CD146 were obtained by flow
cytometry. CTRL = untreated cells.
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Figure 2. Analysis of inflammation markers in the CD146+TSPCs population. (A) RCTCs, stained
positive for CD146, were afterward co-stained for the cluster of designation (CD)49d, CD49f, CD109,
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and CD200. Representative dot plots show the distribution of the cell population in response to
treatments. (B) Graphs represent the percentage of marker expression and the MFI (mean fluorescence
intensity) related to CD49d, CD49f, CD109, and CD200. Relative emission peaks were obtained by
flow cytometry. The right shift of peaks represents a higher positivity for markers. (C) Migration
of RCT-derived cells in response to the various treatments immediately after the stimulus (T0) and
after 24 h. Representative images obtained by phase-contrast microscopy. The bar graph represents
the percentage of cells covering the gap (empty) area. 100 x magnification. (D) Protein expression
of MMP (metalloproteinase)-9, STAT (Signal transducer and activator of transcription)1, STAT3,
and fibromodulin detected by Western blotting after 24 h. B-actin is used as a loading control.
Bar graphs display densitometric values normalized on the ones of the loading control (relative
expression). (E) Graphs represent relative gene expressions of IRF (Interferon Regulatory Factor)-
1, NFkb (Nuclear factor kappa subunit b), TGRF2 (TGFBR2-Transforming growth receptor factor
2), CAAT (CAAT/Enhancer-binding protein beta), DOK2 (docking protein 2), and RAS-GAP (Ras
GTPase activating protein). * = p < 0.05; ** = p < 0.01; and **** = p < 0.0001 between CTRL and treated
cells. #=p <0.05; ## = p < 0.01; ### = p < 0.001 and #### = p < 0.0001 between cells treated with
TNF« and cells in the presence of other treatments. 5 = p < 0.05; 65 = p < 0.01; 536 = p < 0.001 and
5800 = p < 0.0001 between cells treated with IFNy and cells in the presence of other treatments.

2.4. The In Vitro Gap Repair Assay

To measure the repair capacity of RCTCs, we used an in vitro gap repair assay. As
shown in Figure 2C, 24 h treatment of RCTCs with cytokine alone or in combination showed
a non-significant decrease in cell migration compared to the unstimulated cells. Notably,
RCTCs treated with the TNFa/IFNy combination showed slower gap closure.

2.5. IFNy+TNFu Increased the Expression of STAT1, STAT3, and MMP9 Proteins

We then measured downstream signaling in response to cytokine stimulation. While
TNFa did not significantly increase STAT1 expression in RCTCs, IFNYy significantly in-
creased it (p < 0.001), while the TNFa/IFNy combination increased STAT1 levels even
more (p < 0.0001). Both STAT3 and MMP9 protein levels were significantly increased only
with the TNFa/IFNy combination (p < 0.0001) (Figure 2D), while neither cytokine nor the
combination of them significantly affected fibromodulin levels (Figure 2D).

2.6. IFNy+TNFu Increased the Expression of IRF1, CAAT and DOK2 mRNA

IRF1I mRNA expression was not significantly modulated in RCTCs with TNF« and
IFNYy alone, but it increased significantly with combination treatment (p < 0.05). On
the other hand, NF-xB and TGFR2 mRNA levels were not significantly modulated by
IFNY+TNF«. The levels of CAAT and DOK2 mRNA increased slightly with TNF«, but not
with IFNy, but increased significantly with combination treatment (p < 0.05) (Figure 2E).
RAS-GAP mRNA expression was not significantly modulated by cytokines in RCTCs.

3. Discussion

The role of inflammation in tendon injury/repair remains poorly understood. This
study shows that RCTCs contain a population expressing CD146, CD90, and CD44 TSPC
surface-markers. Additionally, they co-express CD49d (integrinx-4); CD49f (integrino-6),
a known and specific stem-cell population marker [18,19]; CD109; and, interestingly, the
CD200 ligand. In vitro stimulation on RCTCs using pro-inflammatory cytokines TNFx
and IFNy only revealed significant modulation of CD146+CD49d+ and CD146+CD49f+
expression using TNF« alone. This result likely indicates CD146+TSPC activation, which
may influence recruitment and survival and, for CD49f, self-renewal regulation in TSPCs,
as previously reported [19,20]. However, migration results showed no significant differ-
ence for 24 h pro-inflammatory cytokine stimulation in in vitro culture, compared to the
control. Noticeably, migration capacity for the whole RCTC population decreased using
TNF« and IFNYy in combination. These findings, together with morphological observa-
tions, suggest that the above cytokines may induce biochemical and molecular cellular



Int. J. Mol. Sci. 2022, 23, 15165

6 of 10

changes, thus requiring further studies. In previous research, CD109 inhibition suppressed
inflammation, by reducing pro-inflammatory factor production, cell migration, invasion,
chemo-attractive potential, and osteoclast differentiation [21]. Here, CD109 expression
was not modified by pro-inflammatory cytokines. A novel finding was that TNFx alone
or TNFo+IFNY significantly increased CD200 marker expression in the CD146+TSPCs.
Similar results have been found in mesenchymal stem /stromal cells [22]. Previous stud-
ies highlighted a fundamental regulatory role in controlling inflammation for the CD200
ligand interacting with CD200R [11-15]. Our results suggest an active role for TSPCs in
regulating inflammatory processes during tendon injury/repair, through the interaction of
CD200, expressed on CD146+TSPCs, with CD200R, located on immune-competent cells.
STAT1 and STAT3, members of the cytoplasmic family of transcription-factor (STAT) signal-
transducers and activators, have been associated with inflammatory pathologies, including
tendinopathy [23].

Our study clearly demonstrates that co-administration of TNFx and IFNy induces
a significant increase in STAT1 and STAT3 protein levels. These results agree with previous
research showing crosstalk between TNFx and IFNYy signaling pathways and suggest the
molecular control of STAT1 availability to tumor necrosis factor receptor 1 (TNFR1) [24].
STAT1 and STAT3 are known to play antagonistic roles and disruption of their balanced
interaction redirects cells from survival to apoptotic death, or from inflammatory to anti-
inflammatory response [25]. Most importantly, STAT3 has been shown to play a key role in
healing tendons [9]. TNFo and IFNYy have been reported to affect metalloproteinase (MMP)
synthesis, and their ability to upregulate MMP9 expression leads to matrix destruction and
remodeling [6,26]. Accordingly, our data show a significant increase in MMP9 protein levels
after TNFo and IFNYy co-stimulation. Proteoglycan fibromodulin, a critical component of
the ECM involved in collagen assembly and tendon repair [27], was not modulated by
TNF« and IFNY in our study.

TNFa and IFNy have been shown to induce the expression of IRF1 (ubiquitously
expressed in human cells), associated with STAT pathway activation [28-31]. Additionally,
increased IRF1 expression is also found in tendinopathy [32]. Accordingly, our results
indicate that TNFx and IFNYy together induce a significant increase in IRF1 mRNA in
RCTCs. NF-xB, which has already been shown to play a role in inflammation, is acti-
vated by pro-inflammatory cytokines, including TNFo and IFNy. NF-xB expression is
also dependent on IRF1 activation, and increased NF-«B levels are detected in early RC
tendinopathy [33-36]. In our study, NF-xB was not significantly modulated by TNF« and
IFNYy cytokines. Similarly, no significant modulation of TGFR2 (TGFBR2) was observed in
our in vitro model, although knockout of the TGFBR2 gene in tenocytes has been shown to
attenuate development of tendinopathy [37].

The activity and expression levels of CAAT /Enhancer-binding protein beta (C/EBPbeta),
involved in the maintenance of normal function and response to injury, are regulated by
several inflammatory agents, including TNFo and IFNYy [38]. Here, for the first time, we
demonstrate that co-administration of TNFx and IFNYy significantly modulates CAAT
mRNA expression in RCTCs. Furthermore, DOK2, which may have a role in various
physiological functions, including both innate and adaptive immunities, could also act
as a negative regulator of cell proliferation when stimulated by cytokines [39]. Accord-
ingly, we have shown the significant modulation of DOK2 mRNA after TNFx and IFNy
stimulation in RCTCs. These results suggest a possible role for DOK2 in tendinopathy.
Finally, we investigated RAS-GAP mRNA expression after pro-inflammatory cytokine
administration in RCTCs, since it is involved in many aspects of cell biology. In our in vitro
study, RAS-GAP mRNA was not significantly modulated by TNFx and IFNy in RCTCs.

Our study has the following limitations: (1) tendon repair, in vitro or in vivo, using
KO or over expression approaches, should be analyzed in order to infer any “potential”
mechanistic role of one or the other markers (CD200 or others); (2) to determine the
potential involvement of CD200 in reduced cell migration in cells treated with two cytokines,
it would be better to use lentivirus and see whether this would affect the phenotype;
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(3) rather than performing qRT-PCR on a few selected markers, it would be potentially
more interesting to perform RNAseq analysis, which could lead to the identification,
potentially, of previously unknown targets; (4) further research is needed to explain why
if both STAT1 and STAT3 are upregulated and how they can have antagonistic activities.
Despite these considerations, this study enhances the understanding of RCTC populations
in inflammatory conditions, including stem/progenitor subpopulations, and suggests an
important role for CD200 among the various markers. Further studies are necessary to
evaluate the role of genes whose mRNA expression is increased by TNFa and IFNv, such as
IRF1, C/EBPbeta, and DOK2, and to deeply understand how CD200 activation may regulate
inflammation. Identifying underlying molecular mechanisms may provide the basis for the
development of innovative therapies for RC tendinopathy.

4. Materials and Methods
4.1. Rotator Cuff Tendon-Derived Cells Cultures

RCTCs that were isolated from the same 10 patients described in our previous
work [40] and cryopreserved in liquid nitrogen were used. The isolation protocol was de-
scribed previously [40-42]. The cell phenotype was confirmed by assessing the expression
of a tenocyte-specific gene (scleraxis) and genes for collagens «1(I), x2(I), and «1(III) by
real-time PCR, as previously described (not shown) [43].

For the present study;, cells at passage 0 were thawed out and sub-cultured in alpha-
MEM with 10% heat-inactivated FBS and 1% penicillin/streptomycin (Gibco, MA, USA)
at 37 °C and 5% CO,. Cells at passage 2 (P2) were used to avoid phenotypic drift [44],
were seeded at 1.5 x 10° cells/flask in a 25 cm? culture flask, and were allowed to adhere
overnight. Afterward, cells were exposed to complete alpha-MEM (untreated control) or
stimulated by cytokines at a final concentration of 10 ng/mL as previously described [45].
In detail, TNFa alone, IFNYy alone, or IFNy and TNFa« in combination (PeproTech, London,
UK) were added to the medium.

4.2. Flow Cytometry

RCTCs were stained with a panel of fluorochrome-conjugated, monoclonal antibodies:
CD45-FITC, CD90-FITC, CD49d-PE, CD49{-PE, CD109-PE, (BD Pharmingen, San Diego,
CA, USA) CD44-FITC, CD146-APC, and CD200-PE (Miltenyi Biotech, Bergisch Gladbach,
Germany). Cells were acquired with a BD FACSLyric II flow cytometer (BD Biosciences,
CA, USA) equipped with a 488 nm, 640 nm, and 405 nm laser. Events were analyzed using
Suitel.5 and FlowJo 10.6.2 software (BD Biosciences). Results are shown as cell positivity
percentages or as mean fluorescence intensities (MFIs).

4.3. In Vitro Gap Repair Assay

Cells were grown to confluence in 24-well plates, and the scratch was made using
a sterile P10 pipette tip, creating a cell-free area, as described before [46]. Cultures were
treated in reduced FBS conditions (1% FBS) and images were acquired immediately after
wounding (T0) and after 24 h through bright field microscopy (NIKON, Melville, NY, USA).
Images were analyzed by Image] (Version 1.49 v, RRID:SCR_003070; NIH, Bethesda, MD,
USA), and cell-free areas were marked; outcomes are represented as a percentage of the
initial wound area.

4.4. Immunoblotting

At 24 h, cells were harvested and lysed as previously reported [42]. Twenty micrograms
of whole-protein fraction were loaded on a 12% sodium dodecyl sulfate-polyacrylamide gel
followed by Western blot. Nitrocellulose membranes were blocked and probed overnight at
4 °C with mouse monoclonal anti-STAT1 and anti-STAT3, rabbit polyclonal anti-fibromodulin
(1:1000; Abcam, UK), mouse monoclonal anti-MMP-9 (1:200; Santa Cruz Biotechnology, Santa
Cruz, CA, USA), and anti--actin antibodies (1:5000; Merck, Darmstadt, Germany). Immunore-
active bands were identified as already reported [42].
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4.5. Gene Expression Analysis

Total RNA was extracted using Total RNA Purification Kit (NORGEN Biotek) as
previously described [47,48] and reported in Supplementary Materials. Quantitative real-
time PCR (qPCR) was carried out using primer sequences for IRF1, NFKb, TGRF2, CAAT,
DOK2, RAS-GAP, and ACTB genes. Primer sequences are listed in Supplementary Materials
Table S1, as well as methods for RT-qPCR analysis. Relative gene expression was calculated
by comparative Ct (AACt) method and converted to relative expression ratio (2—AACt)
(Figure S1).

4.6. Statistics

Statistical analysis was performed using GraphPad Prism 6.0 software (GraphPad
Software, San Diego, CA, USA). For immunophenotype data, results are expressed as
median with interquartile range. Statistical differences were determined either using
Mann-Whitney nonparametric f-tests between two groups with only one variable, or with
Kruskal-Wallis non-parametric ANOVA with Dunn’s post-test for multiple variables. For
Western blot and qRT-PCR analyses, individual values from independent densitometric
measurements were summarized as means + standard deviations (S.D.), and statistics were
performed using one-way analysis of variance (ANOVA) followed by Tukey’s multiple
comparison test. Values of p < 0.05 were considered statistically significant.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232315165/s1. References [49-53] are cited in the supplementary materials.
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