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Abstract

This review article is intended to describe the strong relationship between oxidative stress
and vascular disease. Reactive oxygen species (ROS) play an important role in the pathogenesis of
vascular disease: oxidative stress is intimately linked to atherosclerosis, through oxidation of LDL
and endothelial dysfunction, to diabetes, mainly through advanced glycation end-products
(AGEs)/receptor for AGE (RAGE) axis impairment, protein kinase C (PKC), aldose reductase (AR) and
NADPH oxidase (NOX) dysfunction, and to hypertension, through renin-angiotensin system (RAS)
dysfunction. Several oxidative stress biomarkers have been proposed to detect oxidative stress
levels and to improve our current understanding of the mechanisms underlying vascular disease.
These biomarkers include ROS-generating and quenching molecules, and ROS-modified compounds,
such as Fy-isoprostanes. An efficient therapeutic approach to vascular diseases cannot exclude
evaluation and treatment of oxidative stress. In fact, oxidative stress represents an important target
of several drugs and nutraceuticals, including antidiabetic agents, statins, renin-angiotensin system
blockers, polyphenols and other antioxidants. A better understanding of the relations between
atherosclerosis, diabetes, hypertension and ROS and the discovery of new oxidative stress targets

will translate into consistent benefits for effective vascular disease treatment and prevention.
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Chemical compounds studied in this review



Superoxide (PubChem CID: 5359597); Peroxynitrite (PubChem CID: 104806); Hydroxide
(PubChem CID: 961); NADP+ (PubChem CID: 5886); Nitric oxide (PubChem CID: 145068);
Tetrahydrobiopterin (PubChem CID: 44257); Ascorbic acid (PubChem CID: 54670067); Alpha-
Tocopherol (PubChem CID: 14985); 11-Dehydro-TXB2 (PubChem CID: 5280891); Angiotensin

Il (PubChem CID: 172198).

1. The long way to detect vascular oxidative stress: historical and innovative biomarkers



Reactive oxygen species (ROS) represent a family of molecules that includes free radicals,
such as Oy (superoxide), ONOO" (peroxynitrite), HO" (hydroxyl), and non-radicals, as H,0, (hydrogen
peroxide).

ROS are produced by aerobic cells, during the incomplete oxygen reduction process of the
respiration, and they represent crucial protagonists of the oxidative stress, defined as an imbalance
between ROS formation and elimination in favor of pro-oxidant processes. Focusing the attention
on vascular oxidative stress, it has been demonstrated that, in the vascular wall, many enzymatic
systems produce ROS, including nicotinamide adenine dinucleotide phosphate (NADPH) oxidase,
mitochondrial enzymes, dysfunctional endothelial nitric oxide synthase (eNOS), and xanthine
oxidase (XO). The vascular wall has also several antioxidant systems to contrast ROS generation:
superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), paraoxonase (PONs),
thioredoxin (TRX) peroxidase and heme oxygenase (HO) (Figure 1) (1).

Several pathogenetic elements related to cardiovascular (CV) disease are associated with
oxidative stress in several clinical settings, and are thought to contribute to the development of
vascular complications: endothelial dysfunction, inflammation, LDL oxidation, metabolic
syndrome and insulin resistance are indeed strongly linked to ROS and oxidative stress (2). Among
acquired diseases, a clinical paradigm of vascular oxidative stress-mediated disease is represented
by ethanol consumption-induced hypertension, as showed by Passaglia et al in a recent issue of
the Journal (3).

Moreover, ROS exert several physiological roles, such as defense from microbial agents,
angiogenesis and response to fibrotic stimuli in lung injury (4). Thus, ROS appear to have a double
role: they can mediate both physiologic events and cellular damage. Oxidative stress is quantified
in vivo through the measurement of several molecules, some of which may serve as biomarkers.

Biomarkers are indicators of physiological or pathological processes. An ideal marker is one in which



there is a specific, easily measurable increase that clearly orientates the physician towards a
diagnosis or a predictable clinical outcome in such a way that it guides therapy. Biomarkers of
oxidative stress are usually indirect indicators of oxidative status. It is possible to identify either

molecules related to ROS generation or modified by interaction with ROS.

1.1 ROS-production markers

In vascular cells, platelets and inflammatory cells, O, is synthesized by the enzymes
NADPH oxidase, xanthine oxidase, lipoxygenase, uncoupled eNOS, inducible nitric oxide synthase
(INOS) and mitochondrial electron transport. Cells require a certain amount of O, to maintain
cellular homeostasis; however, when these O;-generating sources remain activated after a
physiological stimulus has waned, the continued production of O, alters cellular redox
homeostasis resulting in increased oxidant stress. Cardiovascular risk factors may therefore
trigger ROS generation thus playing a role in mediating oxidative stress in CV disease (CVD) (1).
NADPH represents a family of pro-oxidant enzymes, which are mainly defined by their membrane-
bound NOX subunit into four main subtypes in CV system.

The endothelial source of NO, eNOS, displaying antioxidant, anti-inflammatory, and anti-
atherogenic characteristics, is probably the most important enzyme in CV biology. In the presence
of high levels of ROS, eNOS co-factor tetrahydrobiopterin (BHs) is oxidized and this results in
enzymatic uncoupling of eNOS, to generate O, instead of NO. It has been shown that vascular but
not plasma BH; is an important determinant of eNOS coupling, endothelium-dependent
vasodilation, and superoxide production in human vessels (5).

Thus, although estimating the ratio of BH, to its oxidized forms (dihydrobiopterin and biopterin)
may serve as a marker of systemic redox state, the complex regulation of BH; synthesis, induced

by inflammation, limits its value as a biomarker (6).



The complexity of this regulation is also highlighted by the important effects of indirect strategies
that restore vascular BH4 bioavailability, using statins or folates, on vascular oxidative signaling,
despite the inability of oral BHs administration to improve vascular redox state (7,8).

Thus, vascular BH4 (and its oxidation status) may represent an excellent biomarker reflecting the
overall vascular redox state and it may be critically involved in its regulation.

NADPH oxidase and uncoupled eNOS play a key role in ROS generation, but they are localized in
the vessel wall and myocardium, thus making their quantitation very difficult to be measured.
Recent studies showed that soluble NOX2-derived peptide (sNOX2-dp or gp91phox) is released
from circulating cells into the serum and it has been correlated with NOX activity in the CV system.
Thus sNOX2-dp has been used to measure NOX activity in a number of disease states, including
microvascular obstruction post primary percutaneous intervention for myocardial infarction
(9,10,11).

Serum NOX2 activity is increased in patients with obesity, hypercholesterolemia or metabolic
syndrome. Consistently, this biochemical abnormality has been shown to be reversible with
modulation of the underlying metabolic dysfunction, such as with successful weight loss in
subjects with metabolic syndrome, or statins in hypercholesterolemic individuals (12,13).
Myeloperosidase (MPO) is a heme enzyme, abundant in inflammatory cells, catalyzing ROS
formation. Its level is correlated to CV risk markers, such as insulin resistance and endothelial
dysfunction (14).

MPO function can be measured through peroxidase activity samples and MPO mass/concentration
can be detected through ELISA plates. Several lines of evidence indicate that MPO is one of the most

promising markers of CV oxidative stress (15).



In fact, MPO levels are increased in patients with unstable angina and with myocardial infarction as
compared to controls and MPO represents an independent predictor of total mortality over a
follow-up period of 5 years (16).

Circulating MPO levels have been positively correlated to abdominal subcutaneous and visceral
adipose mass both in adults and in prepubertal obese children, with significant association with
CV risk markers such as CRP, metalloproteinase-9, insulin resistance, and endothelial dysfunction
(17).

Furthermore, higher MPO levels are associated with a rapid progression of atheroma in diabetic
patients and with a lower benefit of statin therapy on disease progression (18).

A relationship between uric acid and redox state has also been described, with ROS production
occurring as a consequence of the purine degradation process. In fact, xanthine oxidoreductase
(XOR) catalyzes the conversion of hypoxanthine to uric acid in the purine degradation process,
with production of ROS. Xanthine oxidase and XOR activity are upregulated in myocardial
ischemia/reperfusion injury and in heart failure. A strong relationship between uric acid and
redox state has been described and it may predict mortality in ischemic heart disease (19,20).

A recent study showed that serum uric acid is emerging as a marker for the natural progression of

chronic heart failure mediated by cardiovascular remodeling (21).

1.2 Antioxidant markers

The antioxidants comprise enzymatic and non-enzymatic molecules. The non-enzymatic
antioxidants include ascorbic acid (vitamin C) and a-tocopherol (vitamin E), histidine dipeptides and
uric acid. Vitamin C and E inhibit LDL oxidation by ROS scavenging, and block lipid peroxidation, thus

improving NO bioavailability (22).



Vitamin C (ascorbic acid) is a chain-breaking antioxidant, scavenging ROS directly, and preventing
the propagation of chain reactions that would otherwise lead to a reduction in protein glycation.
Experimental evidence suggests that vitamin C in involved in the autonomic nervous regulation
of blood pressure, by preventing DNA damage induced by renovascular hypertension, and by
restoring hypertension-associated baroreflex dysfunction (23,24).

Consistent with findings in animal models, in humans, acute infusion of vitamin C has been
associated with a significant reduction of blood pressure and sympathetic nerve activity (25).

In addition, vitamin C has been shown to decrease serum cellular oxidative stress in patients
undergoing cardiac surgery, and to reduce the incidence of postoperative atrial fibrillation (26).
Vitamin C contributes to support endothelial cells by increasing the synthesis and deposition of
type IV collagen in the basement membrane, promoting endothelial proliferation, inhibiting
apoptosis, scavenging radicals and sparing endothelial cell-derived NO. However, the exact
molecular mechanism on endothelial cells is still unknown (27).

A systematic review and meta-analysis of randomized controlled trials suggests that

supplementation with either vitamin C or vitamin E alone improves endothelial function (28).

Consistently, a systematic review and meta-analysis of randomized controlled trials in T2DM
subjects confirmed that prolonged antioxidant vitamin E and/or C supplementation may be
effective to improve endothelial function in non-obese T2DM subjects (29).

Vitamin E is a term that encompasses a group of potent, lipid-soluble, chain-breaking
antioxidants. Structural analyses have revealed that molecules having vitamin E antioxidant
activity include four tocopherols (a, B, y, 6) and four tocotrienols (a, B, y, §). Vitamin E reacts
directly with peroxyl and superoxide radicals and singlet oxygen and protects membranes from

lipid peroxidation (30).



Vitamin E has been associated with no significant improvement in lipid profile and the protective
vascular mechanism of vitamin E is most probably via prevention of oxidation of LDL. This is
demonstrated by increases in antioxidant gene expression and antioxidant enzymes in vitamin E-
treated patients (31).

A deficiency in vitamin E is associated with increased peroxides and aldehydes in many tissues.
Conversely, Vitamin E may ameliorate oxidative stress in diabetic patients and improve
antioxidant defense system (32).

Moving from pathophysiological endpoints to hard, clinical endpoints, vitamin E or C
supplementation showed no effect on the incidence of major cardiovascular events (33).

A systematic review of randomized controlled trials confirms that there is no evidence to support
the prescription of vitamin and antioxidant supplements for the prevention of CVD (34).

A number of explanations have been raised to explain such discrepancy, including the occurrence

of tocopherol-mediated lipid peroxidation (35).

Moreover, the kinetic data and physiological molar ratio of vitamin E to substrates show that the
peroxyl radicals are the only radicals that vitamin E can scavenge to break chain propagation
efficiently and that vitamin E is unable to act as a potent scavenger of hydroxyl, alkoxyl, nitrogen
dioxide, and thiyl radicals in vivo (36).

Thus, the beneficial effect of vitamin E against the oxidation mediated by nonradical oxidants such
as hypochlorite, singlet oxygen, ozone, and enzymes may be limited in vivo.

Finally, tocotrienols, the less abundant components of vitamin E compared to tocopherols, have
molecular targets distinct from those of the tocopherols that may result in better preventive

outcomes and new therapeutic opportunities (37).



Tocotrienol rich palm oil extract is more effective than pure tocotrienols at improving
endothelium-dependent relaxation in the presence of oxidative stress. Indeed, tocomin and a-
tocopherol restored endothelial function in the presence of oxidative stress but a-, 6-, and y-
tocotrienols were ineffective (38).

The enzymatic antioxidant include SOD, GPx, catalase, TRX, HO and PON. There are 3 forms of SODs
and SOD3 is the predominant form in the vascular wall. It catalyzes the dismutation of superoxide
into hydrogen peroxide and oxygen. In ApoE mice, over-expression of SOD has been shown to
retard the development of atherosclerosis (39).

GPx has antioxidant effects by reducing free hydrogen peroxide to water. In patients with coronary
artery disease, the activity of red cell GPx isoform 1 was shown to have prognostic value in
addition to that of traditional risk factors (40).

Catalase promotes the degradation of hydrogen peroxide to oxygen and water. TRX is present in
endothelial cells and vascular smooth muscle cells (VSMC) and it can scavenge ROS such as H,0; and
ONOQO'. HOs catalyze heme breakdown to biliverdin, then converted to bilirubin, a molecule with
radical scavenging properties and able to inhibit Nox enzymes. PON enzymes have peroxidase-like
activity and protect against lipoprotein oxidation (41).

The measurement of the net antioxidant capacity of the serum activity of antioxidant enzymes
such as catalase, GPx-1 and SOD is also very important and it has been quantified in plasma as
measures of antioxidant capabilities. In a prospective study of patients with suspected coronary
artery disease, erythrocyte GPx-1 and not SOD activity was inversely associated with the incidence

of CV events after adjusting for CV risk factors (40).

1.3 ROS-modified compounds



All macromolecules, such as carbohydrates, protein, lipids and DNA, can be modified in vivo

by ROS excess (figure 2).

1.3.1 LOOHs

Phospholipids, glycolipids and cholesterol, all polyunsaturated fatty acids (PUFAs), are
important targets of ROS-mediated lipid peroxidation. LOOHs measurement is an optimal direct
index of oxidative status. To quantify oxidized lipids, high performance liquid chromatography
(HPLC) is the best technique for sensitivity and specificity. LOOHs measurement is utilized as a

marker of peroxidative damage of membrane lipids and oxidative stress in vivo (42).

1.3.2 MDA

Malondialdehyde (MDA) is an aldehyde, which results from lipid peroxidation in vivo, as an
arachidonate by-product. MDA is quantified in plasma with colorimetric assay based on
thiobarbituric acid (TBA). This TBA reacting assay lacks specificity for MDA. MDA and in particular
MDA-modified low-density lipoproteins represent biomarkers of oxidative stress and

atherosclerosis (43,44).

1.3.3 AGE/RAGE system

Advanced glycation end products (AGEs) derive from glycoxidation and lipoxidation of

proteins and amino acids (45). A link between increased circulating AGEs levels and insulin
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resistance, endothelial dysfunction and CV risk has been described. AGEs values may be predictive
of major adverse CV events. Thus, AGEs may represent a relevant marker of metabolic abnormalities

and vascular risk (46).

Moreover, receptor for advanced glycation endproducts (RAGE) and its ligands are involved in the
pathobiology of a great range of diseases, including diabetes mellitus, metabolic syndrome,
atherothrombosis, immune/inflammatory conditions, aging, cancer and neurodegeneration

(47,48).

Soluble forms of RAGE (sRAGE) and the splice variant endogenous secretory (es)RAGE have been
found circulating in plasma and tissues. Evidence is mounting to support a role for both sRAGE and

esRAGE as biomarkers or endogenous protection factors against RAGE-mediated pathogenesis.

Decreased circulating levels of SRAGE and/or esRAGE have been consistently reported in several
clinical settings, such as diabetes, obesity, hypercholesterolemia, rheumatoid arthritis (49,50). In
these clinical settings, SRAGE levels are inversely correlated with the urinary excretion of 8-iso-PGF,
and with plasma asymmetric dimethylargine (ADMA), suggesting that the ligand-RAGE axis may
bridge endothelial dysfunction with oxidative stress (45). Interestingly, specific treatment of the
underlying disease, including antihyperglicemic agents, statins, anti TNF-a drugs may concurrently
revert all biochemical abnormalities, an effect that has been recently reported for high-amount-

high intensity aerobic exercise in low-to intermediate risk subjects (51).

Recent observations clearly show that among patients with familial combined hyperlipidemia
and/or metabolic syndrome, decreased plasma esRAGE, in cluster with altered adipokine profile,
and markers of oxidative stress and platelet/coagulative activation, identify those with non-

alcoholic fatty liver disease (47).
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Thus, sRAGE and esRAGE are emerging as biomarkers of RAGE activity, possibly providing

supplementary information to improve vascular risk stratification (45).

A recent study has shown, for the first time, a strong association between increased AGEs levels
and human carotid rupture-prone plaques. In particular, plague concentrations of the specific
AGEs Ne-(carboxymethyl)lysine (CML) and 5-hydro-5-methylimidazolone (MG-H1) were higher in
rupture-prone plaques and were associated with inflammatory plaque markers, such as
inflammatory atheromatous lesions. CML and MG-H1 predominantly localized in macrophages
surrounding the necrotic core. Thus the glycation pathway may be a major player in the

progression of stable to rupture-prone plaques and subsequent plaque rupture (52).

1.3.4 F»-Isoprostanes

F,-isoprostanes are a series of prostaglandin-like products of the peroxidation of arachidonic
acid catalized by free radicals. F-isoprostanes represent the most sensitive and reliable biomarkers
of lipid peroxidation. The F,-isoprostane more frequently quantified in plasma, urine and other
biological samples is the 8-iso-prostaglandin (PG) F.« (53,54). Differently from COX-derived
prostaglandins, isoprostanes are formed from arachidonic acid in situ on lipids (Figure 3). To detect
F,-isoprostanes, mass spectrometry coupled to gas chromatography (GC/MS), RIA and ELISA have

been used, with mass spectrometry representing the gold standard (55).

F.-isoprostanes have many advantages in comparison with other quantitative markers of oxidative
stress. In fact, they are specific products of peroxidation, chemically stable, formed in vivo. They
also have the important property to be present in all normal tissues and biological fluids in

detectable quantity (56).
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Elevated urinary levels of 8-iso-PGF,4 have been reported in association with the most important
cardiovascular disease (CVD) risk factors, such as cigarette smoking, diabetes mellitus,

hypercholesterolemia, obesity, hyperhomocysteinemia and arterial hypertension (57-64).

The Framingham Heart Study evaluated the urinary levels of 8-iso-PGF,4 as a marker of systemic
oxidative stress, in a cohort of 2828 subjects. In age- and sex-adjusted models, increased urinary 8-
iso-PGF,q levels were positively associated with female sex, hypertension treatment, smoking,
diabetes, blood glucose, body mass index (BMI) and a history of CVD. In contrast, age and total
cholesterol were negatively correlated with urinary 8-iso-PGF,q levels. After adjustment for several
covariates, decreasing age and total/HDL cholesterol ratio, sex, smoking, body mass index, blood
glucose, and CVD remained associated with urinary 8-iso-PGFyq levels. Thus, this study and
subsequent evaluations on the Framingham cohort showed that smoking, diabetes and BMI, with
particular reference to visceral adipose tissue, are highly associated with systemic oxidative stress

(65,66).

The strong correlation between the elements of metabolic syndrome, in particular BMI, blood
glucose and cholesterol, and F,-isoprostanes levels, and lipid peroxidation suggests that the latter
may be causally linked to the underlying metabolic abnormalities rather than to the attendant
vascular disease. This relation is confirmed by the fact that all dietary and pharmacologic
interventions that induce reductions in BMI, plasma glucose, cholesterol or homocysteine lead to
reduction in Fz-isoprostanes levels, too, the average extent of which showed a remarkable good
fitting with their linear relation as established under basal conditions (57,58,61,62,67-69). A diet
rich in fruit and vegetables and poor in red meat is associated with lower plasma F,-isoprostanes
levels (70). Fr-isoprostanes are increased in patients with hypercholesterolemia with a linear
correlation with LDL cholesterol content (49,61). In diabetes mellitus, 8-iso-PGF,q is elevated and

correlates with impaired glycemic control (57,58,67,71,72).
13



In addition, urinary isoprostanes may better identify CV risk in apparently healthy subjects and
patients with CVD (73). Indeed, urinary Fs-isoprostanes predict CV mortality in postmenopausal

women (74) and may help to predict vascular events in patients with atrial fibrillation (75).

Urinary 8-iso PGF,4 have been also proposed as a biochemical tool to help monitoring the effects of
antioxidant therapy in cardiovascular risk reduction (54,61,63,76), including improved glycemic

control, statins, weight loss, and antioxidant supplementation (54,63,76).

F,-isoprostanes are also useful biomarkers in central nervous system diseases (Alzheimer,
Parkinson, Huntington and amyotrophic lateral sclerosis). Moreover, they are elevated in patients

with breast, gastric and colorectal cancer (77-79).

Furthermore, F;-isoprostanes are not only biomarkers; they have numerous biological effects,
playing a crucial role as pathophysiologic mediators of oxidant injury. 8-iso PGF,q is an important
vasoconstrictor and Fz-isoprostanes can partially activate the thromboxane receptor (TP) in a COX-

independent manner (80).

Isoprostanes may also serve to propagate platelet activation by amplifying platelet response to
subthreshold concentrations of common agonists via glycoprotein (Gp) Ilb/Illa activation. Enhanced
isoprostane formation is not inhibited by low-dose aspirin treatment, either in diabetes (67,80,81)
or in other clinical settings, such as in heart failure (82), consistent with the non-enzymatic nature

of its formation in vivo.

The cause-and-effect relationship between oxidative stress and platelet activation is demonstrated
by the linear relationship between the excretion rates of 8-iso-PGFappha and the urinary
thromboxane (TX) metabolite 11-dehydro-TXB;, and by the down-regulation of these metabolites

following improvement in metabolic control (antihyperglycemic drugs, statins, weight loss or insulin
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sensitizers, folic acid) (57,58,61,62,67,68). These results suggest that the primary metabolic
abnormality may trigger TX-dependent platelet activation mediated, at least in part, through

enhanced lipid peroxidation (83).

Experimental and clinical data suggest that selected isoprostanes may represent important
alternative activators of the TP when endogenous TXA; levels are low, e.g., in aspirin-treated

individuals with CVD (80,84).

Whether enhanced oxidative stress in vivo, with lipid peroxidation and isoprostane formation, may
be a source of less-than-optimal response to aspirin has been a matter of debate over the past years
(85). Several studies reported that, in patients with stable CAD, redox-generated isoprostanes are
associated with residual platelet activity, thus hypothesizing that isoprostane formation may affect
COX-independent mechanisms of high on-aspirin platelet reactivity (86,87). In addition, urinary 8-
iso-PGF,q excretion correlates with and may predict residual, aspirin insensitive, thromboxane
biosynthesis, as reflected by TX metabolite excretion in patients with type 2 diabetes (88) or with

acute coronary syndromes (89).

In addition, in patients with risk factors for atherothrombosis, platelet isoprostane formation is
enhanced through a platelet NADPH oxidase-dependent mechanism, which is poorly inhibited by
aspirin treatment (90). Conversely, in diabetic but not in nondiabetic patients, aspirin enhances the
platelet production of isoprostanes up to functionally relevant concentrations, thus enhancing
platelet recruitment via Gpllb/llla activation. This effect is likely to mitigate the antiplatelet effect

of aspirin and may account for its lower clinical efficacy in type 2 diabetes (91).

Thus, twenty-five years after discovery of isoprostanes, studies continue to increase our knowledge
on these molecules, confirming the importance and their accuracy as biomarkers and mediators of

oxidative stress.
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2. Oxidative stress in chronic vascular disease

2.1 Oxidative stress in atherosclerosis

LDL oxidation is a widely studied phenomenon involved in the atherosclerosis-generating
process. The oxidation of LDL to oxidized LDL (ox-LDL) takes place in areas of inflammation, mostly
in the sub-endothelial space. LDL has many different types of particles, such as phospholipids, free
cholesterol, triglycerides and cholesteryl esters. When polyunsaturated lipids undergo oxidation,
several by-products, such as aldehydes and MDA, are formed. These by-products can react with
apolipoprotein B-100 thus impairing its function. The result is the formation of minimally modified
LDL, with pro-atherogenic properties. ROS-mediated LDL oxidation in vivo involves NADPH oxidase
and ROS mitochondria. In patients with high level of cholesterol and coronary artery disease, NADPH
oxidase appears to be the major source of Oy radical dot. The catalytic membrane subunit,
gp91phox, also known as NOX2, is important for NADPH oxidase activation (12,13,92). Patients with
hypercholesterolemia and obesity showed upregulation of circulating NOX2 (12,92). In obese
patients, weight loss determined down-regulation of NOX2 along with amelioration of artery

dysfunction (13).

LDLs may also indirectly enhance oxidative stress by angiotensin Il via upregulation of the
angiotensin receptor type 1 (AT1) (93). Both native LDL and oxLDL have been shown to increase
O27radical dot, ONOO™ and uncoupled eNOS generation (94). Oxidative stress has also an important
influence on transcriptional pathways such as NF-kB and the transcription factor AP-1, involved in

atherogenesis.
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Oxidative stress does not act on atherosclerosis only in relation to LDL but also inhibits the
cholesterol efflux function of HDL. Myeloperoxidase-induced chlorination of apoA-l, the most
important proteic component of HDL, impairs the ability of apoA-| to enhance cholesterol efflux
through ABCA1, the macrophage ATP-binding cassette transporter (95). The lecithin—cholesterol
acyltransferase (LCAT) binding site on apoA-l is a strategic target for oxidative modification in

atheroma, reducing LCAT activity, thus resulting in a dysfunctional form of HDL (96).

Endothelial dysfunction participates in the process of atherogenesis through oxidative stress
generation. It consists in the reduction of NO availability in VSMC, with impairment of its effects on
vasorelaxation. NO production derives from the eNOS of endothelial cells. This enzyme utilizes |-
arginine and molecular oxygen as substrates to produce NO and I-citrulline. In this reaction NADPH
is an electron donor and the presence of tetrahydrobiopterin (BHa) is essential. Under physiological
conditions BH4 is “coupled” to eNOS to produce NO. ROS and more specifically ONOO" lead to
“uncoupling” of the enzyme, leading to a dissociation of its complex and to production of Oy. These
radicals react with NO thereby forming ONOO- which further oxidizes BH4 to dihydrobiopterin (BH>),

thus creating a loop by further eNOS uncoupling.

In this regard, 5-methyltetrahydrofolate (5-MTHF) improves endothelial function and vascular
superoxide production by preventing eNOS coupling. Perivascular adipose tissue also represents a
regulator of vascular oxidative stress, exerting paracrine and endocrine effects on the arterial wall

with prevention of NADPH-oxidase activity on eNOS coupling.

2.2 Oxidative stress in hypertension
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Oxidative stress has been demonstrated to have a role in the pathophysiology of several
cardiovascular risk factors, such as hypertension (97) (Figure 4). In particular, superoxide anion is a
critical determinant of NO biosynthesis and bioavailability; it represents a vasoconstrictor and can
modify endothelial function. NOS and its endothelial isoform eNOS represent a fundamental source
of superoxide (97). eNOS generates superoxide, especially in response to atherogenic stimuli of NOS
uncoupling, in which NO production is decreased and NOS-dependent superoxide production is
increased (98). Thus, eNOS represents a peroxynitrite generator and it can lead to a sensible
increase in oxidative stress, since peroxynitrite formed by the NO-superoxide reaction has
deleterious effects on vascular function through oxidation of proteins and lipids (99). ONOO"
preferentially activates PGH synthase while inhibiting prostacyclin synthase, thus shifting the
balance between TXA; and prostacyclin towards enhanced TXA; production, leading to increased
VSMC vasoconstriction and platelet aggregation (100). A decrease in NO bioavailability and an

increase in oxidative stress have been found in patients with hypertension (101).

Inhibition of the renin-angiotensin-aldosterone system (RAS) is a cornerstone in the treatment of
patients with hypertension: a possible explanation for this beneficial effect is the decrease of
oxidative stress and ROS signaling (102). Several lines of evidence have underlined that angiotensin
Il (ANG II) has a crucial role in NADPH generation of ROS and activation of reduction-oxidation
signaling cascades (103). ANG Il elicits its effects through the angiotensin receptors AT1 and AT2.
AT1 receptor leads to vasoconstriction and angiogenesis, instead AT2 receptor stimulates
vasodilatation and anti-angiogenesis, thus representing pharmacological targets to maintain a

normal balance between the vasodilator agent NO and ROS (104).

2.3 Oxidative stress and hypertension related to chronic ethanol intake
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A clinical paradigm of oxidative-stress mediated hypertension and vascular disease is
represented by the effects of chronic ethanol intake. In the general population, increased blood
pressure is significantly correlated with high ethanol intake, but the mechanisms through which
ethanol increases blood pressure are not completely known (105). A link between excessive ethanol

intake and hypertension was suggested one hundred years ago (106).

Several mechanisms have been implicated in the relationship between alcohol and hypertension:
increasing sympathetic nervous system activity, enhanced intracellular Ca?* in VSMC, enhanced

activity of the RAS system and endothelial dysfunction (107-109).

In rat models ethanol induces aortic vascular smooth muscle cell proliferation by increasing
homocysteine and oxidized-low-density lipoprotein (110). In rats, chronic ethanol intake induces
aortic inflammation and oxidative endothelial injury, reduces nitric oxide bioavailability in the

vasculature, and alters responsiveness of mesenteric vasculature, inducing hypertension (111-113).

In a rat model, a time-course correlation has been described between vascular changes, in term of
response to vasoconstrictor agents, and autonomic changes, contributing to the development of
hypertension during ethanol ingestion. Intake of increasing ethanol concentrations for four weeks
induces increasing blood pressure, which can be observed as early as after the first week of
treatment. Thus, increased vascular responsiveness to vasoconstrictor agents may be a link for
development and maintenance of the progressive hypertension induced by ethanol consumption

(114).

Furthermore, renin-angiotensin system and ANG Il have been implicated in the pathogenesis of
alcohol-dependent hypertension: chronic ethanol consumption, in fact, increases plasma renin

activity (PRA) and ANG Il levels (115). Ethanol may alter endothelial signaling via AT1-receptor,
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without changing systemic blood pressure. Stress and ethanol associated may also alter endothelial

signaling via AT2-receptor and thereby increase blood pressure (116).

Recently, in a rat model, chronic ethanol intake has been shown to increase blood pressure, induce
vascular oxidative stress and decrease NO bioavailability through AT1-dependent mechanisms.
Thus, blood ethanol levels consistent with those found in the bloodstream of humans after
moderate ethanol consumption, activated the systemic RAS, increased the vascular generation of
Oz and decreased NO bioavailability in the vasculature. Ethanol-induced hypertension and
increased systemic and vascular oxidative stress were prevented by losartan, further suggesting that
AT1 activation plays a key role in these responses (3). This set of evidence opens new
pharmacological horizons for novel targeting molecules to contrast ethanol long-term vascular

dysfunction and cardiovascular damage.

2.4 Oxidative stress in diabetes mellitus and metabolic syndrome

Oxidative stress is deeply intertwined with insulin resistance and plays a crucial role in the
pathogenesis of vascular complications of diabetes (69). Oxidative stress is at the same time cause
and consequence in diabetes pathophysiology (117). The enhanced oxidative stress in subjects with
T2DM and metabolic syndrome has been associated with hyperglycemia, insulin resistance,
hyperinsulinemia and dyslipidemia, leading to mitochondrial superoxide overproduction in

endothelial cells (118).

High glucose serum levels promote cellular ROS production through different pathways.
Deleterious effects of ROS stem from interactions with various ion transport proteins such as ion

channels and pumps, primarily altering Ca?* homeostasis and inducing cell dysfunction. A
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correlation between higher intracellular H;O, levels, oxidative damage and alterations in
intracellular Ca?* homeostasis has been reported, possibly due to modification of the ionic control
in lymphocytes of T2DM patients (119).

The mitochondrial electron-transport chain acts as a primary 02~ radical producer. Overproduction
of mitochondria-derived 02~ radical dot induces protein kinase C (PKC) activity and formation of
AGEs (50). PKC and AGEs can increase NADPH oxidase functionality and inhibit eNOS activity (120).
AGEs contribute to diabetic vascular complications by engaging RAGE, as previously mentioned.
The inactivation of two critical anti-atherosclerotic enzymes, eNOS and prostacyclin synthase, is
another important mediator of oxidative stress in T2DM (121,122). Through these pathways,
increased intracellular ROS promote angiogenesis, inflammation and epigenetic changes that allow
long-term expression of inflammatory genes after glycemia is normalized, the so-called “memory of
hyperglycemia” (107). Finally, oxidative stress in diabetes mellitus may play a fundamental role for
the less-than-expected response to aspirin observed in diabetic patients, as reviewed elsewhere

(85).

Insulin resistance (IR) is one of the most important pathogenetic elements of diabetes. A robust
body of evidence suggests that oxidative stress is a potent mediator of IR in endothelial cells.
Specifically, Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by

increasing endothelial fatty acid oxidation (123).

However, the molecular machinery responsible for ROS-induced endothelial IR is still partially
uncharacterized. The mitochondrial adaptor p66Shc is emerging as a major determinant of
endothelial dysfunction via mitochondrial ROS generation and translation of oxidative signals into
apoptosis. The clinical relevance of p66Shc is related to its upregulation in peripheral blood
mononuclear cells from insulin resistant subjects with T2DM (124). There is convincing evidence

that endothelial activation of p66Shc may contribute to the pathogenesis of IR and to the increased
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vascular risk in obesity and T2DM, and that selective targeting of p66Shc may restore endothelial

insulin sensitivity and prevent adverse cardiometabolic phenotypes (125,126).

Sirtuin family, particularly SIRT1, is highly expressed in the vasculature and plays a critical role in the
regulation of vascular function, protecting against vascular senescence and age-related vascular
diseases. SIRT1 has been involved in the processes of aging, metabolism, and tolerance to oxidative
stress through its ability to deacetylate several substrates, including histones, transcription factors
and coregulators. p66Shc expression is negatively regulated by SIRT1, at the transcriptional level,
through epigenetic chromatin modification. In fact, SIRT1 represses p66Shc transcription at the
chromatin level, through decreased binding of acetylated histone H3 to the p66Shc promoter

region, a result of the direct inhibitory role of SIRT1 on p66Shc expression (127).

In addition to AGE/RAGE system, multiple circulating biomarkers have been associated with
vascular dysfunction in diabetes, including inflammation-associated biomarkers. Changes in the
expression of adhesion molecules, pro-inflammatory molecules, and alterations in their
regulation are deeply intertwined with ongoing oxidative stress, and have been observed since
the early phases of the disease (128).

Activation of inflammatory processes in diabetes, as showed on the basis of the increased levels
of the pro-inflammatory cytokines CRP, fibrinogen, IL-6, IL-1 and TNF-a, may cause impairment of
vascular responses, leukocyte adhesion to endothelium, and facilitation of pro-coagulant activity.
Prospective studies have shown that a combined elevation of IL-1beta and IL-6 is independently
associated with increased risk of T2DM, suggesting that subclinical inflammatory process has a
role in the pathogenesis of T2DM (129).

In addition, modulation of gene expression by epigenetic modifications and the action of
microRNAs are being recognized as critical processes affecting T2D risk (130).

Obesity, diabetes and metabolic syndrome have been recognized as programmable diseases,
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characterized by epigenetic modifications of vital genes when exposed to oxidative stress (131).
In this regard, great attention has been given to the potential of future epigenome-wide studies,
carried out across tissues and populations with correlations to pre-diabetes and T2D risk factors,
to build up a library of epigenetic markers of risk and early progression of T2D (132).

The DNA methylation levels and plasticity of CpG sites in the promoter region of the metabolic
regulator PPARGCI1A, correlated with insulin sensitivity, have been extensively studied in relation
to T2D. PPARGC1A encodes PGCla, which is a transcriptional co-activator that regulates
expression of numerous genes with a key role in mitochondrial function (133).

Adipose tissue specific CpG sites in numerous genes associated with T2D (PPARG, IRS1, and
TCF7L2) were shown to exhibit differential DNA methylation in individuals with T2D compared to
healthy controls (134).

Dysregulation of micro-ribonucleic acids (microRNA or miR) such as miR-15a, miR-126, miR-320,
miR-223, miR-28-3p enabled the identification of 52% of normoglycemic subjects developing
T2DM in a 10-year period. Also, in patients with newly diagnosed T2DM, miR-9, miR-29a, miR-
30d, miR-34a, miR-146, miR-124, and miR-375 were significantly higher compared with subjects
with normal glucose tolerance (135).

Strongly related to the miRs are the microparticles (MPs) that represent a heterogeneous
population of vesicles with a diameter of 100 to 1000 nm that are released by budding of the
plasma membrane and express antigens specific of their parental cells. MPs are found in the
circulation of healthy subjects, carrying miRNA from cells to target cells, and their number is
increased in CV disease and conditions predisposing to vascular disease (136).

MP characteristics or phenotype is associated with the type of vascular complication and might
serve as a biomarker for the pro-coagulant state and vascular pathology in patients with T2DM

(137).
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Moreover, plasma MPs have been associated with the presence of hypertension and arterial
stiffness in patients with T2DM, and another study has suggested that EMPs could be used as a
surrogate marker of unstable plaques and might help to improve the CV prediction in T2DM

patients at intermediate risk (138,139).

3. Vascular oxidative stress: therapeutic perspectives

Proposing a therapy for oxidative stress means to translate all the fascinating world of
oxidant and antioxidant molecules into everyday practice, trying to create new treatment
perspectives through the prevention of oxidative stress. Making a clear but not trivial simplification,
there are two main possibilities to treat oxidative stress: blocking the excess of ROS generation, or

using antioxidants to contrast the cell oxidation status.

Ascorbic acid (vitamin C) and a-tocopherol (vitamin E) are the two most studied antioxidants.
Vitamin C improves endothelial function and reduces oxidative stress whereas vitamin E seems to
increase functionality of glutathione S-transferase (GST) enzyme (140,141), although the effects on

the intracellular antioxidant enzyme production are not consistent among studies (142).

Data about antioxidants are discordant (143). In fact, observational, prospective cohort studies
suggest that higher dietary intake or supplementation of antioxidants is associated with a lower risk

of cardiovascular disease and mortality (144,145).

On the contrary, unlike the short-term and relatively small-sized randomised controlled trials show
the benefits of antioxidants in reducing cardiovascular risk factors (146,147), long-term and large-
sized randomised controlled trials have consistently failed to demonstrate a protective effect of any

single antioxidant or combination of antioxidants (vitamins C, E, and B-carotene) in the primary or
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secondary prevention of cardiovascular events (33,148-150). Moreover, in some clinical trials the
supplementation of vitamins C, E, and/or B-carotene has been associated with an increased risk of

all-cause mortality (151,152).

Potential reasons for these disappointing results may be attributed to the specific antioxidant, or
the employed doses or dose regimens, or to the phenotype of patients included in the trials. Another
plausible explanation is that these antioxidants do not reach the target tissue in sufficient

concentrations (153).

Recently, vitamin E proved effective over placebo for the treatment of nonalcoholic steatohepatitis,
a disease closely associated with insulin resistance, in non diabetic adults (154). Studies in healthy
subjects (155,156) helped identifying the basal rate of lipid peroxidation as a major determinant of
the response to vitamin E supplementation. The evidence that the same dose of vitamin E may have
variable antioxidant effects in different patient populations characterized by variable rates of lipid
peroxidation, is consistent with this concept. A linear correlation has been found between the basal
rate of 8-is0-PGF,q excretion and the slope of changes in this index of lipid peroxidation as a function
of changes in plasma vitamin E associated with short-term dosing with 600 mg/day in different
clinical settings. The issues of dose and duration of treatment may also affect the efficacy of vitamin

E supplementation (157,158).

Many other drug molecules, such as angiotensin-converting enzyme inhibitors (ACEls), angiotensin
receptor blockers (ARBs), R-blockers, statins, metformin, pentaerythritol tetranitrate (PETN) and
polyphenols, can play an important role in reducing oxidative stress and in particular vascular

oxidative stress (figure 5).

Polyphenols are a family of molecules, such as resveratrol and isoflavones, present in fruit,

vegetables and red wine. Different classes of polyphenols can have different effects. Cardiovascular
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risk reduction seems to be largely linked to the effect of non-alcoholic components of wine, mainly

resveratrol and other polyphenols, on the vascular wall and blood cells.

Although heavy alcohol consumption has deleterious effects on heart health, moderate drinking is
thought to have cardioprotective effects, reducing the risk of coronary artery disease and improving
prognosis after a myocardial infarction (159). Red wine components, especially alcohol, resveratrol,
and other polyphenolic compounds, may decrease oxidative stress, enhance cholesterol efflux from
vessel walls (mainly by increasing levels of high-density lipoprotein cholesterol), and inhibit

lipoproteins oxidation, macrophage cholesterol accumulation, and foam-cell formation (160).

Polyphenols facilitate redox enzyme as NADPH oxidase and favor BH4 biosynthesis (161).

Polyphenols in olive oil or red wine reduce cellular ROS levels in vitro (162). Red wine extract
decreases oxidative-stress-induced endothelial senescence (163). Acute red wine intake increases
plasma total antioxidant capacity, suppressing NF-kB activation induced by a meal, but chronic red
wine consumption compared with de-alcoholized red wine intake may increase 8-iso-PGFq levels

(164).

PETN also induces antioxidative pathways at genomic level, increasing expression of HO-1 and

ferritin, thus unraveling highly protective properties (165).

The B -blocker nebivol inhibits the activity of NADPH oxidase and stimulates eNOS functionality
(166). In hypertensive patients, nebivolol significantly reduces blood pressure and plasma LDL
hydroperoxides, 8-isoprostanes, and ox-LDL. Similarly, nebivolol reduces ROS and O2°"concentration

in endothelial cells exposed to oxidative stress (167).
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Statins suppress NADPH oxidase activity and enhances eNOS activity. Statins may also have
antioxidant properties by reducing platelet ROS formation with a mechanism involving NADPH

oxidase down-regulation (168).

Metformin reduces oxidative stress in vitro, in animal models and in human cellular models, directly
scavenging ROS or modulating intracellular superoxide anion production in human leukocytes (169).
Metformin treatment in vivo has been shown to mitigate oxidative stress, preserve the antioxidant
function and decrease platelet activation (170). Metformin is believed to suppress gluconeogenesis
by inhibiting a mitochondrion-specific isoform of glycerophosphate dehydrogenase, thus
influencing the redox state with reduction in cytosolic dihydroxyacetone phosphate and increase in
cytosolic NADH-NAD ratio (171). The recently observed improvement of mitochondrial integrity and
platelet reactivity by metformin may contribute to the beneficial effects of this multifaceted drug

on CVD (172).

ACEls and ARBs reduce NADPH activity and vascular oxidative stress. Angiotensin Il produces
vasoconstriction, modifies vascular smooth muscle, induces inflammation and hypercoagulability
and may generate vascular superoxide production by uncoupling eNOS. Thus ARBs and ACE
inhibitors may induce endothelium-dependent vasorelaxation, through less superoxide production
and improvement of NO bioavailability (1). In addition, ARBs improve intracellular antioxidant

enzyme expression, both in experimental (173) and clinical studies (174).

3.1 New emerging molecules

Considering that the NADPH oxidase family of enzymes, particularly those that contain NOX1

or NOX2 catalytic subunits, are important sources of ROS production in the arterial wall, several
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compounds are considered as inhibitors of NADPH oxidase and promise to be optimal anti-oxidant
molecules. Apocynin and diphenyleneiodonium (DPI) are the most widely studied but their lack of
selectivity for NADPH oxidases over other enzymes limits their clinical utility. Triazolopyrimidines,
such as VAS2870 and VAS3947, have also emerged as promising inhibitors of NADPH oxidase
activity. These compounds inhibit NADPH oxidase-derived ROS in several cell lines expressing
NADPH oxidases and in primary endothelial and VSMC cultures, with no effect on ROS generated by

xanthine oxidase or on eNOS activity (175,176).

Pyrazolopyridines, like GK-136901, are potent inhibitors of NOX1 oxidase- and NOX4 oxidase-

dependent ROS generation from disrupted cell membrane preparations (177).

Moreover, 2-acetylphenothiazine is a specific NOX1 oxidase inhibitor at nanomolar concentrations,
with only marginal activity on other cellular ROS-producing sources, including xanthine oxidase and
the other NADPH oxidases (178). At present, all these molecules need to be better studied and

tested.

Another emerging molecule is the aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme,
and its activator Alda-1. It is known that ROS-dependent peroxidation of polyunsaturated fatty
acids, associated with generation of toxic aldehydes, is related to dysfunction of mitochondria
and plays a role in atherogenesis and steatosis of the liver. It has been observed that use of ALDA
is associated with inhibition of atherogenesis and attenuation of hepatic steatosis in apoE-/- mice
(179).

Moreover, recently, the beneficial influence of ALDH2 stimulation in acute ischemia-reperfusion
injury of heart or brain has been attributed to many possible mechanisms, including attenuation

of oxidative stress and clearance of reactive aldehydes (180).
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3.2 Mitochondria-targeted antioxidants

Mitochondria-ROS (Mito-R0OS), accumulated in mitochondria, cannot be modified through
anti-oxidant drugs, but there are novel, targeted scavengers, like Mito-Q, that diminishes radical
formation and oxidative mitochondrial damage but not respiratory activity. Mito-Q has a good in
vivo tolerance and wide organ distribution with apparently no toxicity. Mito-Q reduces cardiac
ischemia—reperfusion damage, chronic nitrate-induced endothelial damage and blood pressure

(181). However, further clinical studies on Mito-Q are needed in CVD setting.

3.3 MicroRNAs

In vascular oxidative stress therapy, a role can be played by microRNAs (miR). As previously
stated, endothelial dysfunction plays a key role in CVD initiation and progression. Endothelial
dysfunction coincides with the occurrence of vascular oxidative stress with increment of ROS
production and LDL oxidization. miR are important regulators of gene expression that modify
cellular responses and function, at a post-transcriptional level.

A particular role is played by miRNA-126 (miR-126), that is a strongly expressed microRNA specific
to endothelial cells, able to fine-tune their phenotype (182).

MiR-126 expression is also affected in the course of several physiological and pathological
processes, such as angiogenesis, atherosclerosis, and the proinflammatory process (183,184).
Deletion of miR-126 causes loss of vascular integrity and produces defects in endothelial cell
proliferation, migration, and angiogenesis (185).

A recent study focused on the effect of laminar shear stress (LSS) on human endothelial cells, with
an emphasis on the role of miR-126, demonstrating that miR-126 is overexpressed by long-term

LSS and it is involved in up- and downregulation of genes of atherosclerosic process (186).
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A miR-network has been identified among the molecular mechanisms that control cellular
homeostasis, vascular inflammation and metabolism, with a direct link between altered miR
expression profiles and pathophysiology of a disease, thus identifying putative miR targets for novel
therapeutic strategies (187). Since miR can have profound effects on biological pathways, cell
function and homeostasis in the vessel wall, modulation of specific miR, using anti-miR or miR
mimics, might contribute to reduce or increase a specific miR involved in oxidative stress
mechanisms (188). For a miR-based therapeutic approach, we need to understand
pharmacodynamics of miR inhibitors in vivo, in order to identify miR-specific targets and to develop

new technologies to facilitate tissue-specific delivery (189).

4. Conclusions

ROS play an important role in the pathogenesis of vascular disease and they are intimately
linked to atherosclerosis, diabetes and hypertension. However, the conflicting results and
sometimes opposite outcomes obtained with antioxidant supplementation forced the research
to reconsider the entire oxidative stress story, recognizing that ROS have both deleterious and
beneficial effects. It has been even hypothesized that diabetes, dementias, cardiovascular disease
and some cancers are accelerated by failure of the endoplasmic reticulum to generate sufficient
oxidative redox potential for disulphide bonds to be formed (190). Tumorigenesis is characterized
by O, consumption and ROS accumulation (191) which result in a change in the redox balance
(192). Changes in the cellular redox balance affect proliferation, migration, and survival of cancer
cells contributing to disease progression (193). In cancer cells, ROS act as secondary messengers
of oncogenic signaling pathways and can also induce cellular senescence and apoptosis. When
mice carrying mutations that increase their risk of lung cancer were treated with antioxidants,

their early precancerous lesions progressed more quickly, and the mice developed more tumors
30



and at more advanced stages. The antioxidants did reduce oxidative stress and DNA damage as
expected, but at the same time, they also reduced the expression of p53, a key tumor suppressor
protein. Thus, a procarcinogenic role of antioxidants in people who are already at a higher risk of
cancer, such as smokers, may be speculated by these data in animal models. This would explain
the neutral or detrimental effect of antioxidants in a large part of trials, due to the enrollment of
subjects with early or not-yet diagnosed cancers, for whom antioxidant supplementation may

prove harmful (194).

Interestingly, physical activity may help prevent both vascular and neoplastic diseases by
generating ROS. The therapeutic effect of physical activity in cancer might rely on the restoration
of the low ROS levels caused by cancerous metabolic rewiring. Thus, further studies are required
to better understand the twofold role of ROS (195), giving new perspectives to the treatment of

several diseases related to oxidative stress.

Meanwhile, several oxidative biomarkers have been proposed to detect oxidative stress
levels and to improve current understanding of the mechanisms underlying vascular disease. There
is considerable pathophysiologic and clinical interest in the development of novel biomarkers for
oxidative stress that may help in the detection of individuals at high risk for future vascular events.
It is important to underline that there is an interindividual variability in the degree of oxidative
stress, but the extent to which such diversity of metabolic phenotype translates into different
vascular outcomes is still a matter of debate, and prospective and adequately sized studies are
needed. Therefore, we are still lacking reliable and cost-effective markers able to identify vascular
disease at an early stage and use of drugs aimed to lower oxidative stress is far from clinical practice.
Among all the oxidative stress markers, urinary F;-isoprostane detection, and in particular 8-iso-
PGF,,, has been one of the most reliable and best characterized. Indeed, it has proven able to

monitor the antioxidant effect of interventions for CV risk reduction, such as improved glycemic
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control, statins, weight loss, antioxidant supplementation, as well as to refine current CV risk
prediction models (54-76): for these reasons it appears to be a potential candidate biomarker in
predicting specific patient groups more or less likely to benefit from targeted interventions, or for

dose-finding studies of antioxidant interventions.

Even if oxidative stress has a fundamental role in this setting, randomized clinical trials have failed
to show significant benefit from antioxidant vitamins on the development of CVD or mortality. This
aspect reflects the complexity of redox reactions in biological systems such as vascular cells and
unravel the limitations of our current strategies to modulate the redox signaling for CVD prevention.
The inclusion of subjects without enhanced oxidative stress is likely to dilute the benefit of
antioxidant supplementation and might explain the negative results of these trials. Validation of
biomarkers to be employed in clinical trials will be instrumental to answer unsolved controversial

issues around the efficacy of antioxidant compounds.

In conclusion, an efficient therapeutic approach to vascular diseases cannot exclude evaluation and
treatment of oxidative stress. Further studies are needed to better understand the relations
between atherosclerosis, diabetes, hypertension and ROS and the role of the antioxidants and to
discover new oxidative targets that would be precious for an effective treatment and prevention of
vascular disease. In particular, starting from the point that oxidative stress is a wide world of
molecules and biochemical reactions, it is fundamental to select molecules or reactions as ideal
target to limit oxidative stress, thus identifying drugs that can act at a cellular level, such as
endothelial cells. In this regard, new therapeutic horizons, such as miRNA, have the potential to

represent a real hope as a targeted therapy able to address the real protagonists of oxidative stress.
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FIGURE LEGENDS

Figure 1.

NADPH oxidase, xanthine oxidase, uncoupled endothelial nitric oxide synthase (eNOS) and
mitochondria generate superoxide anion (O,-radical dot) in the vascular wall. O,-radical dot is
converted to hydrogen peroxide (H,0;) thanks to superoxide dismutase (SOD). H,0, have the
possibility to be converted in: hydroxyl radical (spontaneously); H,O and O, via glutathione
peroxidase (GPx), catalase, or thioredoxin (Trx) peroxidase. Myeloperoxidase (MPQ) can use H,0;
to oxidize chloride to the strong oxidizing agent hypochlorous acid (HOCI). Paraoxonase (PON) can

limit mitochondrial Ox-radical dot generation.

Figure 2.

ROS are generated by several enzymatic systems, such as NOS, NADPH oxidase, myeloperoxidase
(MPO), as well as in mitochondria. Antioxidant enzymes contrast ROS, that can modify
macromolecules and fundamental cellular components. Biomarkers of ROS and oxidative stress are
NO breakdown product, advanced glycation end-products (AGEs), MDA, isoprostanes, lipid
hydroperoxides (LOOHs). AGEs derive from glycoxidation and lipoxidation of proteins and amino
acids. MDA is an aldehyde, which results from lipid peroxidation in vivo, as an arachidonate by-
product. LOOHs measurement is utilized as a marker of peroxidative damage of membrane lipids
and oxidative stress in vivo. Fr-isoprostanes are a series of prostaglandin-like products of the
peroxidation of arachidonic acid catalized by free radicals. F,-isoprostanes represent the most

sensitive and reliable biomarkers of lipid peroxidation.
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Figure 3.

Peroxidation of arachidonic acid. The chemical structures of intermediates and products are

depicted.

Figure 4.

In endothelial cell, ROS promote production and activity of angiotensin Il instead of NO. This
represents one fundamental cellular mechanism, that can contribute to generate hypertension. In
particular, superoxide anion is a critical determinant of NO biosynthesis and bioavailability and
angiotensin Il (ANG Il) has a crucial role in NADPH generation of ROS and activation of reduction-
oxidation signaling cascades. ANG Il elicits its effects thanks to the receptors AT1 (that leads to
vasoconstriction) and AT2 (that leads to vasodilatation), representing pharmacological targets to

maintain a normal balance between the vasodilator agent NO and ROS.

Figure 5.

Angiotensin-converting enzyme inhibitors (ACEls), angiotensin |l receptor type 1 blockers (ARBs), 3-
hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins), the third generation B-blocker
nebivolol, the plant-derived polyphenol resveratrol, and organic nitrate pentaerithrityl tetranitrate
(PETN), all are able to limit ROS generation by inhibiting NADPH oxidase or by preventing eNOS
uncoupling. ARBs also reduce mitochondrial Oy production. Peroxynitrite (ONOO"), resulting from
the reaction of O, with nitric oxide (NO), oxidizes the endothelial nitric oxide synthase (eNOS)
cofactor tetrahydrobiopterin (BH4) to dihydrobiopterin (BH>). BH4 deficiency leads to O, production

by eNOS (eNOS ‘uncoupling’), with further oxidative stress. Angiotensin Il may reduce vascular BHa
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levels by stimulating NADPH oxidase, but also by downregulating the enzyme dihydrofolate

reductase (DHFR), catalyzing the regeneration of BHs from BH,.
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