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Abstract 

 Alzheimer's disease (AD) is the most frequent neurodegenerative disorder and cause of 

dementia along aging. It is characterized by a pathological extracellular accumulation of Aβ 

amyloid peptides that affects excitatory and inhibitory synaptic transmission. It also triggers 

aberrant patterns of neuronal circuit activity at the network level. Growing evidence shows that AD 

targets cortical neuronal networks related to cognitive functions including episodic memory and 

visuospatial attention. This is partially reflected by the abnormal mechanisms of cortical neural 

synchronization and coupling that generate resting state electroencephalographic (EEG) rhythms. 

The cortical neural synchronization is typically indexed by EEG power density. The EEG coupling 

between electrode pairs probes functional (inter-relatedness of EEG signals) and effective (casual 

effect from one over the other electrode) connectivity. The former is typically indexed by EEG 

spectral coherence (linear) or synchronization likelihood (linear-nonlinear), the latter by granger 

causality or information theory indexes. Here we revised resting state EEG studies in mild cognitive 

impairment (MCI) and AD subjects as a window on abnormalities of the cortical neural 

synchronization and functional and effective connectivity. Results showed abnormalities of the 

EEG power density at specific frequency bands (<12 Hz) in the MCI and AD populations, 

associated to an altered functional and effective EEG connectivity among long range cortical 

networks (i.e. fronto-parietal and fronto-temporal). These results suggest that resting state EEG 

rhythms reflect the abnormal cortical neural synchronization and coupling in the brain of prodromal 

and overt AD subjects, possibly reflecting dysfunctional neuroplasticity of the neural transmission 

in long range cortical networks.  
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1. Introduction  

 The human brain contains an intricate network of about 100 billion neurons. Aging of the 

brain is characterized by a combination of synaptic pruning, loss of cortico-cortical connections and 

neuronal apoptosis that provoke an age-dependent decline of cognitive functions (D’Amelio and 

Rossini, 2012). Neural/synaptic redundancy and plastic remodeling of brain networking, also 

secondary to mental and physical training, promotes maintenance of brain activity and cognitive 

status in healthy elderly subjects for everyday life (D’Amelio and Rossini, 2012).  

 Pathological processes at cellular level can alter physiological brain aging. It is well known 

that Alzheimer's disease (AD) is the most frequent neurodegenerative disorder and cause of 

dementia along aging. It is characterized by a pathological accumulation of Aβ amyloid and 

hyperphosphorylated tau peptides that affect excitatory and inhibitory synaptic transmission 

(Daulatzai, 2010; Shen, 2004). The pathological accumulation of these peptides also triggers 

aberrant patterns of neuronal circuit activity at the network level (Palop and Mucke, 2010). 

Growing evidence shows that AD targets cortical neuronal networks related to cognitive functions 

including episodic memory and visuospatial attention (Pievani et al., 2011). Specifically, AD is 

related to neurodegeneration within the basal forebrain, parietal, prefrontal, entorhinal cortices, 

amygdala and hippocampus, and is characterized by an impairment of the cholinergic 

neurotransmission associated with a pathological production of beta amyloid (Abeta) and 

phosphorylated tau (Daulatzai, 2010; Shen, 2004). 

 The diagnosis of AD on the basis of overt dementia symptoms reasonably comes after 5–6 

years from probable disease onset and this delay is very negative from a therapeutic point of view. 

Towards an early diagnosis of AD, there has been great progress in identifying the AD-associated 

structural, functional and molecular changes in the brain and their biochemical footprints well 

before the symptoms of overt dementia. New research criteria for the diagnosis of prodromal AD 

have been advanced in revising the NINCDS-ADRDA criteria (Dubois et al. 2007; Albert et al, 

2011; Jack et al., 2011; McKhann et al, 2011; Sperling et al., 2011). The new criteria include fluid 

and neuroimaging biomarkers of AD. Fluid biomarkers can be extracted from the blood and the 

cerebrospinal fluid by lumbar puncture (CSF; Clark et al., 2003; Fagan et al., 2006; Schoonenboom 

et al., 2008; Tapiola et al., 2009). Validated blood biomarkers probe genetic vulnerability for 

dementia. Genotyping for apolipoprotein E4 (ApoE), cystatin B and homocysteine represent 

independent risk factors for sporadic late-onset AD, whereas presenilins (PSEN1 and PSEN2) have 

autosomal dominant inheritance (high penetrance >85%), and lead to Aβ amyloid aggregation and 

early-onset AD (γ-secretase-mediated proteolytic cleavage of APP). Genotyping of ApoE and 

homocysteine have some impact also for late onset cerebrovascular dementia (VaD) (Dubois et al. 
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2007). Validated CSF biomarkers probe Aβ amyloid and total phosphorylated tau as signs of the 

amyloid cascade towards neural injury and neurodegeneration (Tapiola et al., 2009). On the other 

hand, the validated neuroimaging biomarkers include structural MRI to probe neurodegeneration as 

revealed by hippocampal atrophy (Frisoni et al., 2010; Silbert et al., 2003; Zarow et al., 2005; 

Schuff et al., 2009; Van de Pol et al., 2006) and resting-state PET-fluoro-deoxy-glucose (FDG) 

mapping of temporo-parietal and precuneous hypometabolism (Jagust et al., 2007; Minoshima et 

al., 1997); PET-amyloid Pittsburg Compound B (PIB) is also used for the visualization of Aβ 

amyloid deposition in the brain (Klunk et al., 2004; Rowe et al., 2007; Ikonomovic et al, 2008). It is 

important to note that the approaches above are relatively expensive and invasive, so that they 

cannot be systematically applied to all elderly subjects with memory complaints or very mild 

objective decline, due to numerous potential patients and limited financial resources of the public 

health services. Moreover, these approaches are not especially suited to investigate 

neuronal/synaptic dysfunction along brain networks, which is thought to underlie cognitive and 

functional deficits. In typical AD, the progression of symptoms follows a relatively stereotyped 

order which mirrors the topographic progression of neurodegeneration across specific long-range 

brain neural networks (Frisoni et al., 2010). Namely, the sequence includes episodic memory loss 

(hippocampus and medial temporal lobe, posterior cingulate cortex), followed by semantic memory 

loss (lateral temporal cortex), aphasic, apraxic, and visuospatial symptoms (frontal, temporal, and 

parietal neocortex), and then motor and visual deficits (sensorimotor and occipital cortex). Although 

atypical variants exist (Alladi et al., 2007), this orderly progression may support the notion that AD 

reflects a progressive impairment of interconnected regions within large-scale networks, and 

ultimate spread into adjacent or upstream regions (Pievani et al., 2011).  

 Because brain functions rely on the integrity of dynamic communication among the nodes of 

interconnected brain regions and circuits, a network perspective accounting for such interactions 

has the potential to provide novel and meaningful intermediate phenotypes of pathology even at 

earlier stages of AD, including preclinical (i.e. pre-symptomatic) and prodromal (i.e. mild cognitive 

impairment) AD (Palop and Mucke, 2010). Indeed, neural/synaptic redundancy and plastic 

remodeling of brain networking guarantees functional maintenance, so that neuronal death and 

synaptic loss can occur in the absence of cognitive symptoms for several years (D’Amelio and 

Rossini, 2012). These neuro-protective mechanisms are facilitated by mental and physical training, 

and constitute a form of “cognitive or brain reserve” possibly related to greater amounts of specific 

pre-synaptic proteins and distinct protein-protein interactions (Honer et al., 2012). The lack of 

objective cognitive impairment at the earlier stages of prodromal AD motivates the use of 

instrumental markers of altered functional connectivity and neutral transmission across long range 
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neural networks in association with standard assessment of cognitive functions with “paper and 

pencil” neuropsychological batteries (Rossini et al., 2007). To this aim, digital 

electroencephalography (EEG) has very interesting features to provide useful information on the 

functioning of neutral transmission and cortical neuronal synchronization and coupling across long 

range neural networks when compared to other classical neuroimaging techniques (Babiloni et al., 

2009a).  

 Standard EEG techniques are characterized by low spatial resolution (several centimeters) 

when compared to structural MRI and PET techniques producing relatively non-invasive views of 

“in vivo” brain anatomy (millimeters to a few centimeters). However, structural MRI does not 

provide functional information about the brain, and PET scan of brain glucose metabolism/rCBF is 

limited in its temporal resolution (i.e. seconds to minutes for PET) compared to EEG (i.e. 

milliseconds; Rossini et al., 2004). It should be noted that high temporal resolution of EEG is 

crucial for the study of an emerging property of brain activity, namely the spontaneous and event-

related oscillatory gross electromagnetic activity at different frequency ranges, categorized as 1-4 

Hz (delta), 4-8 Hz (theta), 8-13 Hz (alpha), 13-30 Hz (beta), and >30 Hz (gamma). Any EEG 

frequency band conveys particular physiological information on brain functional state during sleep 

and wake periods (Nunez, 1999).  

 In recent years, great attention has been focused on the evaluation of quantitative EEG 

(qEEG) and/or event-related potentials (ERPs) as clinical markers of the early stages of AD 

(Celesia et al., 1987; Rossini et al., 2007, 2009; Yener et al., 2008, 2009). In this regard, the 

recording of resting state eyes-closed cortical EEG rhythms represents a fully standardized 

procedure that may be carried out easily and rapidly in a clinical environment. In contrast to ERPs, 

the recording of the resting state EEG rhythms does not require stimulation devices or registration 

of subject’s behavior, and is not affected by fatigue and anxiety typically associated with task 

performance. Also, the recording of the resting state EEG rhythms can be repeated countless times 

along the disease progression and the resting state EEG markers are virtually not affected by meta-

learning relative to task processes. These are ideal requisites when EEG recordings are performed in 

elderly vulnerable or diseased subjects. Furthermore, resting state cortical EEG rhythms can be 

recorded in highly comparable experimental conditions in normal subjects, individuals with 

subjective memory complaints, objective mild cognitive impairment (MCI), and overt AD (Rossini 

et al., 2007). Moreover, resting state EEG rhythms have been found to partially restore together 

with patients’ cognitive performance after the administration of AchetylCholinesterase inhibitors 

licensed for the symptomatic treatment of AD (Rodriguez et al., 2002, 2004; Kogan et al., 2001; 

Reeves et al., 2002; Brassen and Adler, 2003, Onofrj et al., 2003; Babiloni et al., 2006e).  
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 It has been proposed that the effects of AD neurodegeneration on cortical neuronal networks 

is partially reflected by the abnormal mechanisms of cortical neural synchronization and coupling 

that generate resting state EEG rhythms (Rossini et al., 2007). In the experimental and clinical 

applications, the cortical neural synchronization is typically indexed by EEG power density 

(Babiloni et al., 2009a), whereas the EEG coupling between electrode pairs is measured by different 

approaches to account for the so called functional and effective brain connectivity. In the 

framework of the EEG techniques, functional brain connectivity captures the statistical dependence 

between scattered and often spatially remote EEG rhythms by measuring their correlations in either 

time or frequency domain (Babiloni et al, 2009a). Effective connectivity describes how the EEG 

rhythms recorded at one electrode affects the EEG rhythms recorded at another remote electrode, as 

a reflection of a causal hierarchical interaction between the two corresponding cortical generators 

(Babiloni et al., 2009a). In the framework of the EEG techniques, the functional brain connectivity 

is typically indexed by EEG spectral coherence (linear) or synchronization likelihood (linear-

nonlinear), while the latter is indexed by granger causality (Rossini et al., 2007).  

 Here we revised previous resting state EEG studies in subjects with amnesic mild cognitive 

impairment (MCI) at risk of prodromal AD and in AD patients, as a window on the abnormalities of 

the cortical neural synchronization and functional and effective connectivity due to AD 

neurodegeneration. This window is expected to reflect the abnormal plasticity of the synaptic 

neurotransmission within long range cortical networks underpinning cognition along the AD 

progression.  

 

2. Physiological generation of the resting state electroencephalographic (EEG) rhythms  

 The word EEG refers to the measurement of brain electrical activity recorded from 

electrodes placed on the surface of the head. In 1929, Hans Berger reported a dominant 10-Hz 

oscillating voltage difference between two electrodes placed on the scalp in healthy subjects during 

a wakeful eyes-closed relaxed state (the so-called alpha rhythm). Berger showed that 10-Hz 

oscillations (10-50 microvolts) are reduced in amplitude when subjects open their eyes or perform a 

cognitive task. Nowadays, EEG is largely employed for basic scientific research and clinical 

applications since it is easy to use, non invasive, cheap, and totally safe.  

 As an important limitation, the EEG voltage measured depends on the position of the 

reference electrode. Furthermore, EEG is characterized by a low spatial resolution as compared to 

other measures of brain function such as functional magnetic resonance imaging (fMRI). Indeed, 

different conductivities of head tissues (brain, meninges, skull, and scalp) attenuate and blur the 

spatial distribution of neural currents from brain to scalp electrodes. As a consequence, scalp EEG 
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data present enhanced low-spatial components and negligible values of high-frequency brain 

oscillations (>40 Hz, gamma rhythms). To minimize these effects of head volume conduction, 

mathematical procedures have been developed to obtain reference-free measurements with 

attenuated head volume conductor effects, namely estimation of common average reference, source 

current density, and inverse EEG source solutions (Babiloni et al., 2009). 

 Technical requirements make the EEG equipment a non invasive and non expensive device, 

with an overall present price of few tens of thousands of Euro needed for high-resolution EEG 

recording. EEG signals are derived from electric activity of neurons in the cerebral cortex. 

Specifically, these signals are mainly produced by post-synaptic ionic currents of synchronously 

active cortical pyramidal neurons reflecting the integrative information processing of signals 

coming from thalamus, brainstem, and other cortical modules. EEG signals are very large-scale 

measures of brain source activity, reflecting synaptic activity synchronized over macroscopic 

(centimeter) regional spatial scales (Nunez, Wingeier, & Silberstein, 2001). Synchrony among 

neural populations in compact regions of the brain produces localized dipole current sources. 

Synchrony among neural populations distributed across the cortex results in regional or global 

networks consisting of many dipole sources. 

 EEG signals have a high temporal resolution (< 1ms) ideal to investigate an important 

property of brain physiology, namely brain rhythms during passive wakefulness and task 

performance. Spectral analysis methods allow the estimation of EEG dynamics in terms of the 

dominant frequencies, power (or amplitude), phase, and coherence of EEG rhythms. The 

background spontaneous oscillatory activity of brain neurons at about 10 Hz generates the dominant 

alpha rhythm of resting-state EEG activity first described by Berger. In the classical studies by 

Jasper and Penfield (1949), alpha rhythms ranging from about 8 to 12 Hz were recorded from 

nearly the entire upper cortical surface (including the frontal and prefrontal areas) in a large 

population of patients awake during surgery.  

 High-resolution EEG studies have shown long- and short-range correlations of alpha 

rhythms depending on age, the subject’s condition, and performance of a cognitive task (Babiloni et 

al., 2004a; Nunez et al., 2001; Salenius, Kajola, Thompson, Kosslyn, & Hari, 1995; Salmelin, Hari, 

Lounasmaa, & Sams, 1994). In the condition of slow-wave sleep, cortico-fugal slow oscillations 

(<1 Hz) are effective in grouping thalamic-generated delta rhythms (1–4 Hz) and spindling activity 

(7–14 Hz) rhythms (Steriade, 2003). In the condition of brain arousal, spindles as well as high and 

low components of the delta rhythms are blocked by the inhibition of oscillators within, 

respectively, reticulo-thalamic (7–14 Hz), thalamo-cortical (1–4 Hz), and intra-cortical (<1 Hz), 

neuronal circuits. These rhythms are replaced by fast (beta and gamma) cortical oscillations, which 
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are mainly induced by forebrain (nucleus basalis) cholinergic inputs to hippocampus and cortex as 

well as by thalamo-cortical projections (Steriade, 2003 and Steriade et al., 1996). In the condition of 

awake rest, low frequency (8–10.5 Hz) alpha would be mainly related to subject’s global attentional 

readiness (Klimesch, 1996; Klimesch et al., 1997, 1998; Rossini et al., 1991; Steriade and Llinas, 

1988). Noteworthy, there is consensus that alpha rhythms represent the dominant resting 

oscillations of the adult, awake human brain (Rossini et al., 1991; Steriade and Llinas, 1988; 

Klimesch, 1996; Klimesch et al., 1997, 1998), and have been linked to intelligence quotient, 

memory, and cognition (Klimesch, 1999). This background activity is desynchronized during 

sensory and cognitive-motor events (Babiloni et al., 2005, 2006, 2008; Pfurtscheller & Lopes da 

Silva, 1999). Oscillations in other frequency bands, e.g., delta (1-4 Hz), theta (4–7 Hz) and gamma 

bands (30–70 Hz) also exhibit complex patterns of power that are modulated by cognitive processes 

such as working memory and perceptual binding (Srinivasan, Winter, & Nunez, 2006). Unless 

otherwise specified, spontaneous EEG activity during resting state condition is indexed by spectral 

power density in given narrow frequency bands (per electrode, scalp region of interest or cortical 

source).  

 

3. Cortical neural synchronization in MCI and AD subjects as revealed by EEG power density 

 Resting state eyes-closed cortical EEG rhythms typically change with physiological aging, 

with gradual modifications observable as variation of EEG power density spectrum computed at 

scalp electrodes or in mathematically estimated cortical sources (Rossini et al., 2007). The majority 

of the following studies addressed the differences of EEG power density between the control and 

the AD group as an index of the abnormal global synchronization of pyramidal cortical neurons 

during the spontaneous fluctuation of the cortical arousal in AD patients (Pfurtscheller and Lopes da 

Silva, 1999).  

 Along the physiological aging, healthy elderly subjects were characterized by a marked 

decrease of alpha power density (8–13 Hz) with respect to young controls (Dujardin et al., 1994, 

1995; Klass and Brenner, 1995; Klimesch, 1999). Such changes in alpha power density were 

confirmed in a large sample of healthy subjects (N = 215, 18–85 years), showing an age-dependent 

decrement of the EEG power density in the posterior low-frequency alpha (alpha 1; 8–10.5 Hz) and 

delta rhythms (Babiloni et al., 2006a). These results are in line with those of several studies 

showing a shift of alpha power density toward frontal brain regions in resting state EEG rhythms of 

AD patients (Dierks et al., 1993) as well as during cognitive processes in physiological aging 

(Yordanova et al., 1996, 1998; Kolev et al., 2002; Başar et al., 2010). Of note, parieto-occipital 

alpha power density presumably reflects the dominant oscillatory activity of brain networks in the 
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resting state eyes-closed condition as a result of massive synchronization of cortical pyramidal 

neurons (Pfurtscheller and Lopes da Silva, 1999). This activity is modulated by thalamo–cortical 

and cortico–cortical interactions facilitating/inhibiting the transmission of sensorimotor information 

and the retrieval of semantic information from cortical storage (Steriade and Llinas, 1988; Brunia, 

1999; Pfurtscheller and Lopes da Silva, 1999). In the condition of wake resting state, the low-

frequency alpha rhythms (about 8-10 Hz) can be observed in widely distributed brain networks, and 

reveal the spontaneous fluctuation of the general brain arousal and subject's global attentional 

readiness (Klimesch, 1996; Klimesch et al., 1997; Klimesch et al., 1998; Rossini et al., 1991; 

Steriade and Llinas, 1988). The power density of these rhythms also reflects intelligent quotient, 

memory, and global cognition status (Klimesch, 1999). In parallel, the power density of the high-

frequency alpha rhythms (about 10-12 Hz) denotes the oscillation of more selective neural systems 

for the elaboration of sensorimotor or semantic information (Klass and Brenner, 1995; Klimesch, 

1996, 1997). Of note, the topology of the EEG rhythms should be carefully taken into account. The 

alpha rhythms at different frequency bands (i.e. 8-10 Hz, 10-12 Hz) is not an overall phenomenon 

and can be completely different in anterior and posterior areas, as reported in several experiments in 

both humans and animals (Başar et al., 2010; Schürmann et al., 2000). 

 At group level, resting state eyes-closed cortical EEG rhythms present topographical and 

frequency differences in the EEG power density spectra of healthy normal elderly (Nold), MCI, 

cerebrovascular dementia (CVD), Parkinson disease with dementia (PDD), and AD subjects. When 

compared to the Nold subjects, the AD subjects showed a power density increase of topographically 

widespread delta and theta rhythms and a power density decrease of posterior alpha (8–13 Hz) 

and/or beta (13–30 Hz) rhythms (Babiloni et al., 2004a; Dierks et al., 2000; Huang et al., 2000; 

Ponomareva et al., 2003; Jeong, 2004; Prichep, 2005). Posterior alpha rhythms were lower in power 

density in the AD than in the CVD and PDD subjects, whereas topographically widespread theta 

rhythms were higher in power density in the CVD and PDD subjects than in the AD subjects 

(Babiloni et al., 2004a, 2011a).  

 Resting state EEG power density differed between AD patients and amnesic MCI subjects, 

who were considered to be at high risk to suffer from prodromal AD. There was an “intermediate” 

power density of low-frequency alpha rhythms (8–10.5 Hz) in parietal and occipital regions in MCI 

compared to mild AD and Nold subjects (Babiloni et al., 2006b). Furthermore, maximum alpha and 

beta power density shifted more anteriorly in AD patients compared to Nold and MCI subjects 

(Huang et al., 2000). Moreover, longitudinal studies have shown that increased delta or theta power 

density, decreased alpha and beta power density, and slowing of mean EEG frequency were in some 

way predictors of the progression from MCI to dementia at about 1-year follow up (Huang et al., 
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2000; Jelic et al., 1996, 2000; Grunwald et al., 2001; Kwak, 2006; Rossini et al., 2006). High power 

density of the posterior alpha rhythms also predicted a stable global cognitive function in MCI 

subjects at 1-year follow-up (Babiloni et al 2010a).  

 Some EEG studies assessed the changes in the resting state eyes-closed EEG rhythms with 

disease progression, namely during the period from “baseline” to “follow-up” at about 1-year or 

longer. In the MCI subjects, the EEG markers of disease progression included an increase of the 

power density at theta and delta rhythms in temporal and occipital regions as well as a decrease of 

the power density at beta rhythms in temporal and occipital regions (Jelic et al., 2000). AD patients 

were characterized by an increase of the power density at parieto-occipital theta and delta rhythms 

as well as by a reduction of the power density at alpha and beta rhythms in parieto-occipital regions 

(Coben et al., 1985). Furthermore, the AD patients showed an increase of the power density at theta 

and delta rhythms in temporal-occipital regions (Soininen et al., 1989, 1991). Power density of the 

resting state eyes-closed EEG rhythms was correlated to brain atrophy in the typical track of AD 

neurodegeneration, as revealed by structural MRI. In the AD patients with global cognitive 

impairment, the hippocampal atrophy was associated with increased power density at delta and 

theta rhythms in temporal and parietal regions (Helkala et al., 1996), in line with recent 

magnetoencephalographic (MEG) evidence (Fernandez et al., 2003). Furthermore, a volume 

decrement of hippocampus was related to the decreased power density at alpha rhythms in 

temporal, parietal, and occipital regions in MCI and AD subjects (Babiloni et al., 2009b). The same 

was true for the relationship between the power density of the resting state eyes-closed EEG 

rhythms and the volumetric changes of sub-cortical white matter (i.e. connection pathways to and 

from the cerebral cortex) and cortical grey matter. The total volume of the frontal white matter was 

negatively correlated to the frontal power density at delta rhythms in AD patients; namely, the 

higher the white matter volume, the lower the (pathological) delta power density, thus suggesting 

that reduced modulation/regulatory inputs to frontal cortex through white matter might dis-inhibit 

the intrinsic delta oscillations of the cerebral cortex (Babiloni et al., 2006d). Furthermore, the global 

delta and alpha power density was related to the total amount of atrophy of cortical grey matter in 

the amnesic MCI and in the AD subjects, as revealed by MRI voxel-to-voxel volumetry of lobar 

brain volume; the higher the total grey matter volume, the lower the global delta power density and 

the higher the global alpha power density (Babiloni et al., 2012). Of note, these modifications of the 

delta and alpha power density in the MCI and AD subjects were not merely due to vascular brain 

lesions of the white matter (Babiloni et al., 2008a,b, Babiloni et al., 2011b). Keeping in mind the 

above findings, it can be speculated that the posterior delta/theta and alpha power density of the 
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resting state eyes-closed EEG rhythms reflect the neurodegenerative processes along the time 

course of AD, at least at group level. 

 The power density of the resting state eyes-closed EEG rhythms was repeatedly found to be 

correlated to cognitive status in MCI and AD subjects. It has been shown that the posterior alpha 

power density was positively correlated to the subjects’ global cognitive status, as measured by 

ADAS-cog in the MCI or AD subjects; namely, the lower the alpha power density, the lower the 

cognitive status (Luckhaus et al., 2008). This relationship can be extended to the cognitive health 

condition. Furthermore, the posterior delta and alpha power density was correlated to the MMSE 

score in the Nold, MCI and AD subjects; namely, the lower the alpha power, the higher the delta 

power and the lower the cognitive status (Babiloni et al., 2006b). Moreover, the lower cognitive 

performance in the AD subjects, as revealed by CAMCOG scores, was associated with the poor 

alpha power density in parieto-occipital and fronto-central regions (Claus et al., 2000). 

 These findings suggest that the power density of delta and alpha rhythms may be used alone 

or in combination with structural MRI, SPECT, and PET markers to corroborate and support the 

standard clinical and neuropsychological assessment of MCI and AD subjects. In this line, a first 

important study has combined EEG, structural MRI, and PET markers using an ensemble of 

classifiers based on a decision-fusion approach, in order to determine whether a strategic 

combination of these different modalities can improve the diagnostic accuracy over any of the 

individual data sources when used with an automated classifier (Polikar et al., 2010). The results 

showed an improvement of up to 10%-20% using this multi-modal approach, compared to the 

classification performance obtained when using separately the modal data sources (Polikar et al., 

2010). 

 Few longitudinal studies have evaluated the resting state eyes-closed EEG rhythms to 

determine the changes in the baseline EEG power density that might be able to predict a cognitive 

decline at follow-up. It has been shown that in the MCI subjects, the markers of disease progression 

included an increase of the power density at theta and delta rhythms in the temporal and occipital 

lobes as well as the reduction of the beta power density in the temporal and occipital lobes (Jelic et 

al., 2000). AD patients were characterized by an increase of theta and delta power density and by a 

reduction of the alpha and beta power density in the parieto-occipital lobes (Coben et al., 1985). 

Furthermore, half of the AD patients showed an increase of the theta and delta power density in the 

temporal-occipital lobe (Soininen et al., 1989). 

 On the whole, the results of this section show that the power density of the resting state EEG 

rhythms in MCI and AD subjects is an effective index of the abnormal global synchronization of 

pyramidal cortical neurons during the spontaneous fluctuation of cortical arousal. 
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4. Functional brain connectivity in MCI and AD subjects as revealed by linear and non-linear 

coupling of the resting state EEG rhythms  

 Power density of the resting state EEG rhythms does not capture one of the main features of 

the AD process, namely the impairment of functional or effective connectivity within long range 

brain networks underlying the cognitive dysfunction in prodromal and manifest AD patients. 

Indeed, the majority of the cognitive processes are highly distributed and dynamic process, 

depending on the selective interplay among many neural populations distributed across several 

cortical and sub-cortical regions. In the same line, it is expected that temporally-coordinated brain 

networks underpinning cognitive functions do become more and more abnormal along the 

progression of AD neurodegeneration, so that AD can be viewed as a disconnection syndrome 

(Bokde et al., 2009). An ideal methodological approach is, therefore, the extraction of some 

functional indexes of the abnormalities of the functional brain connectivity across long term neural 

networks (Varela et al, 2001; Le van Quyen, 2003; Börner et al, 2007).  

 In this theoretical framework, promising markers of functional neural connectivity derive 

from the measurement of the functional coupling of resting state eyes-closed EEG rhythms between 

pairs of electrodes. These indexes of the EEG functional coupling should be able to capture linear 

and nonlinear relationships among brain regions (Stam et al., 2010). The linear index of the EEG 

functional coupling should model the phase relationship between the EEG rhythms recorded at 

electrode pairs, whereas the nonlinear index should model the complex relationships between these 

EEG rhythms (Stam et al., 2010). 

 Linear components of such coupling can be evaluated by the analysis of EEG spectral 

coherence, which evaluates the functional co-ordination and mutual information exchange of the 

cortical generators of EEG rhythms (Gerloff et al., 1998; Gevins et al., 1998; Thatcher et al., 1986; 

Rappelsberger and Petsche, 1988). EEG spectral coherence is a normalized value that quantifies the 

temporal synchronization of two EEG time series between pairs of electrodes in the frequency 

domain, and can be derived by fast Fourier transform -FFT- (Rappelsberger and Petsche, 1988; 

Pfurtscheller and Andrew, 1999). Its basic theoretical assumption is that, when the oscillatory 

activity of two cortical areas is functionally coordinated, the EEG rhythms of these cortical areas 

show linear correlation and high spectral coherence. In general, decreased EEG coherence reflects 

reduced linear functional coupling and information transfer (i.e. functional uncoupling or unbinding 

following) among cortical areas or the reduced modulation of common areas by a third region. In 

contrast, an increase of the EEG coherence values is interpreted as an enhancement of the linear 

functional connections and information transfer (i.e. functional coupling or binding), which reflects 
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the interaction of different cortical structures for a given task (Rossini et al., 2007). Indeed, it has 

been repeatedly demonstrated that perceptive, cognitive, and motor processes are associated with 

enhanced EEG spectral coherence in the cortical regions involved in the intensive task-related 

information processing (Sauseng et al., 2005; Babiloni et al., 2006c; Vecchio et al., 2007, 2010, 

Vecchio and Babiloni, 2011), as a function of the extension and type of the neural networks 

engaged (Pfurtscheller and Lopes da Silva, 1999; von Stein and Sarnthein, 2000). In addition, EEG 

spectral coherence may reflect the integrity of cortical neural pathways (Locatelli et al., 1998) and 

the modulating effects of cholinergic systems on the functional coupling of the activity of brain 

neural populations (Xiang et al., 1998). 

 At group level, spectral coherence of the resting state eyes-closed EEG rhythms differs 

among the Nold, MCI, and AD subjects. The majority of previous EEG studies have reported a 

prominent decrease of the spectral coherence at alpha rhythms in the AD than in the Nold subjects 

(Cook and Leuchter, 1996; Jelic et al., 1997; Almkvist et al., 2001; Locatelli et al., 1998; Wada et 

al., 1998a,b; Knott et al., 2000; Adler et al., 2003; Leuchter et al., 1987, 1992; Jelic et al., 2000). 

This effect was found to be associated with ApoE genetic risk, which is hypothesized to be 

mediated by cholinergic deficit (Jelic et al., 1997). On the other hand, some previous studies have 

shown contradictory results, with either a decrease or an increase of EEG coherence at delta and 

theta rhythms (Locatelli et al., 1998; Adler et al., 2003; Leuchter et al., 1987; Brunovsky et al., 

2003). A recent study has reconciled these conflicting results by computing “total coherence”, 

obtained by averaging the EEG spectral coherence across all combinations of electrode pairs 

(Babiloni et al., 2009d). The latter may better take into account, frequency band-by-frequency band, 

the global impairment of brain networks and cognition along the AD process, which is presumed to 

affect the functional integration within cerebral neural networks supporting cognition. In the 

mentioned recent study, the delta total coherence was higher in AD than MCI subjects and in MCI 

than Nold subjects (Babiloni et al., 2009d). Furthermore, the low-frequency alpha total coherence 

was lower in AD than in MCI and Nold subjects. Of note, these EEG coherence values were 

negatively correlated to (moderate to high) cholinergic lesion across the MCI subjects (Babiloni et 

al., 2010c). Unpublished data of our research group indicated that the spectral delta coherence was 

higher in the AD than in the MCI and Nold subjects, while the spectral alpha coherence was lower 

in the AD than in the MCI and Nold subjects.  

With respect to the spectral coherence as a linear measurement of the functional coupling of 

EEG rhythms, the so-called ‘synchronization likelihood’ (SL) is an index capturing both linear and 

non-linear dimensions of this coupling. SL is a measure of the dynamical interdependencies 

between EEG signals recorded at a given electrode and one or more other EEG signals recorded at 
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other electrodes (Stam and van Dijk, 2002). Its basic theoretical assumption is that the state of one 

dynamical system (X), thought as neural networks underlying the EEG recorded at two different 

electrodes, is a function F of the state of another dynamical system (Y): X = F(Y). The concept of 

“state of the system” is expressed in terms of the level of neural synchronization, as indexed by the 

amplitude of the EEG voltage, in the neural networks generating the EEG potentials recorded at the 

two mentioned electrodes. Function F does not need to be linear; the only requirement is that it is 

locally smooth. This concept can be put in practice by synchronization likelihood, which is simply 

the chance that, if system X is in the same state at two different times i and j, then system Y will also 

be in the same state at time i and j (Stam and van Dijk, 2002; Takens, 1981).  

SL analysis of the resting state EEG rhythms has shown that the cognitive impairment in 

AD and MCI subjects is associated with a loss of functional connectivity at high-frequency alpha 

and beta bands ), but not at the gamma band (Stam et al., 2003). Noteworthy, the application of this 

measure on MEG data showed that the AD patients were characterized by the reduction of SL not 

only at the high-frequency alpha and beta bands but also at the gamma band (Stam et al., 2002). 

Furthermore, decrease of the SL at beta rhythms occurred in the mild AD subjects, both in a resting 

condition and during a working memory task (Pijnenburg et al., 2004). Moreover, the patients with 

vascular dementia and mild AD presented poor SL at both fronto-parietal (delta-alpha) and inter-

hemispherical (delta-beta) electrode pairs (Babiloni et al., 2004b). The feature distinguishing the 

patients with mild AD with respect to the patients with VaD was a more prominent reduction of SL 

at fronto-parietal alpha rhythms; these results suggest that mild AD patients are characterized by an 

abnormal fronto-parietal coupling of the dominant human alpha rhythms (Babiloni et al, 2004b). 

Another study reported a poor SL in the AD patients at delta, theta, alpha and beta rhythms 

(Babiloni et al., 2004d). In detail, SL was lower in the MCI than in the Nold subjects. Furthermore, 

it was lower in the AD than in the MCI subjects at midline and right fronto-parietal electrodes 

(Babiloni et al., 2006c). The same was found for the SL of delta rhythms at the right fronto-parietal 

electrodes. For these EEG bands, the SL values correlated with those indexing the global cognitive 

status, as measured by mini mental state evaluation (MMSE). In a recent study, the SL of the resting 

state EEG rhythms was compared between patients with Parkinson’s disease and dementia (PDD) 

and PD without dementia (Bosboom et al., 2009). Results showed that the PPD patients were 

characterized by lower values of fronto-temporal SL at alpha rhythms, of inter-hemispherical 

temporal SL at delta, theta and alpha rhythms, as well as of centro-parietal SL at gamma rhythms 

(Bosboom et al., 2009). In contrast, parieto-occipital SL at high-frequency alpha and beta bands was 

higher in the PDD than in the PD without dementia.  



15 
 

Previous EEG studies using different nonlinear indexes such as mutual information have 

also reported loss of functional connectivity in AD patients in different frequency bands, with a 

special engagement of the alpha frequencies (Jeong, 2004). A study (Jeong et al., 2001) used some 

indexes of mutual information as indexes of both linear and nonlinear statistical dependencies 

between resting state EEG rhythms recorded at electrode pairs. The local cross-mutual information 

(CMI) quantified the information transmitted from one EEG time series to the other. CMI was 

lower in the AD patients than that in normal controls, especially over the EEG rhythms recorded in 

frontal and antero-temporal regions (Jeong et al., 2001). Furthermore, there was a prominent 

decrease in information transmission between distant EEG electrodes in the right hemisphere and 

between corresponding inter-hemispheric electrodes (Jeong et al., 2001). In addition, the auto-

mutual information (AMI), which estimates how much on average the value of the time series can 

be predicted from values of the time series at preceding points, throughout the cerebrums of the AD 

patients decreased significantly more slowly with delay than did the AMIs of normal controls. In 

addition, the auto-mutual information (AMI), which estimates how much on average the value of 

the EEG rhythms at a given time instant can be predicted from those at preceding time points, was 

lower in the AD patients than in the control subjects (Jeong et al., 2001).  

Figure 1 (top) illustrates the principal models of functional brain connectivity as indexed by 

linear or nonlinear functional coupling of the resting-state eyes-closed EEG rhythms. 

INSERT THE FIGURE 1 HERE 

 

5. Effective brain connectivity in MCI and AD subjects as revealed by the estimation of the 

directional information flow with the EEG coupling and by the combination of transcranial 

magnetic stimulation and EEG activity 

 

 Both linear and nonlinear indexes of the EEG functional brain connectivity have an 

important limitation: they do reflect neither the causal aspects of the relationships among brain 

regions nor the direction of the information among these regions. One can overcome this limitation 

by two main methodological approaches. The first approach is based on the estimation of the 

directional information flow with the EEG coupling (Kaminski et al., 1991). The second approach 

steams upon the combination of transcranial magnetic stimulation (TMS) over a given scalp site of 

interest and the recording of interference effects on the EEG activity collected at another electrode 

(Capotosto et al, 2009, 2011; Romei et al., 2008; Paus et al., 2001; Brignani et al., 2008; Fuggetta et 

al, 2008). These approaches allow the estimation of the so called “effective brain connectivity” in 
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which “causality” can be understood in terms of a “flow” of neural signals from a cortical 

population to another one as expressed in mathematical terms.  

 The estimation of the directional information flow with the EEG coupling relies on two 

main mathematical theories, namely the information theory and Granger causality (Shannon, 1948; 

Kaminski et al., 1991). The information theory is based upon the concept of entropy introduced by 

Claude Shannon, namely the uncertainty associated with a random variable (Shannon, 1948). 

Several procedures measuring the joint information of two processes have been proposed from 

Shannon’s theory. Among them, a popular procedure is the so called mutual information (MI), 

which was defined as: 

I(X;Y)=H(X)+H(Y)−H(X,Y) 

Where H(X) and H(Y)is the Shannon entropy of X and Y respectively, and H(X,Y) is the joint 

entropy of X and Y (Cover and Thomas, 1991). This value is always positive, but it is equal to zero 

if X and Y are statistical independent, and it is equal to 1 if X and Y have the same information.  An 

important limitation of this procedure is that X and Y are random variables but not signals. To apply 

the entropy theory to real signals, several methods are available. A recent method has been 

proposed by Kraskov and colleagues to compute MI in the time domain (Kraskov et al., 2004). 

Another method has been introduced to quantify the mutual information also in time–frequency 

domain (Aviyente, 2005) from the normalized spectrograms. In the framework of the theory of 

information, the “distance” between two EEG signals or their “dissimilarity” was defined by several 

procedures. Among them, the Kullback–Leibler divergence is an asymmetric index of how two 

signals or distributions are disjoint (Blanco et al., 1995; Quiroga et al., 1999). This method is 

generalized with Rényi entropy. Another procedure is the Jensen–Shannon divergence (symmetric), 

which uses an arithmetic mean of normalized signal spectrograms. (Dauwels et al., 2010). Finally, 

the Jensen–Rényi divergence extended the Jensen–Shannon method from arithmetic to geometric 

mean (Dauwels et al., 2010). Keeping in mind the above procedures, the information-theoretic 

notion of transfer entropy was formulated by Schreiber (2000) as an alternative measure of 

effective connectivity. It can be seen as a measure of directed (time-asymmetric) information 

transfer between joint processes (i.e. the EEG rhythms recorded at two electrodes). Noteworthy, the 

transfer entropy is a rigorous derivation of Wiener’s definition of causal dependencies (Wiener, 

1956), which uses Kullback-Leibler divergence defined above, keeping directional and 

dynamical information due to its transition probabilities and asymmetry. An important 

property of the transfer entropy is that it does not require any particular model for the 

interaction between the two processes of interest (i.e. the EEG signals recorded at two 
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electrodes). Furthermore, the transfer entropy works well when the detection of some unknown non-

linear interactions is required (Vicente et al., 2011). 

 Differently from transfer entropy, the Granger causality for the linear estimation of the 

directional information flow within a matrix of EEG electrodes refers to the notion that, if the 

prediction of one time series could be improved by incorporating the knowledge of past values of a 

second one, then the latter is said to have a causal influence on the former (Granger, 1969). Initially 

developed for econometric applications, the Granger causality has gained popularity also among 

physicists and eventually became one of the methods of choice to study brain connectivity in 

neuroscience (Kamiński and Blinowska, 1991; Kamiński and Liang, 2005). Whereas the linear 

interdependence measures of the correlation coefficient section to the coh-entropy and wav-entropy 

coefficient section are bivariate (i.e., they can only be applied to pairs of EEG signals), the Granger 

causality measures are multivariate in that they can be applied to multiple signals simultaneously 

(Granger, 1969; Kamiński and Blinowska, 1991; Kamiński and Liang, 2005). Interestingly, non-

linear extensions of Granger causality have been proposed recently (see, e.g., (Ancona et al., 2004; 

Chen et al., 2004), but we will not consider such extensions in this review for sake of brevity and 

since they are less commonly used. 

 A very popular procedure derived from the Granger causality is the so called directed 

transfer function (DTF), which has been proven to be reliable for the modeling of directional 

information flux within linear EEG functional coupling on the basis of autoregressive model (DTF; 

Kaminski and Blinowska, 1991; Korzeniewska et al., 1997; Kamiński et al., 1997; Mima et al., 

2000; Blinowska et al., 2010; Blinowska, 2011; Blinowska and Zygierewicz, 2011; Brzezicka et al., 

2011). Before computing the DTF, the EEG data are usually preliminarily normalized by 

subtracting the mean value and dividing by the variance (Kaminski and Blinowska, 1991). An 

important step of the DTF method was the computation of the so-called Mvar model (Kaminski and 

Blinowska, 1991; Korzeniewska et al., 1997; Kamiński eta al., 1997). EEG data are simultaneously 

given as an input to the Mvar model towards the computation of the directional information flux 

among all the pair combinations of the electrodes selected. This model is used to estimate the 

“direction” of the information flow within the EEG rhythms between the brain regions. In 

nonmathematical terms, coefficients of the Mvar model fitted to the data can be interpreted as 

causal influence of signal recorded from electrode A on signal recorded from electrode B, or 

information flow between electrodes A and B. A direction of information flow from A to B is stated 

when that case is statistically more probable than directionality from B to A (Vecchio and Babiloni, 

2011). Concerning the functional role of intrinsic directional connectivity in cognition, a dominant 
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parietal-to-frontal directional flux within EEG coupling has been reported in healthy awake subjects 

during visuospatial information processing (Babiloni et al., 2004b, 2006e; Jeong et al., 2004).  

In the eyes-closed resting state, the resting state EEG rhythms propagate mainly from 

posterior to anterior cortical regions (Kaminski et al., 1997). This finding may be a reference point 

for the assessment of changes in propagation for demented patients. As a matter of fact, it has been 

reported a reduction of the parietal-to-frontal directional information flow within the EEG 

functional coupling in the amnesic MCI and mild AD subjects compared to the Nold subjects 

(Babiloni et al., 2009c), in line with the idea of a common patho-physiological background linking, 

on average, the groups of MCI and AD subjects (Vecchio and Babiloni, 2011). It is noteworthy that 

such a direction of the fronto-parietal functional coupling is relatively preserved in the amnesic 

MCI subjects in whom the cognitive decline is mainly explained by the extent of white-matter 

vascular disease (Babiloni et al., 2008b). This finding supports the additive model posing that MCI 

subjects would result from the combination of cerebrovascular and neurodegenerative lesions 

(Babiloni et al., 2008b). In addition, other EEG studies used Granger causality and stochastic event 

synchrony as models of the directional information flux showing a loss of EEG synchrony between 

electrode pairs in MCI and AD patients with respect to age-matched control subjects (Dauwels et 

al., 2009, 2010). Noteworthy, this procedure resulted in a successful leave-one-out classification 

rate of 83% and 88%. 

Summarizing, the transfer entropy is an information theoretic measure of time-directed 

information transfer between jointly dependent processes such as those generating EEG signals at 

electrode pairs. On the other hand, the Granger causality is a statistical notion of causal influence 

based on prediction via vector autoregression. Interestingly, the two concepts are expected to be 

related, and the exact relationship has recently been formally described (Barnett et al., 2009). For 

Gaussian variables, the transfer entropy and the Granger causality are entirely equivalent, thus 

bridging autoregressive and information-theoretic approaches to data-driven causal inference 

(Barnett et al., 2009). 

 As mentioned above, the correlation analysis of the resting state EEG rhythms does not 

enlighten the causal relationships among the brain neural populations within the long range neural 

networks. And the estimation of the directional flow of information between two or more neural 

generators of the EEG signals is based on the concept of “synchrony” as well. To go beyond 

towards the estimation of the effective brain connectivity, a promising experimental strategy is 

based on the excitation or inhibition of a given cortical region by repetitive transcranial magnetic 

stimulation (rTMS), and then on the recording of its interferential effects on the ongoing EEG 
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activity recorded from multiple sites (Capotosto et al, 2009, 2011; Romei et al., 2008; Paus et al., 

2001; Brignani et al., 2008; Fuggetta et al, 2008). 

 TMS is the most effective, non-invasive and tolerated procedure for the stimulation of 

human cortex through the intact skull (Barker et al., 1985). It utilizes a rapidly changing magnetic 

field to transmit a short lasting electrical current pulse into the brain. This field can induce a 

synchronized activation of cortical neurons followed by a long-lasting inhibition, especially in 

superficial cortical layers. Single pulses or short bursts of TMS can perturb ongoing neuronal 

processing in the stimulated cortex, producing a transient and fully interference with underlying 

cortical synchronization mechanisms (Pascual-Leone et al., 2000; Rossini et al., 2007; Rossini and 

Rossi, 2007). This perturbation has been extensively used by cognitive neuroscientists to examine 

the functional relevance of the stimulated area for cognitive processes and behavior (Pascual-Leone 

et al., 2000, Walsh and Cowey, 2000, Jahanshahi and Dirnberger, 1999).  

 Studies combining TMS with functional neuroimaging techniques in humans revealed that 

these effects occur both in the main cortical stimulated region as well as, due to trans-synaptic 

effects, in other distant areas (Paus et al., 1997). TMS has been shown to impact episodic memory, 

which is the most vulnerable cognitive domain in AD and amnesic MCI. Although mnemonic 

processes are crucially related to the integrity of medial temporal lobe structures, other brain areas 

including the dorsolateral prefrontal cortex also have a relevant role both in encoding and retrieval 

mechanisms of long-medium term episodic memory as revealed by fMRI and PET (Brewer et al., 

1998; Buckner et al., 1999; Fletcher and Henson, 2001; Spaniol 2009). It has been shown that 

rTMS applied over the left dorsolateral prefrontal cortex results in distal changes of neural activity, 

relative to the site of stimulation, and that these changes depend on the patterns of brain network 

activity during resting-state (van der Werf et al., 2010). 

 In the framework of the estimation of the effective brain connectivity, the combined use of 

TMS and EEG allows a better understanding of the causal effects of TMS on cortical activity. 

Several approaches of combined TMS-EEG are available. Firstly, EEG activity can be compared 

before and after TMS over a cortical region to understand how spontaneous EEG activity and causal 

modulation of that activity affect sensory and cognitive processes. For example TMS over occipital 

cortex evoked phosphenes as a function of alpha activity before TMS (Romei et al., 2008). 

Secondly, the comparison of EEG activity before and after TMS has revealed changes in the EEG 

power spectrum. A single TMS pulse has been reported to transiently synchronized activity in the 

beta (14-30 Hz) range (Paus et al., 2001). Furthermore, rTMS trains of 1 Hz (Brignani et al., 2008) 

and 5 Hz rTMS (Fuggetta et al, 2008) were associated with concurrent changes in cortical alpha 

(about 8-12 Hz) and beta activity. Third, a single TMS-pulse evokes in the EEG a cortical evoked 
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potential that strongly differs in polarity and amplitude of its peak components. This is dependent 

on several factors including position and orientation of the TMS coil, stimulation intensity, and 

electrode position (Casarotto et al., 2011). 

 The TMS-EEG procedure has been recently used to demonstrate the causal role of Dorsal 

Attention Network (DAN) nodes (FEF, IPS) in the control of the modulation of the alpha rhythms 

in occipital-parietal cortex during a spatial attention task (Capotosto et al, 2009, 2011). 

Furthermore, it has been used to test the hypothesis that interference with spontaneous ongoing, i.e. 

not task-driven, activity in the Angular Gyrus (AG), one of the core regions of the Default Mode 

network (DMN), can modulate the dominant electroencephalographic (EEG) alpha rhythms 

observed in the resting state (Capotosto et al., 2012, submitted). Compared to sham stimulation, 

magnetic stimulation (1 Hz for 1 min) over both left and right AG, but not over FEF or IPS 

enhanced the dominant alpha power density in occipito-parietal cortex (Capotosto et al., 2012, 

submitted). Furthermore, right AG-rTMS enhanced intra-hemispheric alpha coherence (Capotosto 

et al., 2012, submitted). These results suggest that AG as a part of DMN plays a causal role of 

“effective connectivity” in the modulation of dominant low-frequency parieto-occipital alpha 

rhythms in the resting state condition.  

 To our knowledge, the only application of TMS-EEG for the study of “effective 

connectivity” has recently appeared to study how the excitability of the frontal cortex changes 

during healthy and pathological aging (Casarotto et al., 2011). The TMS-evoked EEG potentials 

were collected in healthy young and elderly individuals as well as in AD subjects. Results showed 

that the EEG potentials evoked by the TMS of the left superior frontal cortex were not affected by 

physiological aging but were markedly altered by cognitive impairment in the AD patients 

(Casarotto et al., 2011). 

 Figure 2 sketches the mentioned two approaches to the study of effective brain connectivity, 

namely the estimation of the directional flow of information within the functional coupling of the 

resting-state eyes-closed EEG rhythms and the rTMS combined with the recording of EEG activity. 

INSERT THE FIGURE 2 HERE 

 

6. The topology of the brain connectivity in MCI and AD subjects as revealed by graph theory  

 As mentioned above, brain cognitive functions rely on the integrity of dynamic 

communication among the nodes of interconnected brain regions within circuits. It can be 

speculated that an effective network perspective accounting for the global features of the brain 

networks would have the potential to provide novel and meaningful intermediate phenotypes of the 

pathology even at earlier stages of AD, including preclinical (i.e. pre-symptomatic) and prodromal 
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(i.e. mild cognitive impairment) AD (Stam, 2010). There is consensus that a novel approach 

applying the concepts of the network theory to neurophysiological data is a promising new way to 

characterize the topology of the functional and effective brain connectivity and their changes due to 

the plasticity induced by the AD neurodegeneration (Bassett and Bullmore, 2006; Stam and 

Reijneveld, 2007; Bullmore and Sporns, 2009).  

 The modern network theory is a branch of the mathematical graph theory (Stam, 2009). In 

this theory, the graphs are simplified representations of networks denoted by ensembles of nodes 

(vertices) and connections (edges). Furthermore, edges exist between any pair of vertices with 

probability p. On the whole, the graph theory provides a method to evaluate whether the functional 

connectivity patterns between brain areas resemble the organization of theoretically efficient, 

flexible or robust networks. Concerning the present review, a fundamental hypothesis of the graph 

theory is that cognitive dysfunction in the individual MCI and AD patients can be formally 

represented by abnormal brain networks reflected by altered topology of the functional coupling of 

the EEG or MEG rhythms between the electrode pairs (Stam et al., 2010).  

 An important contribution to the mathematical formalization of the graphs was made by 

Watts and Strogatz when they published their model of ‘small-world’ networks (Watts and Strogatz, 

1998). Their demonstration started with the description of a ring network model. In this model, each 

vertex is connected to a fixed number (N=4) of neighbors and has a high clustering coefficient 

defined as the probability that the neighbors of a vertex are connected to each other. In contrast, the 

ring model has a long path length defined as the average number of the edges that have to be 

traveled to get from one vertex to another. For the next steps of their demonstration, Watts and 

Strogatz posited that the edges from the staring ring model are picked with a rewiring probability p, 

and randomly attached to another vertex. When p = 1, all edges are rewired each other, and a fully 

ER random graph like network results. This fully random network has low clustering, but short path 

length. For small values of p, when only a few edges are randomly rewired, the path length drops 

strongly, while the clustering is hardly affected. The edges randomly rewired acts a sort of “hubs” 

ensuring long path connectivity between remote regions of the network. This intermediate type of 

network with high clustering and short path lengths is called ‘small-world’ networks. Small-world 

networks are optimal in the sense that they allow efficient information processing, are (wiring) cost-

effective, and relatively resilient to network damage. Indeed, the high clustering of the ‘small world 

network’ is associated with robustness of a network measure of the local connectivity of a graph. 

Many real-life systems appear to have small-world properties (Watts et al., 1998; Boccaletti et al., 

2006; Humphries et al., 2008). 
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 The ‘small-world’ networks represent the combination of properties not observed in many 

real networks but also by neural networks such as brains of healthy humans (Stam et al., 2007; 

Bullmore et al., 2009, Bassett et al., 2006; Smit et al., 2008; Stam et al., 2007; Gong et al., 2008; 

Sporns et al., 2004). Examining the overall organization of the brain network using the graph 

analysis, it has been shown a strong negative association between the normalized characteristic path 

length of the resting-state brain network and intelligence quotient (IQ), thus suggesting that human 

intellectual performance is likely to be related to how efficiently our brain integrates information 

between multiple brain regions (van den Heuvel et al., 2009). Applied to patient data, this technique 

might provide more insight in the patho-physiological processes underlying the various forms of 

dementia, and potentially lead to the development of new diagnostic or monitoring tools. A few 

studies have recently shown that different types of brain pathology interfere with the normal small-

world architecture (Bartolomei et al., 2006; Micheloyannis et al., 2006; Ponten et al., 2007). 

 The application of graph theory to AD research provided quite interesting results. It has been 

shown a loss of ‘small-world’ network properties in AD patients as revealed by the resting state 

EEG and MEG rhythms (Stam et al., 2007, 2009). These properties were replaced by a more 

'random' overall network structure (Stam et al., 2007, 2009). Compared to the control non-

demented individuals, the AD patients were characterized by the mean clustering coefficient 

decreased at the lower-frequency (EEG) alpha and beta bands, and by the characteristic path 

length (i.e. global connectivity) decreased at the lower-frequency alpha and gamma bands (de 

Haan et al., 2009). With decreasing the above local and global connectivity parameters, the 

large-scale functional brain network organization in AD deviates from the optimal 'small-

world' network structure towards a more 'random' type (de Haan eta al., 2009). Furthermore, 

the modeling results suggest from a parallel MEG study showed that in the AD patients this 

pathological change was brought about by a preferential decrease of connections between 

high degree nodes (‘hubs’), rather than a non-specific decrease of connection strength (Stam 

et al., 2009). In another MEG study, network analysis was used to investigate the role of 

functional sub-networks (modules) in the brain with regard to cognitive failure in AD (de 

Haan et al., 2012). It was shown that the parietal cortex was the most highly connected 

network area in both control subjects and AD patients, but it was characterized by the 

strongest intra-modular clustering losses in AD patients. Furthermore, weakening of inter-

modular connectivity was even more outspoken, and more strongly related to cognitive 

impairment (de Haan et al., 2012). These results support the idea that the loss of 

communication and relative less efficient information exchange among different functional 

brain regions reflects an abnormal synaptic plasticity, neural loss, and cognitive decline in AD 
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(de Haan et al., 2009, 2012). Noteworthy, loss of small-world structure in AD was also 

demonstrated in recent MRI studies applying graph theory (He et al., 2008; Supekar et al., 

2008). 

 Figure 3 plots a model of the results of graph theory reported in this chapter. Normal control 

subjects are characterized by a ‘small-world’ network structure of the functional coupling of the 

resting-state EEG rhythms (left). With respect to the normal control subjects, the AD patients 

manifest the deviation of ‘small-world’ network properties towards a more 'random' overall network 

structure (right).  

INSERT THE FIGURE 3 HERE 

 

7. New directions: high spatial resolution of the functional brain connectivity as revealed by 

the correlation between resting state EEG rhythms and hemodynamic activity  

 As described above, EEG at rest (eyes closed) is a low-cost, easy to perform, and widely 

available neurophysiological approach to the study of functional brain connectivity in AD and MCI 

subjects (see Rossini et al., 2007 for a review). Furthermore, the resting state EEG rhythms seem to 

provide -at least at group level- useful markers/end points to evaluate disease progression in MCI 

and AD subjects. However, low spatial resolution (centimeters) of the EEG techniques prevents a 

reliable and precise spatial estimation of the cortical sources and of the functional coupling of the 

EEG rhythms. In this sense, functional magnetic resonance imaging (fMRI) has an insufficient 

temporal resolution (seconds) for the study of the brain rhythms but a very high spatial resolution 

(millimeters). For this reason, the combination of the EEG and fMRI techniques has been 

performed in the past years. In this line, several simultaneous EEG/functional MRI (fMRI) studies 

have investigated the correlation between EEG alpha rhythms in the resting state and low-frequency 

(about 0.1 Hz) fluctuations of the blood oxygenation signal (BOLD) in healthy subjects, showing 

that these fluctuations are temporally correlated across large-scale distributed networks (Biswal, 

1996; Raichle and Mintun, 2006; Fox & Raichle, 2007; Raichle and Snyder, 2007; Smith et al., 

2009; Deco & Corbetta, 2010). Furthermore, these fluctuations are considered as changes in brain 

activity not externally induced or voluntarily generated by the subject and represent about 90-95% 

of the total amount of brain activity (Raichle and Snyder, 2007; Biswal et al., 1995). One of such 

networks, the so-called default mode network (DMN), has been originally identified as a set of 

regions consistently suppressed during goal-driven behaviour (Shulman et al., 1997; Demonet et al., 

2001; Damoiseaux et al., 2006; Fox et al., 2005, 2006; Mantini et al., 2007) and  tonically active 

(Raichle et al 2001; Vaishnavi et al., 2010) during the resting state condition. This metabolic profile 

is consistent with peculiar functions of the DMN during restful wakefulness, a conclusion 
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confirmed by more recent local field potential recordings from the cortical surface (Miller et al., 

2010; Dastjerdi et al 2011). In the resting-state eyes-closed condition, some studies have reported a 

positive correlation between the alpha power and the BOLD signal time series in the DMN (Mantini 

et al.,  2007), whereas other evidence pointed to negative or mixed correlations (Gonçalves et al., 

2006; Laufs et al., 2003). Less clear correlations of the EEG and fMRI data were also seen in the 

resting-state eyes-open condition (Knyazev et al., 2011; Wu et al., 2010).  

 In contrast, the alpha power was negatively correlated with activity in the Dorsal Attention 

Network (DAN) during the resting state condition (Sadaghiani et al., 2010; Mantini et al.,  2007; 

Laufs et al., 2003). This is a set of control regions recruited during goal-driven behavior and 

perceptual selection (Corbetta & Shulman, 2011). The DAN, which is bilaterally centered on the 

intraparietal sulcus (IPS) and the frontal eye fields (FEF), appears to be involved in the endogenous 

goal-driven attention orienting (top-down) process and responsible for the preparation and selection 

for stimuli and responses (Astafiev et al., 2003; Corbetta and Shulman, 2002). The same negative 

correlation is observed between the alpha power and the ventral fronto-parietal cortical network 

(VAN; Corbetta and Shulman, 2002, 2008). The VAN includes the right lateralized temporal-

parietal junction (TPJ) and the ventral frontal cortex (VFC), appears to be involved in an exogenous 

stimuli-driven attention reorienting (bottom-up) process, and is activated when detecting the 

unexpected salient targets (Astafiev et al., 2003, 2004; Corbetta and Shulman 2002). Finally, the 

resting state alpha power also correlated to BOLD activity in the cingulo-insular-thalamic network, 

the so called Control network (Gonçalves et al., 2006; Sadaghiani et al., 2010).  

 Correlation between the resting state EEG power and the brain BOLD activity was not 

limited to alpha rhythms. It has been shown that the power of several EEG bands (i.e. delta, theta, 

alpha, beta, and gamma) correlated to fMRI time courses within the resting state networks identified 

by the use of independent component analysis (Mantini et al., 2007). Analogously to the alpha 

power, the beta power was positively correlated to the BOLD activity in the DMN and self-

referential networks, and was negatively correlated with the BOLD activity observed in the DAN 

(Mantini et al., 2007). 

 The correlation between the resting state alpha power and the BOLD in the DMN, 

attentional networks, and cingulate-insular-thalamic networks unveil the functional role of brain 

EEG oscillatory activity for the functional connectivity and neurotransmission within long-range 

cortical networks, as a possible basis of the regulation of spontaneous cortical arousal in 

wakefulness (Fox et al, 2005). Keeping in mind these data, we think that the study of correlation 

between the resting state alpha power and the BOLD in the Default Mode Network (DMN), Dorsal 

Attention Network (DAN), and ventral fronto-parietal cortical network (VAN) represent a new 
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avenue for a better understanding of the clinical neurophysiology of AD patients and for the 

definition and validation of instrumental markers for diagnostic, prognostic, and therapy monitoring 

purposes.  

 Figure 1 (bottom) sketches the approach to the functional brain connectivity by a 

multimodal approach based on the recording and analysis of the resting-state eyes-closed fMRI 

hemodynamic curve and EEG rhythms. 

 

8. Conclusions 

 The outcome of present review of the literature shows that the resting state eyes-closed EEG 

(MEG) rhythms recorded in MCI and AD subjects is a useful approach to study brain 

synchronization mechanisms, functional connectivity and neuroplasticity of the neurotransmission 

in AD patients as revealed by spectral markers of these EEG (MEG) rhythms such as power 

density, spectral coherence, and other quantitative features. The variables differed among normal 

elderly, MCI, and AD subjects, at least at group level. The majority of the revised studies pointed to 

abnormalities of posterior EEG (MEG) power density at specific frequency bands (i.e. especially at 

alpha band), associated to an altered functional coupling among long-range brain networks (i.e. 

fronto-parietal and fronto-temporal) as revealed by markers of functional and effective brain 

connectivity. These abnormalities of the EEG (MEG) functional coupling showed specific 

topological features. The group of AD patients was characterized by a deviation from the functional 

organization called ‘small-world’ network, with a reduction of both local and long-range functional 

connections. This was especially true at the level of “hub” cortical regions, namely the parietal 

areas. In conclusion, the resting state EEG makers are promising to unveil abnormal functional 

connectivity and neuroplasticity of neurotransmission in the brain of AD patients.  

 Table 1 provides an overview of the main bibliographic references on the functional and 

effective brain connectivity in MCI and AD subjects. The results of these references support a very 

tentative physiological model of brain synchronization mechanisms and functional connectivity in 

healthy and AD subjects in the resting-state eyes-closed condition. The dominant posterior alpha 

rhythms (8–12 Hz) would denote the back-ground, spontaneous synchronization around 10 Hz of 

neural networks regulating the fluctuation of subject’s global arousal and consciousness states. 

These networks would span neural populations of cerebral cortex, thalamus, basal forebrain and 

brainstem, including glutamatergic, cholinergic, dopaminergic and serotoninergic parts of the 

reticular ascending systems. The neurophysiological model posits that AD neurodegenerative 

processes affect the interactions among these neural populations, thus inducing an amplitude 

increase of widespread delta (2-4 Hz) and theta (4-8 Hz) rhythms and an amplitude decrease of the 
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dominant alpha rhythms. This sort of cortical disconnection from sub-cortical structures, working as 

a thalamo-cortical “disconnection mode” reflected both in a “slowing” of the EEG rhythms and in a 

local decrease of functional coupling of alpha rhythms. Figure 4 sketches the theoretical 

neurophysiological models at the basis of the generation of the resting-state eyes-closed EEG 

rhythms in normal control subjects and in AD patients. Specifically, the models illustrate the effects 

of the AD neurodegeneration on the amplitude (top) and the functional coupling (bottom) of the 

EEG rhythms. 

 

INSERT THE TABLE 1 AND THE FIGURE 4 HERE 
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Table legend 

 

Table 1. Overview of the main bibliographic evidence on the functional and effective brain 

connectivity in MCI and AD subjects as revealed by the functional coupling of the resting-state yes-

closed EEG rhythms. The results of the main studies using spectral coherence, synchronization 

likelihood, information theory indexes, directed transfer functions, and others are reported. 
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Figure legend 

 

Fig. 1. Top: Sketch of main models of functional brain connectivity indexed by linear and nonlinear 

functional coupling of resting-state eyes-closed electroencephalographic (EEG) rhythms. Bottom: 

multimodal analysis of fMRI hemodynamic curves and EEG signals. 

 

Fig. 2. Top: Two main different approaches to the study of effective brain connectivity. The 

estimation of the directional information flow between electrode pairs for the resting-state eyes-

closed EEG rhythms. Bottom: effects of the transcranial magnetic stimulation (rTMS) delivered 

over a given electrode on the evoked EEG activity collected at another electrode (bottom). 

 

Fig. 3. Sketch of the nodes and topologic connections of functional brain connectivity in healthy 

subjects and in Alzheimer’s disease (AD) patients as revealed by electroencephalographic (EEG) or 

magnetoencephalographic (MEG) rhythms. These nodes and connections show the deviation of the 

AD patients from the ‘small-world’ network properties of the control subjects’ brain. The features 

of the AD patients’ brain are more similar to those of 'random' networks.  

 

Fig. 4. Theoretical physiological model of cortical neural synchronization and functional coupling 

in the resting-state eyes-closed condition in healthy subjects and in AD patients as revealed by EEG 

rhythms. In the resting-state eyes-closed condition, dominant posterior alpha rhythms (8–12 Hz) 

would reflect the back-ground, spontaneous synchronization around 10 Hz of the neural networks 

regulating the fluctuation of subject’s global arousal and consciousness states. These networks 

would span neural populations of cerebral cortex, thalamus, basal forebrain and brainstem, 

including glutamatergic, cholinergic, dopaminergic and serotoninergic parts of the reticular 

ascending systems. It can be speculated that that AD neurodegenerative processes affect the 

interactions among these neural populations, thus inducing an increase of the power density of 

widespread delta (2-4 Hz) and theta (4-8 Hz) rhythms and a decrease of the power density of the 

dominant alpha rhythms. This sort of cortical disconnection from sub-cortical structures, working as 

a thalamo-cortical “disconnection mode” is reflected both in a “slowing” of the EEG rhythms (top) 

and in a local decrease of functional coupling of alpha rhythms (bottom). 
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Tab. 1 

EEG Marker Group Main results Reference 

Spectral coherence 
N=41 AD 

and 18 Nold 

Decrease of left occipito-parietal, 
left temporo-parietal, and right 
temporo-frontal alpha coherence in 
AD homozygous for the APOEε4 
compared to Nold.  

Jelic et al., 1997 

Spectral coherence 
N=10 AD 

and 10 Nold 

Decrease of alpha coherence in AD 
compared to Nold. Increase of 
fronto-parietal delta coherence in 
few AD patients. 

Locatelli et al., 1998 

Spectral coherence 
N=10 AD 

and 10 Nold 

Decrease of alpha and beta 
coherence in AD compared to 
Nold. 

Wada et al., 1998a 

Spectral coherence 
N=10 AD 

and 10 Nold 

Decrease of inter-hemispheric 
delta, theta, alpha, and beta 
coherence in AD compared to 
Nold.  

Wada et al., 1998b 

Spectral coherence 
N=35 AD 

and 30 Nold 

Decrease of inter-hemispheric 
delta, theta, alpha, and beta 
coherence as well as intra-
hemispheric delta and theta 
coherence in AD compared to 
Nold. 

Knott et al., 2000 

Spectral coherence 

N=15 AD, 

27 MCI 

and 16 Nold 

Decrease of temporo-parietal delta, 
theta, alpha, and beta coherence in 
AD compared to Nold and MCI.  

Jelic et al., 2000 

Spectral coherence 

N=31 AD 

and 17 

cognitively 

unimpaired 

depressive 

Decrease of inter-hemispheric theta 
coherence in AD compared to 
cognitively intact depressive 
subjects. 

Adler et al., 2003 

Spectral coherence N=38 AD 

Negative (positive) correlation 
between delta (alpha) total 
coherence and MMSE across AD 
patients. 

Brunovsky et al., 2003 

Spectral coherence 

N=47 AD, 

52 MCI 

and 33 Nold 

Progressive increase of delta total 
coherence across Nold, MCI, and 
AD. Decrease of alpha 1 total 
coherence in AD compared to MCI 
and Nold. Negative correlation 
between delta total coherence and 
MMSE across Nold, MCI, and AD. 

Babiloni et al., 2009c 
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Spectral coherence 
N=57 MCI 

and 28 Nold 

Decrease of alpha 1 total coherence 
in MCI compared to Nold. 
Decrease of alpha 1 total coherence 
in MCI+ (high cholinergic 
damage) compared to MCI- (low 
cholinergic damage). 

Babiloni et al., 2010b 

Synchronization 

likelihood (SL) 

N=14 AD, 

11 MCI 

and 14 

subjective 

Decrease of alpha and beta SL in 
AD compared to subjective 
memory complaint.  

Pijnenburg et al., 2004 

Synchronization 

likelihood (SL) 

N=82 AD, 

25 VAD 

and 41 Nold 

Decrease of fronto-parietal delta 
and alpha as well as inter-
hemispherical delta and beta 
coherence in AD compared to Nold 

Babiloni et al., 2004c 

Synchronization 

likelihood (SL) 

N=109 AD, 

88 VAD, 

and 69 Nold 

Progressive decrease of fronto-
parietal delta and alpha1 SL across 
Nold, MCI, and mild AD. 
Correlation between fronto-parietal 
delta and alpha 1 SL and MMSE 
across Nold, MCI, and AD. 

Babiloni et al., 2006c 

Cross and auto mutual 

information 

(CMI, AMI) 

N=15 AD, 

and 15 Nold 
Decrease of alpha CMI and AMI in 
AD compared to Nold 

Jeong et al., 2001 

direct transfer function 

(DTF) 

N=64 AD, 

69 VAD 

and 73 Nold 

Reduction of parietal-to-frontal 
DTF in MCI and AD compared to 
Nold  

Babiloni et al., 2009b 

direct transfer function 

(DTF) 

N=73 AD, 

69 VAD 

and 64 Nold 

Reduction of parietal-to-frontal 
DTF in MCI and AD compared to 
Nold 

Vecchio and Babiloni., 2011 

Granger causality and 

stochastic event 

synchrony 

N=17 AD, 

and 24 Nold 

Discrimination between AD and 
Nold with Granger causality and 
stochastic event synchrony with a 
classification rate of 88% 

Dauwels et al., 2009 

Granger causality and 

stochastic event 

synchrony 

N=25 MCI 

and 24 Nold 

Discrimination between MCI and 
Nold with Granger causality and 
stochastic event synchrony with a 
classification rate of 83% 

Dauwels et al., 2010 
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Fig. 2 
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Fig. 4 

 

 


