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On dispersion curve coloring 
for mechanical metafilters
Andrea Bacigalupo1, Maria Laura De Bellis2, Giorgio Gnecco3* & Federico Nutarelli4

This paper formalizes smooth curve coloring (i.e., curve identification) in the presence of curve 
intersections as an optimization problem, and investigates theoretically properties of its optimal 
solution. Moreover, it presents a novel automatic technique for solving such a problem. Formally, the 
proposed algorithm aims at minimizing the summation of the total variations over a given interval of 
the first derivatives of all the labeled curves, written as functions of a scalar parameter. The algorithm 
is based on a first-order finite difference approximation of the curves and a sequence of prediction/
correction steps. At each step, the predicted points are attributed to the subsequently observed 
points of the curves by solving an Euclidean bipartite matching subproblem. A comparison with a more 
computationally expensive dynamic programming technique is presented. The proposed algorithm 
is applied with success to elastic periodic metamaterials for the realization of high-performance 
mechanical metafilters. Its output is shown to be in excellent agreement with desirable smoothness 
and periodicity properties of the metafilter dispersion curves. Possible developments, including those 
based on machine-learning techniques, are pointed out.

Mechanical metamaterials are artificial materials having properties beyond (“meta”) those of commonly encoun-
tered materials1–4. They are obtained by assembling multiple elements in repeating patterns, at scales that are 
smaller than the wavelengths of the physical phenomena of interest. Applications arise, among others, in the 
design of innovative mechanical filters (called metafilters), which are useful, e.g., in aerospace engineering, 
bioengineering, and robotics5–9.

Current research is often focused on the determination and optimization of dispersion properties of elastic 
waves in periodic metamaterials, as among others in so-called architected materials which can either function 
as high-performance advanced phononic crystals10–15 or also can host locally resonant devices (periodically or 
non periodically distributed)16–21. Among others, the anti-tetrachiral topology reported in Fig. 1 is an interest-
ing type of metamaterials with high spectral density and markedly auxetic behaviour22–28. These metamaterials 
are obtained by the periodic repetition of an elementary cell, like the one reported in Fig. 1b. In order to reduce 
the number of variables involved in the mechanical model, it can be convenient resorting to simplified in-plane 
beam-lattice models where ligaments are modeled as elastic beams and rings as rigid bodies, as shown in Fig. 2a 
with reference to the periodic cell A (also known as Wigner–Seitz cell in solid-state physics)14,25,26. In order to 
investigate the dispersion properties in the framework of the Floquet–Bloch theory29,30, a periodic reciprocal 
lattice in the dual space of dimensionless wave vectors k̄ ∈ R

2 is required. The corresponding dual periodic 
cell B , i.e., the Wigner–Seitz cell of the reciprocal lattice, is also known as dimensionless first Brillouin zone31, 
schematically reported in Fig. 2b. By exploiting the lattice material symmetries the dimensionless first irreduc-
ible Brillouin zone B⋆ is identified, highlighted in green in Fig. 2b. The frequency spectrum ω̄(k̄) , describing 
the dispersion properties, is obtained by solving a suitable generalized eigen-problem. In this way, one gets the 
dimensionless angular eigenfrequency ω̄ parametrized by the wave vector k̄ varying along ∂B⋆ (i.e., the reduced 
wave vector). In general from an operational point of view, it is necessary to discretize the reduced wave vector 
and solve repeatedly the eigen-problem. In this way the frequency spectrum, composed of acoustic and optical 
dispersion curves, is known only on a discrete set of points. To the authors’ knowledge an important open issue 
consists in attributing each eigenfrequency ω̄ to the corresponding correct (i.e., as smooth as possible) dispersion 
curve, a problem which may be called curve coloring. This is addressed in the present paper.

The following are the main contributions of this paper. First, curve coloring is formulated as an optimization 
problem, and properties of its optimal solution are studied. Second, such an optimization problem is solved by 
a greedy algorithm, showing its advantages with respect to a more computationally demanding dynamic pro-
gramming algorithm. Third, smoothness properties of dispersion curves arising in elastic periodic metafilters 
are proved, as such smoothness is among the assumptions of the curve coloring optimization problem proposed 
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in this paper. Fourth, the proposed greedy algorithm is applied with success to coloring dispersion curves of 
elastic periodic metafilters, finding automatically their smooth and periodic labeling, which is justified by the 
ground truth available in this context.

The article is organized as follows: (i) the construction of dispersion curves for periodic metafilters is detailed; 
(ii) curve coloring is modeled as an optimization problem; (iii) a greedy algorithm is presented for solving it; 
(iv) smoothness properties of dispersion curves are described, and related to the behavior of that algorithm; 
(v) results obtained by the curve coloring algorithm are reported, referring to its application to the dispersion 
curves generated by an existing physical model. The article concludes with a discussion of some possible exten-
sions of this research.

Dispersion properties for elastic periodic metafilters
In the following, details are given about the determination of the frequency spectrum for an elastic periodic 
metafilter (e.g., one with anti-tetrachiral topology25–27), which can be described via either continuous or discrete 
Lagrangian models. Let µ̄ ∈ R

p denote a dimensionless vector of real design parameters (e.g., geometrical and 
mechanical parameters) characterizing the metamaterial. By exploiting the Floquet–Bloch theory, the free-wave 
propagation is investigated by solving the k̄-parametrized generalized eigen-problem

where K̄
(

µ̄, k̄
)

∈ C
H×H is the positive semi-definite Hermitian pseudo-stiffness matrix and M̄(µ̄) ∈ R

H×H the 
positive definite pseudo-mass matrix. In this way, it is possible to determine the generalized eigenvalues 
�h

.
= ω̄2

h ∈ R≥0 and the associated generalized eigenvectors ψ̄h ∈ C
H (for h = 1, . . . ,H ). More specifically, for 

each choice of µ̄ and k̄ , both the dimensionless eigenfrequencies ω̄h and the corresponding dimensionless polari-
zation vectors ψ̄h are obtained. By considering the reduced wave vector, i.e., k̄ varying on the bi-triangular path 
∂B⋆ , for each choice of µ̄ , it is possible to determine 2H dispersion curves ω̄h(k̄(Ξ)) , with Ξ the curvilinear 
coordinate varying on ∂B⋆ . This is illustrated in Fig. 3a, where due to the symmetry of the curves with respect 
to the axis ω̄ = 0 , only the H curves with ω̄ ≥ 0 are considered for the anti-tetrachiral metamaterial referred as 
C0 in Ref.26. Furthermore, in Fig. 3b the dispersion surfaces related to the dimensionless first irreducible Brillouin 
zone B⋆ are reported.
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(
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Figure 1.   (a) A generic portion of an anti-tetrachiral metamaterial. (b) Its elementary cell.

Figure 2.   (a) Periodic cell A of the anti-tetrachiral beam-lattice model; (b) dimensionless first Brillouin zone 
B , first irriducible Brillouin zone B⋆ and bi-triangular path ∂B⋆ ; (c) perturbed bi-triangular path, with rounded 
corners ∂B⋆

ζ corresponding to the domain B⋆
ζ , parametrized by the perturbation parameter ζ > 0.
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As a minor remark it can be observed that the frequency band structure can also be determined by solving an 
ω̄-parametrized generalized eigen-problem, in terms of auxiliary variables (γj)±1 = exp (±ιk̄j) , with j = 1, 2 and 
ι2 = −1 , playing the role of Floquet multipliers and k̄j being the complex dimensionless wave number. More spe-
cifically, for each dimensionless angular frequency ω̄ ∈ R and for a given complex multiplier γα , with α = 1 ∨ 2 , 
the eigenvalue γβ ,h ∈ C , with β = 2 ∨ 1 and α  = β , as well as the eigenvector φ̄β ,h ∈ C

M (for h = 1, . . . ,M , where 
M is the eigen-problem dimension) are determined. Then, the frequency spectrum k̄α(ω̄) is finally determined 
exploiting the mapping k̄β ,h = −ι ln(γβ ,h)

32–39. Based on the obtained frequency spectra, the relative band gap 
between the h-th and q-th (consecutive) dispersion functions ω̄(k̄) with k̄ ∈ B

⋆ can be evaluated by solving the 
ω-parametrized generalized eigen-problem in (1) as

It is worth noting that in the case k̄ ∈ B
⋆ , Eq. (2) describes full band gaps, while if k̄ varies along a given sub-

portion of ∂B⋆ , including the origin, partial band gaps can be found. These relative band gaps can be chosen as 
objective functions of suitable metamaterial optimization problems, as done, e.g., in Refs.40,41.

Curve coloring as an optimization problem
For each choice of µ̄ , the considered objective function—e.g., a partial relative band gap amplitude—requires 
the preliminary determination of the dispersion curves ω̄h(k̄(Ξ)) (from now on, the dependence on µ̄ is often 
omitted in the notation). This can be computationally expensive if a fine discretization grid is used for k̄ on the 
path of interest, because the generalized eigen-problem in Eq. (1) has to be solved for each occurrence of the 
curvilinear coordinate Ξ . As highlighted in Fig. 3, such curves exhibit several crossing and veering phenomena, 
which calls for their automatic coloring through the development and application of a suitable automatic method, 

(2)�ω̄h,q,B⋆ ,rel(µ̄) =

min
k̄∈B⋆

ω̄q(µ̄, k̄)− max
k̄∈B⋆

ω̄h(µ̄, k̄)

1
2

[

min
k̄∈B⋆

ω̄q(µ̄, k̄)+ max
k̄∈B⋆

ω̄h(µ̄, k̄)

] .

Figure 3.   Anti-tetrachiral metamaterial C0 : (a) frequency spectrum; (b) dispersion surfaces.
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which labels or identifies them appropriately (e.g., maximizing smoothness of the colored curves). This method 
would take as input several multisets of samples of the curves (without knowing initially to which curve each 
sample belongs), where each multiset corresponds to a specific value of the independent variable Ξ . Its output 
would be the assignment of each sample to one curve. Figure 4a provides an illustrative example of samples 
taken from generic smooth curves y = fh(x) , h = 1, . . . ,H with H = 10 , generated as low-degree polynomials 
with random coefficients without a specific reference to dispersion curves. Moreover, Fig. 4b shows a possible 
desired (smooth) output of such an automatic method (in this case, based on the ground truth provided by the 
data-generating process). By the way of example, the figure has been obtained by taking a large spatial sampling 
frequency and by including a final linear interpolation step after curve coloring. Finding a correct labeling of the 
curves can help in distinguishing crossings from veerings, being only the latter possibly associated with positive 
band gaps. Based on the considerations made in this section, curve coloring is presented in the following as an 
optimization problem, for simplicity referring first to the case of an infinite spatial sampling frequency, then 
extending the formulation to a finite spatial sampling frequency.

It is recalled here that, for an interval [a, b] ⊂ R and a function f : [a, b] → R , the total variation Vb
a (f ) of f 

over [a, b] is defined as

in accordance with Ref.42, where the supremum in Eq. (3) is taken over the set of collections of points

If Vb
a (f ) < +∞ , then one says that f has bounded variation. In the following, for a positive integer k, 

PC
k([a, b]) stands for the class of piecewise k-times continuously differentiable functions on [a, b], i.e., whose 

derivatives up to the order k − 1 are continuous, whereas the derivative of order k is only piecewise continuous (if 
the latter derivative is also continuous, then one gets the class Ck([a, b]) ). It is well-known that, if f ∈ PC

1([a, b]) , 
then Vb

a (f ) =
∫ b
a |f ′(x)|dx . A particularly relevant case in the context of the present paper is when a function 

can have jump discontinuities. If f = g + l where g ∈ PC
1([a, b]) and l(x) =

∑N
n=1 ln

∫ x
a δ(y − xn)dy (being δ 

the Dirac distribution and all the xn ∈ (a, b) ), then

The next assumption clarifies the nature of the information available on the unknown curves to be recon-
structed. Further details about the assumed smoothness of such curves are given later, with reference to the 
specific application to periodic metafilters.

(3)Vb
a (f )

.
= sup

P∈P

nP−1
∑

i=0

|f (xi+1)− f (xi)|,

(4)P
.
=

{

P = {x0, . . . , xnP } | P is a partition of [a, b] satisfying xi < xi+1 for 0 ≤ i ≤ nP − 1

}

.

(5)Vb
a (f ) =

∫ b

a
|g ′(x)|dx +

N
∑

n=1

|ln|.

Figure 4.   Curve coloring in the case of smooth generic curves. (a) Original sampled curves. (b) Possible 
desired output.
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Assumption 1  For x ∈ [a, b] and H  (unknown) functions fh ∈ PC
2([a, b]) ,  let the multiset 

F̄x
.
= {fh(x) | h ∈ {1, 2, . . . ,H}} be given, which provides all the curve observations available for that choice of x.

The following assumption clarifies the nature of the admissible set of H reconstructed curves.

Assumption 2  For h = 1, 2, . . . ,H  , let f̂h : [a, b] → R belong to the class PC
1([a, b]) , and sup-

pose that their first derivatives f̂ ′h have the functional form f̂ ′h = gh + lh where gh ∈ PC
1([a, b]) and 

lh(x) =
∑N

n=1 lh,n
∫ x
a δ(y − xh,n)dy (being all the xh,n ∈ (a, b) ). Finally, assume that, for each x ∈ [a, b] and each 

e ∈ F̄x , there exists a unique index h̄ ∈ {1, 2, . . . ,H} for which f̂h̄(x) = e (possibly repeated elements e—which 
are obtained in correspondence of curve intersections—are denoted as different elements of F̄x).

Based on Assumptions 1 and 2, curve coloring can be formulated as the following optimization problem. 
Assumption 2 guarantees a minimal amount of smoothness for the admissible reconstructed curves (which is 
expressed by the class PC

1([a, b]) ), whereas Assumption 1 guarantees that it is possible to label the curves in an 
even smoother way (which is expressed by the class PC

2([a, b])).

Problem 1  Under Assumptions 1 and 2, optimal reconstructed functions f̂ ◦h  ( h = 1, . . . ,H ) are obtained by 
minimizing the summation of the total variations over [a, b] of their first derivatives, i.e., by finding

The following proposition motivates the formulation of the optimization problem above. The last part of 
the proposition refers to the case of periodic curves, which is of interest for the application of curve coloring to 
dispersion curves arising in the case of periodic metafilters.

Proposition 1  The following holds: 

	 (i)	 The optimal solution to Problem 1 has no jump discontinuities in the derivatives of the functions f̂ ◦h .
	 (ii)	 If additionally the functions fh intersect with different derivatives, then the optimal solution is unique (apart 

from a permutation of the labels) and satisfies f̂ ◦σ(h) = fh  for each h, where σ is a permutation of the set 
{1, . . . ,H}.

	 (iii)	 Under the assumptions of item (ii), if the functions fh are periodic with period b− a , then the optimal 
functions f̂ ◦h  are also periodic with the same period.

Proof Being the functions f̂h continuous, they coincide (apart from a possible relabeling) with the functions 
fh on any interval I = [ã, b̃] ⊆ [a, b] on which they do not intersect. The case of an interval I in which there is 
a single intersection at a point x0 ∈ int(I) between two functions f1, f2 ∈ PC

2(I) , and the two functions intersect 
with different derivatives at the intersection point, is illustrated in Fig. 5a,b. It is evident that there are only four 
possible ways of labeling the two curves in that interval (two ways are reported in parts (a) and (b) of the figure, 
the other two ways are obtained by exchanging the respective colors). In two cases (corresponding to Fig. 5a) there 
are no jump discontinuities in the first derivatives of the functions f̂1 and f̂2 , and one gets 
V (1) .

=
∑H

h=1 V
b̃
ã

(

f̂ ′h

)

=
∫ b̃
ã

(

|f ′1(x)| + |f ′2(x)|
)

dx , whereas in the other two cases (corresponding to Fig. 5b) there 

(6)min
{f̂h|h∈{1,2,...,H}}

H
∑

h=1

Vb
a (f̂

′
h).

Figure 5.   Two curves intersecting at one point, with different slopes: (a) curve labeling preserving 
differentiability at the intersection; (b) curve labeling not preserving differentiability at the intersection, 
and associated with a higher objective value in Eq. (6) than the labeling in part (a) of the figure. Two curves 
intersecting at one point, with the same slope: (c) curve labeling preserving differentiability at the intersection; 
(d) nonequivalent curve labeling preserving differentiability at the intersection, and having the same objective 
value in Eq. (6) as the curve labeling in part (c) of the figure.
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are jump discontinuities in the first derivatives of the functions f̂1 and f̂2 , and one gets V (2) .
=

∑

H

h=1 V
b̃

ã

(

f̂
′
h

)

=
∫

b̃

ã

(

|f ′
1
(x)| + |f ′

2
(x)|

)

dx + limε→0+

(

|f ′2(x0 + ε)− f
′
1(x0 − ε)| + |f ′1(x0 + ε)− f

′
2(x0 − ε)|

)

> V
(1) .  So,  the  

two (equivalent) cases with no jump discontinuities in the first derivatives have lower objective value. However, 
if f ′1(x0) = f ′2(x0) , then all the possible (even nonequivalent) labelings of the curves achieve the same objective 
value when the domain is restricted to I . So, in this case it is not possible to achieve a unique optimal reconstruc-
tion of the set of curves, even apart from a permutation of the labels, as illustrated in Fig. 5c,d. The case of an 
interval containing two or more intersection points and/or the simultaneous intersection of three or more curves 
is analysed analogously. Concluding, since the case f̂h = fh for each h provides an admissible labeling of the set of 
curves, one gets items (i) and (ii) under the respective hypotheses provided in the statement. Finally, item (iii) is 
an immediate consequence of item (ii) under the additional periodicity assumption on the functions fh.

From a numerical point of view, it emerges that F̄x is typically observed only on a fine enough grid of points 
{xs = a+ (b− a)s/S | s = 0, 1, . . . , S = nP} , obtained under a finite spatial sampling frequency S/(b− a) (or 
equivalently, a finite stepsize (b− a)/S ). This motivates replacing the generic partition P with this {xs} in the 
definition (3) of total variation and the first derivative f̂ ′h with its difference quotient, i.e., the total variation 

Vb
a

(

f̂ ′h

)

 over [a, b] is replaced by its approximation

Then, one gets the following approximate version of Problem 1.

Problem 2  Under Assumptions 1 and 2, optimal reconstructed functions f̂ ◦h  ( h = 1, . . . ,H ) are obtained by 
minimizing the summation of the approximations (7), i.e., by finding

The motivation for Problem 2 is that, under Assumptions 1 and 2 and slight additional smoothness (e.g., if 
the interval [a, b] can be partitioned into a finite set of subintervals Ii , and f̂h ∈ C

2(Ii) , for each h and i), for 
each admissible set of functions f̂h ( h = 1, 2, . . . ,H ), the approximation V̄b

a

(

f̂ ′h

)

 tends to the total variation Vb
a

(

f̂ ′h

)

 
when S → +∞.

From a general point of view, Problem  2 can be solved by using Bellman’s equations of dynamic 
programming43, by considering a dynamic optimization problem in which the state of the dynamical system at 
the stage i = 0, . . . , S − 2 is provided by an arbitrary matching between the elements of the multisets F̄xi and F̄xi+1 

(from which one is able to compute the H-tuple of difference quotients f̂h(xi+1)−f̂h(xi)
xi+1−xi

 ), the control at the same 
stage is provided by an arbitrary assignment of the elements of the multiset F̄xi+2 to the functions f̂h , and the 

cost-per-stage is 
∑H

h=1

∣

∣

∣

∣

f̂h(xi+2)−f̂h(xi+1)

xi+2−xi+1
−

f̂h(xi+1)−f̂h(xi)
xi+1−xi

∣

∣

∣

∣

=
∑H

h=1

∣

∣

∣

∣

f̂h(xi+2)−2f̂h(xi+1)+f̂h(xi)
b−a
S

∣

∣

∣

∣

 . Nevertheless, for this 

formulation, the so-called backward phase of dynamic programming (which deals with the construction of 
suitable functions of the state, called optimal cost-to-go functions, and is more computationally demanding than 
its forward phase) has computational complexity of order O ((H!)2S) , since both the numbers of different states 
and of different controls are equal to H!. This is computationally intractable even for small H (e.g., for H = 7 one 
gets (H!)2 = 25401600 ). For this reason, in the following section a greedy algorithm (i.e., based only on a forward 
phase) is considered, which is shown to produce the same output of the dynamic programming algorithm in 
examples of technological interest, but with a much smaller computational complexity.

A greedy algorithm for curve coloring
The following greedy algorithm (Algorithm 1) is a generalization of the one proposed in Ref.44. The algorithm 
is based on a first-order finite difference approximation of each curve and on a set of Euclidean bipartite match-
ing subproblems, which are are solved exactly. A backward scheme is used for the first-order finite difference 
approximation since it relies on information that, at each iteration of the algorithm, is obtained from samples that 
have been already attributed to each specific curve. The reason for which an Euclidean bipartite matching (sub)
problem is solved at each iteration of the algorithm is that the cost function of such a problem is proportional to 
the summation of the variations of the slopes—from the current value of the abscissa to the successive one—of 
the curves colored by the algorithm up to that current value of the abscissa. So, this cost function is proportional 
to one term of the outer summation which appears in the right-most expression (8) of the objective function of 
Problem 2. Details about the Euclidean bipartite matching problem are deferred to the Supplementary mate-
rial. It is worth noting that the Euclidean bipartite matching problem has computational complexity of order 
O (H2.5log(H)) , as detailed in Ref.45. Hence, it follows that Algorithm 1 has computational complexity of order 
O (H2.5log(H)S) , which is smaller, e.g., than O (H3

S) . Specifically, it is smaller than the computational complex-
ity of the dynamic programming algorithm described in the previous section (in the Supplementary material, 
the two algorithms are compared for a small number H of curves, showing that they have the same behavior). 
To clarify how Algorithm 1 works, in Fig. 6 its first two iterations are illustrated. By construction, Algorithm 1 

(7)V̄b
a

(

f̂ ′h

)

.
=

S−2
∑

i=0

∣

∣

∣

∣

∣

f̂h(xi+2)− f̂h(xi+1)

xi+2 − xi+1
−

f̂h(xi+1)− f̂h(xi)

xi+1 − xi

∣

∣

∣

∣

∣

.

(8)min
{f̂h|h∈{1,2,...,H}}

H
∑

h=1

V̄b
a (f̂

′
h) =

S−2
∑

i=0

(

H
∑

h=1

∣

∣

∣

∣

∣

f̂h(xi+2)− f̂h(xi+1)

xi+2 − xi+1
−

f̂h(xi+1)− f̂h(xi)

xi+1 − xi

∣

∣

∣

∣

∣

)

.
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aims at identifying smooth curves, changing the least possible the slopes of the reconstructed curves from one 
step to the successive one (this puts it in relation with Problems 1 and 2). For instance, in the case of the example 
reported in parts (a) and (b) of Fig. 5, Algorithm 1 produces as output the labeling reported in part (a) of the 
figure (which is associated with the unique optimal solution of each Euclidean bipartite matching subproblem), 
whereas an alternative simple method, based on the lexicographic order of the curves, produces as output the 
labeling reported in part (b) of the figure. In the case of the example reported in parts (c) and (d) of Fig. 5, it 
can be seen that, of the two possible equivalent labelings, Algorithm 1 produces as output the one reported in 
part (d) of the figure, because of the specific form of its prediction step, based on a backward first-order finite 
difference approximation of each derivative.

Algorithm 1: Curve coloring

1: (Initialization) The curves are evaluated on a regular grid of S + 1 values for the curvilinear coordinate x on the path of interest (e.g., Ξ on 
∂B⋆)
For s = 0;1,…, S – 1:
2: (Prediction step) Scanning the curves from the left to the right up to the value xs = a + (b − a)s/S of the curvilinear coordinate x on the grid, 
for each curve one gets a prediction of its point corresponding to xs + 1, based on a backward first-order finite difference approximation of the 
curve (the slope of this approximation is equal to 0 for s = 0; otherwise, the approximation passes through the points already attributed to the 
curve in correspondence of s and s − 1);
3: (Correction step) The (multi)set Gs + 1 of predicted points is compared with the (multi)set Fs + 1 =̇Fxs+1

 of observed points on the curves, 
then an Euclidean bipartite matching problem is solved to attribute each observed point to one of the curves, and the corresponding first-
order finite difference approximation is updated

Remark 1  In principle, derivatives could be used in Algorithm 1 instead of difference quotients, but typically 
at a higher computational cost. For instance, Eq. (10) in the next Remark 4 reports a possible expression of the 
derivative of each nonzero angular eigenfrequency ω̄h with respect to Ξ , which is valid, under mild conditions, in 
the case of the application of the algorithm to metamaterial dispersion curves. Nevertheless, such an expression 
requires the determination of generalized eigenvectors, whose computational cost increases with their dimen-
sion. The Supplementary material shows that the performance of Algorithm 1 is similar to the one would obtain 
by replacing difference quotients with derivatives.

Remark 2  In the Supplementary material, Algorithm 1 is also compared with other two algorithms proposed in 
the literature related to dispersion curve coloring, i.e., in Refs.46,47. Although their outputs are generally similar 
to the one of Algorithm 1, the main advantages of Algorithm 1 are that it can be directly related to the curve 
coloring optimization problems formulated in the present article (see the next section for a discussion on this 
issue), and that it does not rely on the computation of generalized eigenvectors, but only of that of generalized 
eigenvalues. This can be particularly important in high-dimensional problems, characterized by a large number 
of components of the generalized eigenvectors.

(a) (b)

points belonging to F0

points belonging to F1

points belonging to F2

points belonging to G1

points belonging to G2

predictions

matching

Figure 6.   Algorithm 1: (i) First iteration; (ii) Second iteration.
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Smoothness properties of dispersion curves and their relationship with Algorithm 1
In view of the application of Algorithm 1 to the coloring of dispersion curves arising in periodic metafilters, it is 
important to highlight that in this case one requires a smooth labeling like the one in Fig. 5a, which is produced 
by Algorithm 1, rather than a non-smooth labeling like the one in Fig. 5b. The reason is that smooth dispersion 
curves exist under mild conditions, as stated in the next proposition. It is recalled that a nonempty connected 
open subset of the complex plane is called generically region.

Proposition 2  The following holds: 

	 (i)	 Let the positive semi-definite Hermitian matrix K̄
(

µ̄, k̄
)

 be a continuously differentiable function of the 

dimensionless wave vector k̄ . If  k̄(Ξ) is a continuously differentiable function of the curvilinear coordinate 
Ξ either on the path ∂B⋆ or on its portion, then it is possible to label each generalized eigenvalue ω̄2

h(k̄(Ξ)) 
in such a way that it is a continuously differentiable function of Ξ.

	 (ii)	 Let every element of the positive semi-definite Hermitian matrix K̄
(

µ̄, k̄
)

 be a holomorphic function of the 

dimensionless wave vector k̄ . If each component of k̄(Ξ) is a holomorphic function of the curvilinear coor-
dinate Ξ on a region �1 of the complex plane containing either the path ∂B⋆ or its portion, then it is pos-
sible to label each generalized eigenvalue ω̄2

h(k̄(Ξ)) and every component of each generalized eigenvector 
ψ̄h(k̄(Ξ)) in such a way that they are holomorphic functions of Ξ on a region �2 ⊆ �1.

Proof By applying the linear mapping ψ̄h �→ M̄
1/2ψ̄h to the generalized eigenvectors ψ̄h of the generalized 

eigen-problem reported in Eq. (1), it turns out that such problem can be reduced to a standard eigen-problem, 
governed by the positive semi-definite Hermitian matrix

which has the same eigenvalues as the (generalized) eigenvalues of the pair (K̄
(

µ̄, k̄(Ξ)

)

, M̄(µ̄)) . Then, item (i) 

follows from the application to K
(

µ̄, k̄(Ξ)

)

 of Rellich’s perturbation theorem, stated for the case of continuously 
differentiable matrices48. Similarly, item (ii) follows from the application to K

(

µ̄, k̄(Ξ)

)

 of Rellich’s perturbation 
theorem, stated for the case of matrices with holomorphic elements49.

Remark 3  Proposition 2(ii) holds under stronger assumptions than Proposition 2(i). However, it provides 
smoothness not only for the generalized eigenvalues, but also for the generalized eigenvectors. Moreover, it 
guarantees a higher degree of smoothness than Proposition 2(i). Without the assumptions of Proposition 2(ii), 
it is easy to construct cases of (generalized) eigen-problems for which the (generalized) eigenvectors are not 
continuous, even when both the two matrices of the problem and the (generalized) eigenvalues are infinitely 
differentiable48.

Remark 4  By taking k̄ = k̄(Ξ) , making the assumptions of Proposition 2(ii), differentiating Eq. (1) as in40,50–52, 
and taking into account that M̄′ = 0 , it turns out that the derivative ω̄′

h of each nonzero angular eigenfrequency 
ω̄h with respect to Ξ has the expression

where ψ̄⋆

h denotes the complex conjugate transpose of the generalized eigenvector ψ̄h , and the additional nor-
malization ψ̄⋆

hM̄ψ̄h = 1 has been made. A similar result holds for the derivative �′h = ψ̄
⋆

hK̄
′ψ̄h of each general-

ized eigenvalue �h = ω̄2
h with respect to Ξ . It follows from Eq. (10) that the curve labeling reported in Fig. 5a 

is compatible with the continuity of the generalized eigenvectors ψ̄h (as it produces continuously differentiable 
nonzero angular eigenfrequencies ω̄h ), whereas the alternative curve labeling reported in Fig. 5b is not compat-
ible with it. Since only two non-equivalent labelings are possible in the particular case shown in Fig. 5a,b, one 
can conclude that the continuous differentiability of the generalized eigenvalues is equivalent to continuity of the 
generalized eigenvectors in that situation. This comment can be extended to other situations (e.g., to the case of 
the simultaneous intersection of three or more dispersion curves, with a different derivative for each function). 
However, it cannot be extended to the case in which two curves intersect with the same derivative at the intersec-
tion point. In this situation, still under the assumptions of Proposition 2(ii), a correct labeling would be obtained 
as the only one that preserves the continuity of the generalized eigenvectors (at the additional computational 
cost of determining the generalized eigenvectors, instead of determining only the generalized eigenvalues).

Remark 5  It is worth highlighting that, in the case of an elastic periodic metamaterial, ω̄′
h represents the group 

velocity, i.e., the energy velocity, of elastic waves50–52. Hence, one expects the dispersion curves to be Lipschitz 
continuous. This was proved in Ref.53 for the model of periodic metamaterial considered therein.

(9)K

(

µ̄, k̄(Ξ)

)

.
= M̄

−1/2(µ̄)K̄
(

µ̄, k̄(Ξ)

)

M̄
−1/2(µ̄),

(10)ω̄′
h =

ψ̄
⋆

hK̄
′ψ̄h

2ω̄hψ̄
⋆

hM̄ψ̄h

=
ψ̄

⋆

hK̄
′ψ̄h

2ω̄h
,
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Concluding, the behavior of Algorithm 1 motivates its application to dispersion curve coloring in the case 
of elastic periodic metafilters, when the angular eigenfrequencies can be expressed as smooth functions of the 
curvilinear coordinate Ξ (see Proposition 2 and Remark 4), and the curves intersect with different derivatives 
at their intersection points (which is a quite common situation in applications). For instance, in the situation 
described in parts (a) and (b) of Fig. 5, the algorithm is guaranteed to identify these smooth dispersion curves 
correctly. Furthermore, its output is in agreement also with Proposition 1(i).

It is worth noting that the assumptions of either Proposition 2(i) or Proposition 2(ii) are quite common in 
models of elastic periodic metafilters. For instance, such models are in general characterized by a pseudo-stiffness 
matrix K̄

(

µ̄, k̄
)

∈ C
H×H whose elements are holomorphic and single-valued functions of k̄ , where single-val-

uedness is also an important property, since it implies periodicity of the dispersion curves on every closed path. 
Nevertheless, the assumptions of either Proposition 2(i) or Proposition 2(ii) may not hold in the case of the 
bi-triangular path reported in Fig. 2b, because that path is not a continuously differentiable function of the 
curvilinear coordinate Ξ (in this case, indeed, one can see from Fig. 3 that the functions ω̄h are usually not con-
tinuously differentiable in correspondence of the turnaround points of the path ∂B⋆ ). Another issue has to do 
with the fact that in the case of Fig. 3, some curves overlap over a whole interval, which prevents the application 
of Proposition 1(ii). As shown by the numerical results reported in the next section, however, both issues can be 
solved by considering a slight perturbation ∂B⋆

ζ (with rounded corners) of the bi-triangular path, which is shown 
later in Fig. 2c. The perturbed path is constructed by joining 6 segments and 6 circular arcs (2 with the same 
center). The parameter ζ > 0 represents both the distance of each segment from the corresponding one in the 
original path, and the radius of each circumference. It is worth mentioning that, for the beam-lattice metamate-
rial class of models considered, the assumptions of Proposition 2(i) hold for the perturbed path (so the nonzero 
dispersion curves are continuously differentiable), whereas the assumptions of Proposition 2(ii) hold for each 
portion of the perturbed path (e.g., the segments, the circular arcs) that can be represented as the graph of a 
holomorphic function. Hence, Assumption 1 holds for all the nonzero dispersion curves (i.e., it may not hold 
only for dispersion curves that are equal to 0 locally). It is also worth mentioning that Remark 4 suggests, as an 
alternative, to apply Algorithm 1 not directly to the dispersion curves, but to the generalized eigenvalue curves 
ω̄2
h(k̄(Ξ)) , then to transfer the resulting labels from the reconstructed generalized eigenvalue curves to the cor-

responding dispersion curves.
Finally, in the Supplementary material, an alternative use of Algorithm 1 (i.e., its application to generalized 

eigenvector curves instead of dispersion curves) is briefly outlined, showing that the original application is 
preferable according to various points of view.

Results
This section is devoted to the curve coloring of frequency spectra ω̄(k̄) corresponding to the beam-lattice meta-
material referred as C0 in Ref.26, by exploiting the proposed Algorithm 1. Note that this algorithm can be suc-
cessfully used for the curve coloring of generic elastic architectured metamaterials described by either continu-
ous or discrete Lagrangian models. In order to better highlight the performance of Algorithm 1, its results are 
compared with the corresponding ones obtained by the alternative simple method, based on the lexicographic 
order of the dispersion curves. For the sake of convenience, the stepsize has been chosen large enough to be able 
to discriminate between crossings (true intersections) and veerings (no intersections). More precisely, the stepsize 
has been chosen to be equal to π/100 , which corresponds to S = 100 in Fig. 7 (the robustness of the numerical 
results with respect to the choice of the stepsize is investigated in the Supplementary material). Furthermore, 
for the cases examined, the same results have been also obtained by applying Algorithm 1 to the generalized 
eigenvalue curves, then transferring the labels to the corresponding dispersion curves.

Figure 7a shows the set of dispersion curves reconstructed by the simple method, on the path Ξ0-Ξ1 of Fig. 2b. 
It is evident that in points P1 , P2 , P3 some branches show loss of differentiability. Moreover, the Fig. 7b highlights 
the loss of continuity of the magnitude components |ψ̄(h)

1 | corresponding to the generalized eigenvector curves. 
The generalized eigenvectors have been normalized to have unit norm. Similar results are obtained for the other 
magnitude components of the generalized eigenvectors. It follows that the curve coloring obtained via the simple 
method does not provide smooth curves as in Proposition 2 and, therefore, cannot be a valid tool for the correct 
labeling of dispersion curves. On the other hand, Fig. 8a shows the set of dispersion curves reconstructed by 
Algorithm 1, on the path Ξ0-Ξ1 of Fig. 2b. In this case, as expected, no loss of differentiability of the reconstructed 
curves is observed as it emerges by considering points P1 , P2 , P3 . Figure 8b shows the associated labeling of the 
magnitude components |ψ̄(h)

1 | corresponding to the generalized eigenvectors. The figure highlights the continuity 
of such curves. Differently from the previous case, the obtained curve coloring is in accordance with the smooth-
ness provided by Proposition 2(ii). Indeed, being every element of the matrix K̄

(

µ̄, k̄
)

 a holomorphic function 
of k̄ , and being each component of k̄(Ξ) a holomorphic function of Ξ , it turns out that it is possible to label the 
nonzero dispersion curves and the generalized eigenvalues in such a way that they are holomorphic functions 
of Ξ . Finally, Fig. 9a shows the results obtained by Algorithm 1 on the perturbed bi-triangular path ∂B⋆

ζ , which 
is shown in Fig. 2c. Figure 9b illustrates a zoomed view of the dispersion curves, in the gray shaded area reported 
in part (a) of the figure. Then, Fig. 9c highlights the smoothness of the magnitude components |ψ̄(h)

1 | correspond-
ing to the generalized eigenvector curves, labeled in accordance with the results reported in part (a) of the figure. 
It is evident from Fig. 9 that: the perturbation of the path makes the dispersion curves smoother with respect to 
Fig. 3a (which are evaluated on the original bi-triangular path ∂B⋆ ) and separates curves that in Fig. 3a overlap 
over a whole interval; moreover, in this case, Algorithm 1 reconstructs smooth and periodic curves, as expected. 
It is evident that Algorithm 1 can be effectively used for the curve coloring of dispersion spectra. To conclude, 
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it has to be remarked that, when the periodic dispersion surfaces are continuous functions of the dimensionless 
wave vector k̄ on the dimensionless first irreducible Brillouin zone B⋆ (which occurs under mild conditions54, 
which are satisfied in the present context for the case of either item (i) or (ii) of Proposition 2), then they are also 
uniformly continuous on any compact set containing B⋆ . This guarantees that, for any ε > 0 , it is possible to 
choose the value of the perturbation parameter ζ in such a way that the global maximum/minimum of each 

Figure 7.   (a) Dispersion curve coloring obtained by the alternative simple method. (b) Loss of continuity of the 
magnitude components |ψ̄(h)

1 | corresponding to the generalized eigenvector curves, labeled in accordance with 
the results reported in part (a) of the figure.

Figure 8.   (a) Dispersion curve coloring obtained by Algorithm 1. (b) Continuity of the magnitude components 
|ψ̄

(h)
1 | corresponding to the generalized eigenvector curves, labeled in accordance with the results reported in 

part (a) of the figure.
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dispersion curve moves at most by ε as a consequence of the perturbation, guaranteeing that each computed 
absolute band gap is perturbed at most by 2ε in absolute value. Analogously, perturbation bounds can be found 
for computed relative band gaps.

Conclusion and future developments
In this paper, curve coloring has been formalized as an optimization problem, and properties of its optimal solu-
tion have been proved. Then, a greedy algorithm has been considered for its numerical resolution. The relation-
ship of the algorithm with the proposed curve coloring optimization problem and its approximate version has 
been discussed, by finding an agreement between theoretical properties of the optimal solution to such problem 
and the solution found by the algorithm. The algorithm itself has been motivated by the existence of a smooth 
labeling of the generalized eigenvalue curves, which is among the assumptions of the proposed curve coloring 
optimization problem. Such smoothness has been theoretically investigated in the context of dispersion curves 
arising in elastic periodic metafilters. Finally, the algorithm has been successfully applied for the coloring of such 
dispersion curves. Following the same arguments provided here, it can be proved that the proposed algorithm 
can be successfully exploited for the curve coloring of periodic materials with generic topology described by 
discrete Lagrangian or discretized continuous models, provided that the wave propagation is studied via an 
eigen-problem satisfying the properties required by the Rellich’s perturbation theorem, and that the dispersion 
curves intersect with different derivatives at their intersection points. More specifically, under the stated condi-
tions, it can be observed that the proposed curve coloring algorithm can be successfully used to identify correctly 
the branches of the frequency band structures in linear elastic, piezoelectric, magneto-electroelastic materials, 
among others, as long as dissipative phenomena do not occur. Compared with other algorithms proposed in 
the literature46,47, the main advantages of the proposed algorithm are that it can be directly related to the curve 
coloring optimization problems formulated in the present article, and that it does not rely on the computation 
of generalized eigenvectors, but only of that of generalized eigenvalues.

In the following, some possible future directions of the present research are discussed. First, by possibly mak-
ing additional assumptions, the relationship between Problems 1 and 2 could be further investigated. Further-
more, it is worth mentioning that Proposition 2 does not easily extend to the two-dimensional case (i.e., to the 
case of dispersion surfaces, for what concerns the application to periodic metafilters) because it is well-known that 
Rellich’s perturbation theorem holds only for the one-dimensional case, i.e., for eigenvalues expressed in terms 
of a single scalar variable48. Moreover, that theorem cannot be applied when the angular eigenfrequencies are 
complex (i.e., in the case of periodic metafilters with dissipation). Indeed, there exist several theoretical examples 
in the literature in which the generalized eigenvalues are not smooth functions of a parameter, even when the 
two matrices that appear in the generalized eigen-problem are smooth functions of that parameter (see, e.g.,55). 

Figure 9.   (a) Dispersion curve coloring obtained by Algorithm 1, in the case of the perturbed bi-triangular 
path; (b) zoomed view of the gray shaded area in part (a) of the figure; (c) magnitude components |ψ̄(h)

1 | of the 
generalized eigenvector curves corresponding to the zoomed view shown in part (b) of the figure.
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However, dispersion curves/surfaces obtained for several models of metamaterials are quite smooth, even in the 
presence of dissipation (see, e.g.,56), so a suitable variation of Rellich’s perturbation theorem may hold for these 
cases. On the other hand, an additional extension concerns the possibility of modifying Algorithm 1 by adopting 
in it a second-order finite difference approximation of the reconstructed curves instead of a first-order finite dif-
ference approximation. In this way, in the situation described in parts (c) and (d) of Fig. 5, the modified algorithm 
is expected to produce the labeling illustrated by part (c) of the figure. This would correspond to replacing first 
derivatives with second derivatives in the objectives of Problems 1 and 2. A further enhancement regards the 
possible improvement of the dynamic programming algorithm discussed in the present paper, by taking into 
account additional properties of the dispersion curves, such as Lipschitz continuity, which was proved in Ref.41 
for certain models of periodic metafilters. However, for applications of technological interest, estimates of the 
Lipschitz constants would be needed. Another possible extension regards the combination of Algorithm 1 with 
machine learning methods, e.g., with the aim of achieving an adaptive sampling of the set of dispersion curves, 
or of automatically determining a stepsize able to distinguish crossings from veerings (taking as training set a 
collection of labeled images representing sets of sampled curves). Finally, the algorithm could be applied to the 
case of infinite-dimensional generalized eigen-problems arising in continuum metafilter models, by focusing on 
a portion of the frequency spectrum containing a finite number of dispersion curves.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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