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Abstract

The computation of the dependability measures is a crucial point in the
planning and development of a wind farm. In this paper we address the issue
of energy production by wind turbine by using an indexed semi-Markov chain
as a model of wind speed. We present the mathematical model, we describe
the data and technical characteristics of a commercial wind turbine (Aircon
HAWT-10kW). We show how to compute some of the main dependability
measures such as reliability, availability and maintainability functions. We
compare the results of the model with real energy production obtained from
data available in the Lastem station (Italy) and sampled every 10 minutes.

Keywords: semi-Markov chains; synthetic time series; dependability
analysis

1. Introduction

Wind is one of the most important renewable energy sources. Wind
energy is produced by converting the kinetic energy of wind into electrical
energy by means of a generator. For this reason it is important to dispose
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of an efficient stochastic model for wind speed changes. In a recent paper [1]
the authors showed that an indexed semi-Markov chain (ISMC) reproduces
almost exactly the statistical features of wind speed. In particular, it was
shown that density and autocorrelation functions of a time series of real
wind speed and those obtained by the ISMC model through Monte Carlo
simulation were almost indistinguishable.

In this work we use the ISMC model to compute dependability measures
as availability, reliability and maintainability functions for the index semi-
Markov process. These indicators give important information on the feasi-
bility of the investment in a wind farm by giving the possibility to quantify
the uncertainty in the wind energy production.

Another important aspect is related to the location of the wind farm. In
fact, today many wind farm are built offshore for different reasons: the wind
speed is more powerful and constant due to the absence of obstacles, the vi-
sual, environmental and acoustic impact is cut down. The maintenance cost,
instead, is higher than the onshore wind farm. A good stochastic model can
help the planning of preventive maintenance suggesting when it is suitable
to do the maintenance operation.

The results presented here are new and generalize some of the results ob-
tained for semi-Markov chain(see [2, 3, 4, 5, 6, 7, 8]). The model generalizes
also Markov chains and renewal models.

We apply our model to a real case of energy production. For this reason
we choose a commercial wind turbine, a 10 kW Aricon HAWT assumed to
be installed at the station of L.S.I -Lastem which is situated in Italy.

The paper is organized as follows. Section 2 presents some definitions
and notation on the indexed semi-Markov chain. Section 3 describes the
database and the technical characteristics of the commercial wind turbine.
Section 4 shows the way in which it is possible to compute the dependability
measures via kernel transformations and the value computed on the real data
and on the synthetic data are compared. In the last section some concluding
remarks and possible extensions are presented.

2. The indexed semi-Markov process

In this section, we give a short review of a particular indexed semi-Markov
model advanced in [1] as a novel synthetic time series generation method for
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wind speed data which is able to capture the persistence in the wind speed
data and we give new probabilistic result about the transition probability
function.

Let us consider the stochastic process

J−(m+1), J−m, J−(m−1), ..., J−1, J0, J1, ... (1)

with a finite state space E = {1, 2, ..., S}. In our framework the random
variable Jn describes the wind speed at the n-th transition, that is at the
n-th change of speed value and, the state space E, describes the discretized
wind speeds, see Section 3 for a specific choice of E.

Let us also consider the stochastic process

T−(m+1), T−m, T−(m−1), ..., T−1, T0, T1, ... (2)

with values in IN. The random variable Tn describes the time in which the
n-th change of value of the wind speed occurs. We denote the stochastic
process {Xn}n∈IN of the sojourn times in wind speed state Jn−1 before the
nth jump. Thus we have for all n ∈ IN Xn = Tn+1 − Tn.

Let us consider another stochastic process

V−(m+1), V−m, V−(m−1), ..., V−1, V0, V1, ... (3)

with values in IR. The random variable Vn describes the value of the index
process at the nth transition:

V m
n =

1

Tn − Tn−(m+1)

m∑
k=0

Xn−1−k∑
s=1

f(Jn−1−k, s), (4)

where f : E × IN → IR is a generic function and V m
−(m+1), ..., V

m
0 are known

and non-random.
The function f depends on the state of the system Jn−1−k and on the

time s.
The process V m

n can be interpreted as a moving average of the accumu-
lated reward process with the function f as a measure of the permanence
reward per unit time.

It should be noted that the order of the moving average is on the number
of transitions m+ 1 which is fixed. Anyway, the moving average is executed
on time windows of variable length Tn− Tn−(m+1) =

∑n
k=n−(m+1)Xk because
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each transition has a random sojourn time Xk of permanence in state Jk−1
before the next jump.

The indexed model is fully specified once the dependence structure be-
tween the variables is assumed. Toward this end we adopt the following
assumption:

P[Jn+1 = j, Tn+1 − Tn ≤ t|σ(Jh, Th), h = −m, ..., 0, ..., n, Jn = i, V m
n = v]

= P[Jn+1 = j, Tn+1 − Tn ≤ t|Jn = i, V m
n = v] =: Qm

ij (v; t),
(5)

where σ(Jh, Th), h ≤ n represents the set of past values, of the processes
(J, T ). The matrix of functions Qm(v; t) = (Qm

ij (v; t))i,j∈E is called indexed
semi-Markov kernel.

The joint process (Jn, Tn), which is embedded in the indexed semi-Markov
kernel, depends on the moving average process V m

n , the latter acts as a
stochastic index. Moreover, the index process V m

n depends on (Jn, Tn) through
the functional relationship (4).

Observe that if

P[Jn+1 = j, Tn+1−Tn ≤ t|Jn = i, V λ
n = v] = P[Jn+1 = j, Tn+1−Tn ≤ t|Jn = i],

(6)
for all values v ∈ IR of the index process, then the indexed semi-Markov
kernel degenerates in an ordinary semi-Markov kernel and the model becomes
equivalent to classical semi-Markov chain models as presented for example
in [9, 10, 11, 12, 13, 14]. The dependence of the process (Jn, Tn) on the new
variable V m

n is introduced in order to capture the effect of the past transitions
on the future ones for those processes which are strongly autocorrelated.

One of the main problem is the proposal of a particular choice of the
index process which is useful in describing the wind speed process. To this
end we need to choose a specific form of the function f .
The choice is motivated by some physical reasons and by model simplicity.

Let us briefly remind that wind speed data are long range positively
autocorrelated. This implies that there are periods of high and low speed.
Motivated by the empirical facts in [1] we supposed that also the transition
probabilities from current wind speed Jn to the next one Jn+1 depends on
whether the wind is, on average, in a high speed period or in a low one. We
then fixed the function f to be the wind speed itself, i.e.

f(Jn−1−k, s) = Jn−1−k, (7)
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for all s ∈ IN. Consequently, substituting (7) in equation (4) and considering
that Jn−1−k is constant in s we obtain

V m
n =

1

Tn − Tn−(m+1)

m∑
k=0

Jn−1−k ·Xn−1−k =
m∑
k=0

Jn−1−k ·
(
Tn−k − Tn−1−k
Tn − Tn−(m+1)

)
.

(8)
In this simple case the index process (V m

n ) expresses a moving average
of order m + 1 executed on the series of the wind speed values (Jn−1−k)
with weights given by the fractions of sojourn times in that wind speed
(Tn−k − Tn−1−k), with respect to the interval time on which the average is
executed (Tn − Tn−(m+1)).

The consequence of the choice (7) is that the assumption (5) now states
that:

Qm
ij (v; t) = P[Jn+1 = j, Tn+1−Tn ≤ t|Jn = i, V m

n =
m∑
k=0

Jn−1−k

(
Tn−k − Tn−1−k
Tn − Tn−(m+1)

)
= v].

(9)
Relation (9) asserts that the knowledge of the last wind speed value (Jn =

i) and of the weighted moving average (V m
n = v) of order m+ 1 of past wind

speeds suffices to give the conditional distribution of the couple Jn+1, Tn+1−
Tn whatever the values of the past variables might be. Essentially we consider
that the average of the past m speeds contains most of the information needed
to establish the probability of the next wind speed transition. We will show
later that, with this assumption, the model is able to capture the temporal
dependence structure of real data.

We introduce now auxiliary probabilities which are helpful in the sequel
of the analysis. Denote by

pmij (v) := P[Jn+1 = j|Jn = i, V m
n = v].

They represent the transition probabilities of the embedded indexed Markov
chain. More precisely pmij (v) denotes the probability that the next transition
is into wind speed j given that at current time the wind speed process entered
state i and the index process had value v. It is simple to realize that

pmij (v) = lim
t→∞

Qm
ij (v; t). (10)

Let Hm
i (v; ·) be the sojourn time cumulative distribution in wind speed

state i ∈ E:

Hm
i (v; t) := P[Tn+1 − Tn ≤ t|Jn = i, V m

n = v] =
∑
j∈E

Qm
ij (v; t). (11)
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It expresses the probability to change the actual wind speed i in a time
less or equal to t given the indexed process has value v.

It is useful to consider also the conditional waiting time distribution func-
tion G which expresses the following probability:

Gm
ij (v; t) := P[Tn+1 − Tn ≤ t | Jn = i, Jn+1 = j, V m

n = v]. (12)

It is simple to establish that

Gm
ij (v; t) =

{
Qm

ij (v;t)

pmij (v)
if pmij (v) 6= 0

1 if pmij (v) = 0.
(13)

To describe the behavior of our model at whatever time t ∈ IN we need
to define additional stochastic processes.

Given the three-dimensional process {Jn, Tn, V m
n } and the indexed semi-

Markov kernel Qm(v; t), we define by

N(t) = sup{n ∈ N : Tn ≤ t};
Z(t) = JN(t);

V m(t) =
1

t− T(N(t)−θ)−m

m∑
k=0

J(N(t)−θ)−k · (t ∧ T(N(t)−θ)+1−k − T(N(t)−θ)−k)

(14)
where TN(t) ≤ t < TN(t)+1 and θ = 1{t=TN(t)}.

The stochastic processes defined in (14) represent the number of transi-
tions up to time t, the state of the system (wind speed) at time t and the
value of the index process (moving average of function of wind speed) up to
t, respectively. We refer to Z(t) as an indexed semi-Markov chain.

The process V m(t) extends the process V m
n because the time t can be a

transition or a waiting time. It is simple to realize that, ∀m, if t = Tn we
have that V m(t) = V m

n .
Let us introduce the stochastic process

B(t) = t− TN(t), (15)

which is called backward recurrence time process and denotes the time since
the last transition.

This process is very important in a semi-Markovian framework and it is
well known that the transition probabilities of a semi-Markov process depend
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on the value of the recurrence time process, see e.g. [6, 15].
This is due to the fact that the conditional waiting time distribution

functions (12) can be of any type and then, also no memoryless distributions
can be used. In this case, the time since the last transition of the system
(backward value) influences the system’s transition probabilities; this is the
so called duration effect.

To properly assess the probabilistic behavior of the system, we need to
introduce the transition probability function. To this end, it is useful to
introduce the following notation:

J0
−m−1 = (J0, J−1, ..., J−m−1),

T0
−m−1 = (T0, T−1, ..., T−m−1).

With the equality J0
−m−1 = j0−m−1 we denote the fact that

(J0 = j0, J−1 = j1, ..., J−m−1 = j−m−1),

and similarly with T0
−m−1 = t0−m−1 we indicate that

(T0 = t0, T−1 = t1, ..., T−m−1 = t−m−1).

Finally by (J,T)0−m−1 we denote the couple of ordered vectors (J0
−m−1,T

0
−m−1).

Definition 1. The transition probability function of the indexed semi-Markov
chain Z(t) is the function bφ(i0−m−1;j)

(t0−m−1;u, t) defined by

bφ(i0−m−1;j)
(t0−m−1;u, t) := bφ(i−m−1,i−m,...i0;j)(t−m−1, t−m, ..., t0;u, t), (16)

where, i0, i−1, ..., i−m−1 ∈ E and t0, t−1, ..., t−m−1 ∈ IN.

The transition probability function (16) expresses the probability the ISMC
occupies state j at time t given that at current time t0 + u it is in state i0
where it entered with last transition at time t0 having previously visited the
states i−1−m−1 at times t−1−m−1.

We call the transition probabilities (16) transition probabilities with ini-
tial backward times for the ISMC model. In fact, at the current time t0 + u
the backward recurrence time process assumes value:

B(t0 + u) = t0 + u− TN(t0+u) = t0 + u− T0 = t0 + u− t0 = u.
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If we set u = 0 in (16) we have the probability

φ(i0−m−1;j)
(t0−m−1; t) := P[Z(t) = j|J0 = i0, ..., J−m−1 = i−m−1, T0 = t0, ..., T−m−1 = t−m−1].

(17)
which denotes the probability that the ISMC occupies state j at time

t given that at current time t0 it is entered into state i0 having previously
visited the states i−1−m−1 at times t−1−m−1.

The following result consists in a recursive formula for computing the
transition function bφ(i0−m−1;j)

(t0−m−1;u, t) of the ISMC Z(t).

Proposition 2. The probabilities bφ(i0−m−1;j)
(t0−m−1;u, t) verify the following

equation:
bφ(i0−m−1;j)

(t0−m−1;u, t)

= δi0j

(
1−Hm

i0

(∑m
k=0 i−k−1 ·

( t−k−t−k−1

t0−t−m−1

)
; t− t0

))
(

1−Hm
i0

(∑m
k=0 i−k−1 ·

( t−k−t−k−1

t0−t−m−1

)
;u
))

+
∑
i1∈E

t∑
t1=t0+u+1

qi0i1
(∑m

k=0 i−k−1 ·
( t−k−t−k−1

t0−t−m−1

)
; t1 − t0

)(
1−Hm

i0

(∑m
k=0 i−k−1 ·

( t−k−t−k−1

t0−t−m−1

)
;u
)) bφ(i1−m;j)(t

1
−m; t− t1),

(18)
where δi0j is the Kronecker delta and

qir(v; s) = Qir(v; s)−Qir(v; s− 1).

Proof First of all let us compute the value of the index process V m(t0)
given the information set {(J,T)0−m−1 = (i0−m−1; t

0
−m−1)}. Because t0 = T0

is a transition time, we have that θ = 1. Moreover T−m−1 = t−m−1 and ∀k
T−k = t−k < t. Then, we have that

V m(t0) =
m∑
k=0

m∑
k=0

i−k−1
t−k − t−k−1
t0 − t−m−1

. (19)

Now, being the events {T1 > t} and {T1 ≤ t} disjoint, it follows that

P[Z(t) = j|T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1]

= P[Z(t) = j, T1 > t|T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1]

+ P[Z(t) = j, T1 ≤ t|T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1].

(20)
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Observe that

P[Z(t) = j, T1 > t|T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1]

= P[T1 > t|T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1]

· P[Z(t) = j|T1 > t, T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1].

(21)

The first factor on the right hand side of (21) is

P[T1 > t|T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1]

=
1−Hm

i0

(∑m
k=0 i−k−1

t−k−t−k−1

t0−t−m−1
; t− t0

)
1−Hm

i0

(∑m
k=0 i−k−1

t−k−t−k−1

t0−t−m−1
;u
) .

(22)

The second factor on the right hand side of (21) is simply

P[Z(t) = j|T1 > t, T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1] = δi0j, (23)

because being T1 > t the time of next transition exceeds t and, therefore, up
to t the process remains in state i0. Consequently the probability is one if
and only if j = i0 otherwise it will be equal to zero.

Now let us consider the computation of the second addend on the right
hand side of formula (20):

P[Z(t) = j, T1 ≤ t|T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1]

=
∑
i1∈E

t∑
t1=t0+u+1

P[Z(t) = j, J1 = i1, T1 = t1|T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1]

=
∑
i1∈E

t∑
t1=t0+u+1

P[Z(t) = j|J1 = i1, T1 = t1, T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1]

× P[J1 = i1, T1 = t1|T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1]

=
∑
i1∈E

t∑
t1=t0+u+1

bφ(i1−m;j)(t
1
−m; t− t1)

×
P[J1 = i1, T1 = t1|(J,T)0−m−1 = (i, t)0−m−1]

P[T1 > t0 + u|(J,T)0−m−1 = (i, t)0−m−1]
(24)
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=
∑
i1∈E

t∑
t1=t0+u+1

qi0i1
(∑m

k=0 i−k−1 ·
( t−k−t−k−1

t0−t−m−1

)
; t1 − t0

)(
1−Hm

i0

(∑m
k=0 i−k−1 ·

( t−k−t−k−1

t0−t−m−1

)
;u
)) bφ(i1−m;j)(t

1
−m; t− t1).

(25)

�

If we set u = 0 in equation (26) we obtain the evolution equation for the
transition probabilities φ(i0−m−1;j)

(t0−m−1; t):

φ(i0−m−1;j)
(t0−m−1; t)

= δi0j

(
1−Hm

i0

( m∑
k=0

i−k−1 ·
(t−k − t−k−1
t0 − t−m−1

)
; t− t0

))

+
∑
i1∈E

t∑
t1=t0+1

qi0i1
( m∑
k=0

i−k−1 ·
(t−k − t−k−1
t0 − t−m−1

)
; t1
)
φ(i1−m;j)(t

1
−m; t− t1).

(26)

As it is possible to see from the previous propositions, the transition prob-
abilities are function of the last m+1 states and times of transition, then our
ISMC model can also be considered as a type of m + 1 order semi-Markov
chain model. Anyway higher order semi-Markov models are associated with a
dramatic increase in the model parameters that rarely is possible to estimate
from real data. The ISMC model overcomes this problem because the influ-
ence of the past states and times is summarized efficiently with the introduc-
tion of the index process that computes a weighted average of the past states.
This is particularly evident once we remark that the bφ(i0−m−1;j)

(t0−m−1;u, t)

are the unknown functions of formula (16) whereas the remaining quanti-
ties are known once we dispose of the indexed semi-Markov kernel Qm(v; t)
which is the only quantity to be estimated from data. From formula (5) we
see that the influence of past states and times is summarized by the index
process V m(t). Having estimated Qm(v; t) it is possible, first to compute
the sojourn time cumulative distribution Hm

i (v; ·) through formula (11) and
then, by solving equation (16) the transition probability are obtained.

3. Database and commercial wind turbine

As in our previous works [1, 5, 16] we used a free database of wind speed
sampled in a weather station situated in Italy at N 45 28’ 14,9” − E 9 22’
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Sate Wind speed range m/s
1 0 to 1
2 2
3 3
4 4
5 5
6 6
7 7
8 >7

Table 1: Wind speed discretization

19,9” and at 107 m of altitude. The station uses a combined speed-direction
anemometer at 22 m above the ground. It has a measurement range that
goes from 0 to 60 m/s, a threshold of 0,38 m/s and a resolution of 0,05 m/s.
The station processes the speed every 10 minute in a time interval ranging
from 25/10/2006 to 28/06/2011. During the 10 minutes are performed 31
sampling which are then averaged in the time interval. In this work, we use
the sampled data that represents the average of the modulus of the wind
speed (m/s) without a considered specific direction. This database is then
composed of about 230thousands wind speed measures ranging from 0 to 16
m/s.

To be able to model the wind speed as a semi-Markov process, the state
space of wind speed has been discretized. In the example shown in this work
we discretize wind speed into 8 states (see Table 1) chosen to cover all the
wind speed distribution. This choice is done by considering a trade off be-
tween accuracy of the description of the wind speed distribution and number
of parameters to be estimated. An increase of the number of states better
describes the process but requires a larger dataset to get reliable estimates
and it could also be not necessary for the accuracy needed in forecasting
future wind speeds. Note also that, in the database used in this work, there
are very few cases where the wind speed exceeds 7m/s. We stress that the
discretization should be chosen according to the database to be used.

We apply our model to a real case of energy production. For this reason
we choose a commercial wind turbine, a 10 kW Aircon HAWT with a power
curve given in Figure 1. The power curve of a wind turbine represents how
much energy it produces as a function of the wind speed. In this case, see

11
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Figure 1: Power curve of the 10 kW Aricon HAWT wind turbine.

Figure 1, there is a cut in speed at 2 m/s, instead the wind turbine produces
energy almost linearly from 3 to 10 m/s, then, with increasing wind speed
the energy production remains constant until the cut out speed at 32 m/s,
in which the wind turbine is stopped for structural reason. Then the power
curve acts as a filter for the wind speed. In the database used for our analysis
the wind speed does never exceed 16 m/s and it is seldom over 8 m/s, this
is why the discretization is performed according to Table 1 and the analysis
never reached the cut out speed.

Through this power curve we can know how much energy is produced as
a function of the wind speed at a given time.

4. Reliability theory for the ISMC model of wind speed

In this section we define and compute reliability measures for the ISMC
model.
Let E be partitioned into sets U and D, so that:

E = U ∪D, ∅ = U ∩D, U 6= ∅, U 6= E.

The subset U contains all ”Up” states in which the system is working and
subset D all ”Down” states in which the system is not working well or has
failed. In the wind speed model the Up states are those for which the wind
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speed is sufficiently high to allow the production of energy or not excessive
high such that the turbine should be turned off.

In the following we present both the typical indicators used in reliability
theory and also their application.

The three indicators that we evaluate are the availability, reliability and
maintainability functions, they were extensively studied among others by
[17, 18] and related to semi-Markov models by [2, 3, 13, 5, 19, 20].

(i) the point wise availability function bA with backward time giving the
probability that the system is working on at time t whatever happens on
(0, t].
In our model the availability is defined as follows:

bAi0−m−1
(t0−m−1;u, t)

= P
[
Z(t) ∈ U |T1 > t0 + u, (J,T)0−m−1 = ((i, t)0−m−1)

]
,

(27)

and gives the probability that at time t the wind turbine produces energy
conditional on the last m+1 wind speed values i0−m−1 registered at the times
t0−m−1 and on the no occurrence of next transition up to time t0 + u.

(ii) the reliability function bR with backward time giving the probability
that the system was always working from time t0 to time t: In our model the
availability is defined as follows:

bRi0−m−1
(t0−m−1;u, t)

= P
[
Z(u) ∈ U,∀u ∈ (t0, t]|T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1

] (28)

and gives the probability that the wind turbine will always produce energy
from time t0 up to time t conditional on the last m + 1 wind speed values
i0−m−1 registered at the times t0−m−1 and on the no occurrence of next tran-
sition up to time t0 + u.

(iii) the maintainability function bM with backward time giving the prob-
ability that the system will leave the set D within the time t being in D at
time t0:

bMi0−m−1
(t0−m−1;u, t)

= P
[
∃u ∈ (t0, t] : Z(u) ∈ U |T1 > t0 + u, (J,T)0−m−1 = (i, t)0−m−1

] (29)

and gives the probability that the turbine will produce energy at least once
from time t0 up to time t conditional on the last m + 1 wind speed values

13



i0−m−1 registered at the times t0−m−1 and on the no occurrence of any transi-
tion up to time t0 + u.

These three probabilities can be computed in the following way if the
process is an indexed semi-Markov chain of kernel Qm(v; t).

(i) the point wise availability function bAi0−m−1
(t0−m−1;u, t) :

to compute these probabilities it is sufficient to use the following formula:

bAi0−m−1
(t0−m−1;u, t) =

∑
j∈U

bφ(i0−m−1;j)
(t0−m−1;u, t). (30)

(ii) the reliability function bRm
i0−m−1

(t0−m−1;u, t)

to compute these probabilities, we will now work with another cumulated
kernel Q̂m(v; t) for which all the states of the subset D are changed into
absorbing states by considering the following transformation:

p̂mi,j(v) =


1 if i ∈ D, j = i
0 if i ∈ D, j /∈ D
pmi,j(v) otherwise.

(31)

bRi0−m−1
(t0−m−1;u, t) is given by solving the evolution equation of the indexed

semi-Markov chain but now with the kernel Q̂m
ij (v; t) = p̂mij (v)Gm

ij (v; t).
The related formula will be:

bR(i0−m−1;j)
(t0−m−1;u, t) =

∑
j∈U

bφ̂i0−m−1
(t0−m−1;u, t) (32)

where bφ̂(i0−m−1;j)
(t0−m−1;u, t) are the transition probabilities of the process

with all the states in D that are absorbing, i.e. with cumulated kernel Q̂.
(iii) the maintainability function bMi0−m−1

(t0−m−1;u, t):
to compute these probabilities we will now work with another cumulated
kernel Q̃ = (Q̃m

ij (v; t)) for which all the states of the subset U are changed
into absorbing states by considering the following transformation:

p̃mij (v; t) =


1 if i ∈ U, j = i
0 if i ∈ U, j 6= i

pmij (v; t) otherwise.
(33)
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bMi0−m−1
(t0−m−1;u, t) is given by solving the evolution equation of an indexed

semi-Markov chain but now with the cumulated kernel Q̃m
ij (v; t) = p̃mij (v) ·

Gm
ij (v; t).

The related formula for the maintainability function will be:

bMi0−m−1
(t0−m−1;u, t) =

∑
j∈U

bφ̃(i0−m−1;j)
(t0−m−1;u, t) (34)

where bφ̃(i0−m−1;j)
(t0−m−1;u, t) are the transition probability of the process with

all the states in U that are absorbing, i.e. with cumulated kernel Q̃.

Unfortunately it is impossible to give a graphical representation of these
three indicators because they depends on too many parameters (m+1 states
i0−m−1, m+ 1 times t0−m−1 and one backward value v), then in order to show
the capacity of the model to correctly reproduce the reliability measures we
define unconditional reliability measures and we compute them by evaluating
the discrepancies between real data and model results.

Let us define the set

Hx0,t0(v) = {(i0−m−1, t0−m−1) | i0 = x0, t0 = y0, V
m(t0) = v},

then we define the unconditional availability function

bAHx0,t0 (v)
(u, t)

= P
[
Z(t) ∈ U |T1 > t0 + u, (J,T)0−m−1 = ((a, s)0−m−1) ∈ Hx0,t0(v)

]
.

(35)

The unconditional availability gives the probability that at time t the wind
turbine produces energy conditional on the occupancy at the current time t0
of the state i0 with the index process having value v and the backward value
equal to u. By using properties of the conditional probabilities it is easy to
realize that

bAHx0,t0 (v)
(u, t) =

∑
((a,s)0−m−1)∈Hx0,t0 (v)

P[(J,T)0−m−1 = ((a, s)0−m−1)]

× P
[
Z(t) ∈ U |T1 > t0 + u, (J,T)0−m−1 = ((a, s)0−m−1)

]
=

∑
((a,s)0−m−1)∈Hx0,t0 (v)

µ((a, s)0−m−1)
bAa0

−m−1
(s0−m−1;u, t).

(36)
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where µ((a, s)0−m−1) is the initial distribution of the states a0
−m−1 occupied

at times s0−m−1.
The same definitions apply for the reliability and the maintainability

functions.
We define the unconditional reliability function

bRHx0,t0 (v)
(u, t)

= P
[
Z(u) ∈ U,∀u ∈ (t0, t]|T1 > t0 + u, (J,T)0−m−1 = ((a, s)0−m−1) ∈ Hx0,t0(v)

]
.

(37)
and it results that

bRHx0,t0 (v)
(u, t) =

∑
((a,s)0−m−1)∈Hx0,t0 (v)

µ((a, s)0−m−1)
bRa0

−m−1
(s0−m−1;u, t).

(38)
The unconditional maintainability function is defined as follows

bMHx0,t0 (v)
(u, t)

= P
[
∃u ∈ (t0, t] : Z(u) ∈ U |T1 > t0 + u, (J,T)0−m−1 = ((a, s)0−m−1) ∈ Hx0,t0(v)

]
.

(39)
and it results that

bMHx0,t0 (v)
(u, t) =

∑
((a,s)0−m−1)∈Hx0,t0 (v)

µ((a, s)0−m−1)
bMa0

−m−1
(s0−m−1;u, t).

(40)
The unconditional reliability measures can be graphically represented be-

cause if we set the current time t0 = 0, then, they depend only on three
parameters (i0, u, v). In order to verify the validity of our model, we compare
the behaviour of these indicators for real and synthetic data. The indicators
of the synthetic data are computed averaging over 500 different trajectories.
The number of trajectories is chosen to have stable results.
The unconditional reliability measures are plotted by varying the backward
time u, the index process v and maintaining constant the initial state i0.
The numeric choice of each parameter is given only for graphical reasons, in
order to show the maximum number of curves without overlaps. For all the
figures we use the notation of indicating with a continuous line the indicators
computed from real data and with a dashed line those computed from simu-
lated data. As numeric indicator to compare the gap between the curves we
compute the root mean square error (RMSE) between the indicator applied

16



20  60  100
0.4

 

0.6

 

0.8

  

Time (Minutes)

P
ro

ba
bi

lit
y

 

 

i=3 v=3 u=1

i=3 v=3 u=3

i=3 v=2 u=1

i=3 v=2 u=3

Figure 2: Comparison of unconditional availability functions for real and simulated data

to the real data and the 500 simulated trajectories. The mean square error
is defined as follows:

bRMSEi,v =

√√√√ 1

500

500∑
h=1

(
bIreali,v − bIhi,v

)2
(41)

where bIreali,v stands for the indicators estimated form real data and bIhi,v the
indicators estimated from each synthetic trajectory.

In Figure 2 the unconditional availability functions of real and synthetic

10 min 50 min 100 min
1RMSE1,3 0.0079 0.0072 0.0092
3RMSE3,3 0.0044 0.0068 0.0119
1RMSE3,2 0.0103 0.0085 0.0188
3RMSE3,2 0.0074 0.0277 0.0405

Table 2: Mean square error between the curves of the availability applied to real and
synthetic data
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Figure 3: Comparison of unconditional reliability functions for real and simulated data

data are compared. The comparison is made by varying the backward time
u and the index process v and maintaining constant the starting state i0. In
Table 2 there are the RMSE values computed between real and simulated
curves of Figure 2. As it is possible to note there is a slight increasing trend
of the RMSE at the increasing of time. This consideration can be extended
also to the unconditional reliability and maintainability functions.

Figure 3 shows the reliability function for real data compared with those
simulated. The plotting procedure is the same as for the previous figure.
The theoretical trend of the reliability function is confirmed, the probability

10 min 50 min 100 min
1RMSE3,2 0.0103 0.0070 0.0344
2RMSE3,2 0.0074 0.0170 0.0559
1RMSE3,4 0.0065 0.0115 0.0135
3RMSE3,4 0.0089 0.0158 0.0188

Table 3: Mean square error between the curves of the reliability applied to real and
synthetic data
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Figure 4: Comparison of unconditional maintainability functions for real and simulated
data

decreases at the increasing of the time interval. In Table 3, instead there are
the RMSE values computed between real and simulated curves of Figure 3.

The maintainability function is plotted in Figure 4. As the previous fig-
ures, this one shows the comparison of the maintainability for real and simu-
lated data varying the backward time and the index process and maintaining
constant the starting state. Table 4 shows the RMSE values computed be-
tween real and simulated curves of Figure 4.

It is possible to note that all the indicators plotted above (availability,

10 min 50 min 100 min
1RMSE2,2 0.0093 0.0134 0.0137
3RMSE2,2 0.0088 0.0161 0.0189
1RMSE2,4 0.0072 0.0175 0.0087
3RMSE2,4 0.0095 0.0377 0.0216

Table 4: Mean square error between the curves of the maintainability applied to real and
synthetic data
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Markov semi-Markov(1) semi-Markov(2) ISMC
Availability 65% 54% 12% 8%
Reliability 83% 69% 27% 9%
Maintainability 73% 65% 25% 3%

Table 5: Root mean square error percentage between real and synthetic data for availabil-
ity, reliability and maintainability function computed with different models

reliability and maintainability) depend strongly on the backward time and
on the index process. In fact, all the probabilities have different values also
if only the index process v is changed keeping constant the backward time b
and the starting state i. For example, from Figure 3 it is possible to see that
for all s

bRH3,0(4)(1, s) >
bRH3,0(2)(1, s)∀s ∈ [0, 100],

and in particular bRH3,0(4)(1, 40) = 0, 77 and bRH3,0(2)(1, 40) = 0, 41. This
reveals that it is important to dispose of a model that is able to distinguish
between these different situations which are determined only from a differ-
ent duration of permanence in the initial state i0 and different values of the
average of past m+ 1 visited states. Models based on Markov chains or clas-
sical semi-Markov chain are unable to capture this important effect that our
indexed semi-Markov chain reproduces accordingly to the real data. To mo-
tivate well this statement, in Table 5 we show the percentage RMSE between
all the indicators (availability, reliability and maintainability) evaluated for
real and synthetic data computed through different models. Particularly we
use, for this comparison, a first order Markov chain, a first order semi-Markov
chain, a second order in state and duration semi-Markov chain and the ISMC
model. From the Table it is clear that the best model is the ISMC model.

5. Conclusion

In our previous work, we presented a new stochastic model for the gen-
eration of synthetic wind speed data based on a semi-Markov approach but
including a new and important random variable that able us to capture well
the behaviour of the wind speed. Here we compute, for the first time, typi-
cal indicators in reliability theory for wind speed phenomenon by using the
ISMC model.
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In order to check the validity of the presented model, we have compared
the behaviour of these indicators for real and simulated data. To do this,
we applied our model to a real case of energy production filtering real and
simulated data by the power curve of a commercial wind turbine. The results
show that the proposed model is able to reproduce the behaviour of real data
by exhibiting the dependence of the reliability indicators on the backward
time and the index process.

The indications provided by the model are of importance for assessing
the suitability of a location for the wind farm installation as well as for the
planning of a preventive maintenance policy. We have also shown that the
ISMC model reproduces the behavior of real data much better than a first
order Markov chain, a first order semi-Markov chain and a second order in
state and duration semi-Markov chain.
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