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Abstract

In many countries, radon programmes are carried out to identify radon prone areas, where people

may be exposed to high indoor radon values. Some attempts have been conducted to detailed map

these areas based on the relationships between indoor radon values and some geological and

environmental factors (i.e., lithology, permeability, etc.). These data are used to optimise the radon

hazard maps and to assess the potential radon risk in building zones at the scale of the regions and/or

municipalities. In this work, Geographical Weighted Regression and geostatistics are used to

construct the geogenic radon potential (GRP) of the Latium Region, assuming that the radon risk

only depends on the geological and environmental characteristics of the study area. A wide

geodatabase has been organised including about 8000 samples of soil gas and indoor radon, as well

as other geological (i.e., rock permeability, faults, topography) and geochemical (i.e., radium and

uranium content of rocks) proxy variables strictly correlated with the radon production in the shallow

environment. All these data have been elaborated within a GIS by using geospatial analysis and

geostatistics to produce base thematic maps in a 1000x1000 m grid format. Global Ordinary Least

Squared regression and local Geographical Weighted Regression have been applied and compared

assuming that the relationships between radon activities and the environmental variables are not

spatially stationary, but vary locally according to the GRP. The spatial regression model has been

elaborated considering soil gas radon concentrations as the response variable and the proxy variables

as predictors by using training dataset. Then a validation procedure was used to predict soil gas radon

values at test dataset. The predicted values were then elaborated by kriging algorithm to obtain the

GRP map of the Lazio region. The map highlights areas characterised by high GRP mainly linked to

radionuclide content of rocks in correspondence of the volcanic areas (central-northern sector of

Lazio region), and high GRP mainly linked to faulted and fractured carbonate rocks (central-southern

and eastern sectors of the Lazio region). This typical local variability of autocorrelated phenomena

can be taken into account only by using local methods for spatial data analysis. The constructed GRP

map can be a useful tool to implement radon policies at both national and local level, providing the

priority to a better knowledge of the territory for land use and planning purposes.

Key words: soilgas, radon, GWR, geostatistics, radon potential map

1. Introduction

Indoor Air Quality (IAQ) in public, and residential buildings has become a highly important

environmental issue, especially in large, densely populated urban areas. Furthermore, the introduction



of new building criteria, such as the use of new techniques to improve thermal insulation and

therefore energy savings, compound this problem because they tend to reduce air exchange. On

average people spend about 80-90% of their time in confined spaces (i.e. homes, workplaces,

schools, etc.) and this percentage rises for children, elderly, patients, etc. The monitoring of the

healthiness of such environments is fundamental to reduce the exposure of the population to

pollutants.

Natural radioactivity is the main source of human exposure to ionizing radiation. The inhalation of

radon (222Rn) and its progeny contributes 50% of the annual dose from ionising radiation. Whereas

radon concentrations are extremely low in outdoor air, concentrations can become dangerously high

indoors due to its accumulation in closed spaces. Sources for indoor radon include seepage from the

surrounding soil and rock geology (so called “geogenic” radon), from the building materials used, or

degassed from tap water having a groundwater origin. Accumulation, instead, is a function of

ventilation within the building.

Radon is a gaseous trace element, chemically inert and ubiquitous in soil and groundwater. Radon

is produced via the decay chain of primordial radionuclides 238U, 232Th and 235U. The most abundant

isotope is 222Rn (from the decay chain of 238U), has a half-life of 3.82 days, and decays itself to stable

lead 206Pb through an intermediate decay chain. Radon gas is colourless, tasteless, odourless and is

not detected by the human senses even at high concentrations. Being a noble gas, radon is not very

reactive, and is generally eliminated from the body. However, the real health hazard are its daughters

(i.e., Pb, Po, Bi) which are also radioactive; a portion of the radon breathed-in decays to these

daughters, which bind to dust particles and irradiate lung and bronchial tissues as they decay.

Radon was classified as a human carcinogen in 1988 by the IARC (International Agency for

Research on Cancer). More recently, the health effects linked to indoor radon exposure have been

considered in the EC Directive 2013/59/EURATOM of 5/12/2013. It stated that recent

epidemiological findings from residential studies demonstrate a statistically significant increase of

lung cancer risk from prolonged exposure to indoor radon at levels of the order of 100 Bq m–3.  It is

estimated that about 9 to 15% of the approximately 14,000 annual cases of lung cancer in Europe can

be attributed to radon and its progeny (Darby et al., 2005; Krewski et al., 2005; Charles, 2001;

Kreienbrock et al., 2001; IARC, 1988). For this reason, indoor radon in public and residential

buildings constitutes one of the main environmental problem in urban areas (UNSCEAR, 2000;

European Commission, 1990, 2013).

In general, it is accepted that areal variation of radon levels in houses primarily depends on the

geological features of the investigated areas, because the bedrock and soil type constitute the main



Rn sources, and because soil permeability controls Rn transport toward surface (Bossew, 2015, 2014,

2013; Ciotoli et al., 2007; Shi et al. 2006; Friedmann, 2005; Kemski et al. 2005, 2001; Killip 2005;

Miles and Appleton 2005; Apte et al. 1999; Gates et al., 1992).

Over the last few decades, various national indoor radon surveys have been performed in several

European countries. These surveys, whose results are collected within the European Atlas of Natural

Radiation by the European Joint Research Centre (Tollefsen et al., 2014), often display their results

as contoured “radon maps”, and are considered as a preliminary action directly related to risk

assessment. However, considering the lack of spatial correlation between houses having different

structural characteristics and owner habits related to ventilation, this approach could be misleading.

In some studies, the building-related variability (e.g., floor level, building materials, building type,

presence of a basement, etc.) was recorded and filtered out to obtain, as far as possible, “true” radon

indoor values. However, it is difficult to justify the interpolation of such data to predict the indoor

radon levels of yet un-measured houses, or to cover unpopulated areas and draw conclusions about

how to build new houses.

Another approach consists in the assessment of the Geogenic Radon Potential (GRP) of a region,

which is a quantity directly related to the local geology. A properly defined GRP based on a spatially

continuous parameter might provide a reasonable guide for identifying radon-prone areas,

particularly when the number and/or the quality of available indoor radon data is inadequate. The

geological information by itself (e.g. lithological types, U and Ra content, soil gas radon and

permeability), may be sufficient to infer the radon potential. However, to date there is no generally

accepted method of radon risk mapping.

The modelling approach proposed in this work uses different appropriate geospatial techniques,

such as Geographical Weighted Regression (GWR) and geostatistics (kriging) to account for spatial

autocorrelation and to produce a map of the Geogenic Radon Potential (GRP) of the Latium region.

Geological data and soil gas data are provided by the Soil Protection and Remediation Department of

Regione Lazio and by the Fluid Chemistry Laboratory of the Earth Science Department, Rome

University Sapienza, respectively. This wide database was elaborated in the GIS environment by

using ArcGIS 10.2 (Copyright © 1999-2013 Esri Inc.). All produced maps are constructed according

to a grid format with 1000 x 1000 m unit cell resulted by using vector to raster transformation,

reclassification and interpolation of primary geological, geomorphological and geochemical data.

2. Radon in the shallow environment



The distribution of radon in soil gas and, consequently the indoor activities, is strictly related to

the geological characteristics of the studied territory (Kemski et al., 2009; Barnet et al., 2008; Ciotoli

et al., 2007). Three main factors are known which predispose houses to elevated indoor radon levels.

First, the regional geochemical and geological characteristics of the soil / rock will establish the in

situ conditions. For example, uranium (238U, 235Th) and radium (226Ra) content will control the

amount of radon generated. Uranium and radium occur in all rocks at concentrations from 0.5-5

mg/kg, depending on the rock type. Igneous and metamorphic rocks (granites, acid lavas, tuffs, etc.)

typically have very high uranium/radium contents and sedimentary rocks generally have lower

contents (but high in some types like organic rich rocks, phosphates, reworked igneous or magmatic

clastic rocks, etc.) (Drolet et al., 2013). Second, environmental conditions will control the rate of

movement of soil radon toward the surface and into buildings. The escape of radon atoms at the grain

scale is controlled by porosity, soil moisture and grain-size, whereas the migration toward the

shallow environment is controlled by the large scale geological features including rock thickness,

permeability, fractures and karst (Castelluccio et al., 2012; Nazaroff, 1992; Etiope et al., 2002;

Nazaroff et al., 1988; Tanner, 1980). Also meteorological parameters like wind, barometric pressure,

relative humidity and rainfall can affect radon exhalation from soil to the atmosphere (Galli et al.,

2015; Szabo et al., 2013; Vasilyev et al., 2013; Zafrir et al., 2012; Baykut et al., 2010; Crockett, et

al., 2010; Fujiyoshi et al., 2006; Al-Shereideh et al., 2006; Winkler et al., 2001). Both these

phenomena affect the GRP in terms of source and migration mechanisms. The third factor is the

building characteristics that will influence radon entry into buildings (e.g., discontinuities or fractures

in the foundation that can provide gas entry pathways) while particular building materials can also be

a source of radon production inside the building itself. Therefore, geology, quantified by a categorical

classification system and or according to proxy variables (e.g., U/Ra content, permeability, etc.), can

provide predictors of the GRP which make the problem of the estimate across the geological

boundaries reduced and more realistic (e.g. Tondeur et al., 2014; Gruber et al., 2013; Appleton and

Miles, 2010; Cinelli et al., 2010; Kemski et al. 2009; Bossew et al., 2008).

3. The mapping radon problem

Over the last decades, a number of national radon projects have been carried out in several

countries, e.g. in the U.S. (White et al., 1992), U.K. (Green et al., 2002), Ireland (Fennell et al.,

2002), Finland (Weltner et al., 2002), Germany (Kemski et al., 1996), Austria (Friedmann, 2005),

Czeck Republic (Neznal et al., 2004) and Italy (Bochicchio et al., 1996).

Considerable work is being invested into methods of estimating GRP from observed geological

data and/or indoor Rn measurements (Bossew, 2014 and references therein) according to two main



techniques of data processing. The first approach combines geological data and indoor radon

measurements, sometimes including building characteristics and meteorological parameters that can

affect radon entry into buildings (Pasculli et al., 2014; Bossew P., 2013; Gruber et al., 2013; Tung et

al., 2013; Cinelli et al., 2010; Smethurst et al., 2008; Bossew et al., 2008; Appleton et al., 2008, 2011;

Neznal et al., 2004; Kemski et al., 2001; Friedmann, 2005). The second approach consists in the

direct interpolation of indoor radon values to identify RPAs. This last approach could be a difficult

and non-robust procedure to accomplish at large scale, and could have a meaning only within the

inhabited areas and in standard conditions (Miles, 1998a, b). However, because of its multifactorial

dependence, indoor radon usually shows strong variability at least on short geographic scale (i.e.,

non-stationary spatial behaviour). Furthermore, the spatial distribution of indoor radon samples is

often linked to the clustered distribution of houses within the inhabited zones, therefore a

declustering procedure for estimating unbiased means and other statistics is required.

An alternative approach provides the construction of GRP maps considering only proxy

information (i.e., soil permeability, faults, U and Ra content, emanation coefficient, etc.), calibrated

through “what earth delivers”, i.e., soil gas radon measurements (Tondeur et al., 2014; Gruber et al.,

2013; Ielsch et al., 2010; Kemski et al., 2001; Gundersen and Schumann, 1996). In these maps, RPAs

can be recognized where the GRP coincides with indoor radon values above the reference level.

Usually, the construction of GRP maps involved global estimation techniques assuming spatial

homogeneity of the relationships among radon and the other geological information. However,

significant spatial variations characterize the relationships between pre-processed soil gas and indoor

radon data, and soil/geochemical geological features. Therefore, the evaluation of factors influencing

soil gas and indoor radon (i.e., geological and geochemical parameters) can be better performed by

accounting for spatial autocorrelation. This means that the spatial variation of the relationship

between radon in the environment and related variables is not constant but is dependent of the values

of the variables at neighbouring sites.

The assessment of GRP of an area has been obtained by combining geochemical and geological

parameters by using classical regression techniques (i.e., ordinary least squares) that imply the

independence of the observations. However, the spatial analysis of the environmental variables that

govern geogenic radon need to take into account their spatial autocorrelation (i.e., the observed value

of a variable at one location is dependent of the values of the variable at neighbouring sites). This

implies that multivariate classical statistical methods may be inappropriate for the modelling of this

phenomenon. Therefore, more robust techniques of geospatial analysis taking into account the spatial

variability of the direct and proxy variables should be considered.



4. Material and methods

The GRP mapping is a multivariate problem that can be addressed through the construction of a

conceptual model based on the selection of the variables that most influence the presence of radon in

the shallow environment. In this paper, a conceptual model is proposed based on geological,

geochemical, structural and geomorphological data collected from the literature, as well as available

soil gas field sampled data. These data are more suitable to construct GRP maps because they are

characterised by: (i) higher spatial autocorrelation; (ii) lower variability; (iii) and not depend by

anthropogenic factors with respect to the indoor radon data mainly affected by the building

parameters.

The spatial relationships between geological data, in a broad sense, and the soil gas radon

concentrations were then modelled by using global (Ordinary Least Squares, OLS) and spatial

(Geographically Weighted Regression, GWR) multivariate regressions. In particular, the regression

model includes a response variable (i.e., the radon concentration in soil gas) and some explanatory

variables (i.e., the radium content of the rocks, the rock permeability, the presence of faults and

fractures and the Digital Terrain Model, DTM). The final spatial model was used to estimate the

response variable at unknown locations (Fig.1).

The GWR (i.e., local regression models) conducted in this study as a complementary approach to

radon global spatial regression modelling, were calibrated using a computer software program, GWR

4.0 (https://geodacenter.asu.edu/gwr, Nakaya et al., 2009; Fotheringham et al., 2002). As the GWR

outputs are location specific, they were integrated with ESRI ArcGIS software for computation,

exploratory spatial data analysis, mapping and visualization. This software was chosen because it

presents numerous extensions for spatial statistical and geostatistical modelling (Krivoruchko, 2011a,

2011b). Generally, these techniques were used to map spatial pattern, test relationships, check for

redundancy among the explanatory variables and geo- visualization. The model’s workflow is shown

in figure 2.

4.1 Spatial Autocorrelation Analysis

Among the Exploratory Spatial Data Analysis (ESDA) techniques, the concept of spatial

autocorrelation, i.e. the correlation of a single variable between pairs of neighbouring observations,

constitutes one of the main topics for the analysis of geographical point data. The distribution of any

natural phenomenon (i.e., radon potential) or its associated values (e.g., Rn in soil gas, Ra in rocks,

etc.) within a space will produce a pattern. The geographic patterns range from completely clustered

at one extreme to completely dispersed at the other. Patterns that fall between these extremes are



assumed to be random. Knowing whether there is a pattern is useful for gaining a better

understanding of a geographic phenomenon, monitoring conditions on the ground, comparing

patterns or tracking changes (Mitchell, 2005).

The first “law” of geography, which states “everything is related to everything else, but near

things are more related than distant things” (Tobler, 1970), is a crucial idea in geography and

particularly in spatial data analysis. In statistical terms, this law is related to the concept of spatial

autocorrelation. In other words, when high values in a place tend to be associated with high values at

nearby locations, or low values with low values for the neighbours, positive spatial autocorrelation or

spatial clustering is said to occur. In contrast, when high values at a location are surrounded by

nearby low values, or vice versa, negative spatial autocorrelation is present in the form of spatial

outliers. In the analysis of spatial autocorrelation the reference point distribution is spatial

randomness, e.g. the lack of any pattern structure. Global and local spatial autocorrelation indexes

can be calculated to evaluate the existence of a pattern and, therefore, clusters in the spatial

arrangement of a given variable.

In this work Moran’s Index (I) and Getis-ord (G) indexes were used to preliminary test the global

spatial autocorrelation of the studied variables (Moran, 1950; Getis et al., 1992). These indexes were

used to estimate the strength of the correlation between observations as a function of the distance

separating them. They share many similarities with Pearson’s correlation coefficient: its numerator is

a covariance, while its denominator is the sample variance. In addition, like a correlation coefficient,

their values range from +1 meaning strong positive spatial autocorrelation/high values clustering, to 0

meaning a random pattern to -1 indicating strong negative spatial autocorrelation/low values

clustering.

The Moran’s I statistics for spatial autocorrelation of a variable is given as:
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where x is the mean of the x variable, ijw are the elements of the weight matrix, and 0S is the sum

of the elements of the weight matrix: 0 ij
i j

S w .

Getis and Ord (1992) have recently proposed a di erent approach to measuring spatial association

based on the definition of a neighbourhood for each location given by those observations that fall



within a critical distance d. Getis-ord (G) measures the degree of clustering for either high values or

low values. The general G statistics is given as:
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where xi and xj are attributes value for feature i and j, and wij are the elements of the weight matrix

between feature i and feature j, n is the number of feature in the dataset. The G statistic takes values

ranging between 0 and 1, where values close to 1 indicate clustering of high values, while values

close to 0 indicate clustering of low values.

The major limitations of global Moran’s I and Getis-ord G indexes are rooted in the fact that the

former distinguish the clustering of high and low values, but does not capture the presence of

negative spatial correlation; the latter is able to detect both positive and negative spatial correlations,

but clustering of high or low values are not distinguished.

Global measures of spatial autocorrelation emphasize the average spatial dependence over the

study region, hence they will only be useful if spatial dependence is relatively uniform over the study

region. If the underlying spatial process is not stationary, global measures may not be representative,

particularly if the size of the study region is relatively large. Local measures of spatial association

aim at identifying patterns of spatial dependence within the local study regions. This has induced

statisticians to develop local indices of spatial association (LISA) in order to examine the local level

of spatial autocorrelation and to identify areas where values of the variable are both extreme and

geographically homogeneous. This approach is most useful for the identification of so-called hot

spots regions where the considered phenomenon is extremely pronounced across localities, as well of

spatial outliers. The index to examine local autocorrelation is the Luc Anselin’s LISA (Local

Indicator of Spatial Association), which can be seen as the local equivalent of Moran’s I.

Local Moran’s I was proposed by Anselin (1995) and it is defined as follows:
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For each location, local value of Moran’s I allows for the computation of its similarity with its

neighbours and to test its significance. A positive value for I indicates that a feature has neighbouring

features with similarly high or low attribute values; this feature is part of a cluster. A negative value

for I indicates that a feature has neighbouring features with dissimilar values: this feature is an



outlier. In either instance, the p-value for the feature must be small enough for the cluster or outlier to

be considered statistically significant.

Results of local value of Moran’s I are expressed in term of statistically significance, p, at the 0.05

level, or in terms of z score. Very high or very low (negative) z-scores are associated with very small

p-values (found in the tails of the normal distribution). According to the z-score values at the

significance level of 0.05, the following scenarios may emerge:

z-score > 1.96 indicates locations with high values with similar neighbours (high-high, H-H),

also known as “hot spots”, as well as locations with low values with similar neighbours (low-

low, L-L), also known as “cold spots”

z-score <-1.96 indicates locations with high values with low-value neighbours (high-low, H-

L) and vice-versa low values with high-value neighbours (low-high, L-H), indicating potential

“spatial outliers”

z-score >-1.96 and <1.96 indicates locations with no significant local autocorrelation.

In the same way of local Moran I, the Getis-Ord (Gi* statistics) measures the degree of clustering

for either high values or low values. In particular, a high z-score and small p-value for a feature

indicates a spatial clustering of high values. A low negative z-score and small p-value indicates a

spatial clustering of low values. The higher (or lower) the z-score, the more intense the clustering. A

z-score near zero indicates no apparent spatial clustering.

This index works by looking at each feature within the context of neighbouring features. A feature

with a high value is interesting but may not be a statistically significant hot spot. To be a statistically

significant hot spot, a feature will have a high value and be surrounded by other features with high

values as well. The Getis-Ord local statistics is defined by the following equation:

, ,
1 1

2 2
, ,

1 1

*

( )

1

n n

i j j i j
j j

i
n n

i j i j
j j

w x X w

G

n w w

S
n

(4)

where xj is the attribute value for feature j, wi,j is the spatial weight between feature i and j, n is the

equal to the total number of features and:
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The Gi* statistic results obtained for each feature in the dataset is also a z-score. For statistically

significant positive z-scores (>1.96), the larger the z-score is, the more intense the clustering of high

values (hot spot). For statistically significant negative z-scores (<-1.96), the smaller the z-score is, the

more intense the clustering of low values (cold spot). In this paper both indexes are calculated by

using the “Spatial Statistics Tool” of ArcGIS 10.2 (copyright©1999-2014 ESRI Inc.).

4.2 The Exploratory Regression

The procedure to find the optimal global model by using OLS regression can be difficult especially

when there are lots of potential explanatory variables that may contribute to the modelled, dependent

variable. The Exploratory Regression can help to try all possible combinations of explanatory

variables to see which models pass all of the necessary OLS diagnostics (see next section). By

evaluating all possible combinations of the candidate explanatory variables, the chances of finding

the best model are greatly increased. ER is similar to stepwise regression (found in many statistical

software packages). Rather than only looking for models with high Adjusted R2 values, it looks for

models that meet all of the requirements and assumptions of the OLS regression method. ER runs

OLS on every possible combination of the candidate explanatory variables for models which include

at least the minimum number of explanatory variables and not more than the maximum number of

explanatory variables. The model that pass all the specified requirements and assumptions of the OLS

will be candidate for the OLS method. To be a passable model, a set of parameters should be

evaluated: the adjusted R2 of 0.50 or higher, significance of the coefficients (p- values that are less

than 0.05), a Variance Inflation Factor (VIF) of less than 7.5, a Jarque-Bera statistics (p-value greater

than 0.10), and a spatial autocorrelation test (p-value greater than 0.10). A brief description of each of

these tests follows.

Adjusted R2. The coefficient of determination (R2) provides a summary of how much variation in a

dependent variable’s values is explained by a set of explanatory variables (Weisburd & Piquero,

2008). The adjusted R2 is a recalibration of the R2 value which generally artificially increases as

more independent variables are added to a model (Theil, 1961). Thus, in a multivariate model, the

adjusted R2 always lower than the ‘raw’ R2. Like R2, an adjusted R2 ranges between 0 and 1 (i.e., adj.

R2 = 0.90 indicates that 90% of the variability in the dependent variable is explained by changes in

the set of explanatory variables being modelled. In this study, a model that failed to explain at least

50% (after taking the adjusted R2 penalty) of the variability in soil gas radon concentrations resulted

in its elimination from further consideration.



P-Value. Statistical inferences are typically made in the context of the null hypothesis. In the case

of OLS regression modelling, the null hypothesis states that there is no linear relationship between a

set of explanatory variables and a dependent variable. For OLS modelling, coefficients are produced

which describe the y-intercept and the linear relationship between each independent/dependent

variable. If a coefficient value is too large to be due simply to random chance, the null hypothesis

should be rejected. The p-value provides the basis to take this decision because it quantifies the

probability of obtaining a particular coefficient value when there is no relationship between the

explanatory and the dependent variables (Kleinbaum, et al, 1998).

Variance Inflation Factor (VIF). This value represents a description of multicollinearity in a model.

For models with two or more explanatory variables there may be correlations between them, which

can result in highly unstable correlation coefficients (Kleinbaum, et al., 1998). The VIF measures

multicollinearity by determining the extent of the increase caused by the correlations between

explanatory variables (Kleinbaum, et al., 1998).  Thus, the larger the VIF value, the more increase is

present, and the model becomes more unstable. As a general heuristic, a VIF of 10.0 or higher is

regarded as problematic. For this study, the VIF threshold was set more conservatively at 7.5.

Jarque-Bera Statistics. After relationships in a dataset have been modelled, predicted values can be

computed using the observed independent variables; the differences between the predicted values and

the observed values are the residuals of the regression model. If the model is robust, the residuals

should be independent and normally distributed. Non-normally distribution of the residuals indicates

a lack of organization and structure of the model error. Biased residuals indicate model

misspecification, which in turn renders the results untrustworthy (Kleinbaum, 1998; Jarque and Bera,

1987) proposed a procedure to test a model’s residuals for skewness and kurtosis (i.e., for normality).

The null hypothesis for this procedure states that residuals are normally distributed. If the Jarque-

Bera score is too high to be due to random chance the null hypothesis should be rejected. For this

study, the p-value threshold for the Jarque-Bera test was set conservatively at 0.10, so that a models’

residuals had an increased chance of being considered biased, which then increased the likelihood

that a model would be excluded from consideration.

Spatially Autocorrelated Residuals. As mentioned above, a basic assumption of regression

modelling is that there is no systematic structure to model residuals. While the Jarque-Bera test

determines whether or not residuals are biased, if a model built on geographic data produces spatially

biased predictions, this also violates the assumption of residual normality (Cliff & Ord, 1972). But



the Jarque-Bera test cannot capture if residuals are spatially clustered (i.e., autocorrelated). Spatial

autocorrelation techniques (detailed in section 4.1) can be applied to model over/under-predictions in

order to ascertain the geographic pattern of residuals. If, for example, there are significant clusters of

model residuals this would provide evidence of model misspecification. In short, autocorrelation of

the residuals can increase the probability of finding significant coefficients that are not really

significant; and/or it can mean that a key variable is missing from the model (Dormann et al., 2007).

For this study, the p-value threshold for the spatial autocorrelation (i.e., Moran’s I) test was set

conservatively at 0.10, so that a models’ residuals had an increased chance of being considered

spatially autocorrelated, which then increased the likelihood that a model would be excluded from

consideration.  In summary, an appropriate set of 1990 predictor variables that did not violate

regression assumptions needed to be established in order to move on the next phase and be tested as

an OLS model.

In particular, a properly specified OLS model should provide:

explanatory variables with the regression coefficients statistically significant and explaining

justifiable relationships between each explanatory variable and the dependent variable;

non redundant explanatory variables with small Variance Inflaction Factor (VIF) (in general

less than 7.5);

normally distributed residuals indicating your model is free from bias (the Jarque-Bera p-

value should not be statistically significant);

randomly distributed over and under predictions indicating model residuals are normally

distributed (the spatial autocorrelation test should not provide significant statistics).

4.3 Ordinary Least Squares (OLS)

Spatial data often do not fit traditional, non-spatial regression requirements because they are: i)

spatially autocorrelated (features near each other are more similar than further away); ii) non-

stationary (features behave differently based on their location/regional variation). The general

purpose of linear regression analysis is to find a (linear) relationship between a dependent variable

and a set of explanatory variables, in the form:

y= 0+ 1x1+ 2x2+….. nxn+

where y is the dependent variable to predict, xi is the explanatory variables and i are the coefficients

computed by the regression tool, representing the strength and type of relationship between x and y,

and are the residuals, i.e., the unexplained portion of the dependent explanatory variables. Large

residuals indicate a poor fitting of the regression model.



Once a passable model had been established the OLS regression algorithm in ArcGIS will be

applied. OLS is the best known of all regression techniques. It provides a global model of the

variable or process you are trying to understand or predict, and creates a single regression equation to

represent that process. The OLS regression estimates coefficients minimizing the sum of squared

prediction errors, hence, least squares.

The OLS tool in ArcGIS provided the Akaike’s Information Criterion (AIC) as an additional

information about model performance, and it also produced a map layer of model residuals, which

allowed for the visualization of the global model’s over/under-predictions. Furthermore, Qui and Wu

(2011) pointed out that prior to conducting a GWR analysis, it is necessary to first confirm that

predictor variables are statistically valid and significant through OLS regression (and the

accompanying tests for violations of regression assumptions).

4.4 Geographical Weighted Regression (GWR)

Geographical Weighted Regression (GWR) is a local spatial statistical technique used to analyse

spatial non-stationarity, i.e., the measurement of relationships among variables may differ at different

locations. Unlike conventional regression, which produces a single regression equation to summarize

global relationships among the explanatory and dependent variables, GWR generates spatial data that

express the spatial variation in the relationships among variables. Maps generated from these data

play a key role in exploring and interpreting spatial non-stationarity. Instead of calibrating a single

regression equation, GWR provides separate regression equations for each observation of the dataset,

consisting of a dependent (response) variable y and a set of k independent (explanatory) variables xk,

k=1…m, and of n observations for which their positions are available in a suitable coordinate system.

Each equation is calibrated using a different weighting of the observations contained in the dataset.

The equation for a typical GWR model is (Fotheringham et al., 2001; 1998):

0 1 1 2 2( ) ( , ) ( , ) ( , ) .. . . ( , )i i i i i i m i m iy u u v u v x u v x u v x    (8)

The notation β0i (u,v) indicates that the parameter describes a relationship around location i (u,v)

and it is specific of each location. A prediction of the dependent variable may be made if

measurements for the independent variables are also available at the location i (u,v).

The calibration of the GWR model requires a decision regarding size of the subset of n

observations to be included in the neighbour of the predicted values. This is referred to as the

bandwidth (or “kernel” (Brundson et al., 1998) size for estimating the local regression parameters.

For GWR it is ordinarily (but not necessarily) assumed that Tobler’s first law applies to a given

dataset. Thus, the default weighting scheme is that the soil gas values near to point i have more



influence in the estimated regression values than values located far away from that same point

(Fotheringham et al., 2001).

An adaptive or fixed kernel size can be selected. Using a fixed kernel ensures that area is

preserved, so even though the number of local observations in the kernel area will change, the area

represented by each local equation will remain constant (Brundson, et al., 1998). Alternatively, an

adaptive kernel will ensure when the area of the kernel changes, the number of observations within

each kernel area will remain the same. In case of highly irregular distributed observations, the most

appropriate selection is the adaptive kernel (Fotheringham, et al., 2001). In this study we adopt the

Gaussian fixed kernel type that weights continuously and gradually decreases from the centre of the

kernel but never reaches zero. Gaussian kernel is suitable for fixed kernels since it can avert or

mitigate the risk of there being no data within a kernel. The kernel shape is defined by the following

equation which take into account only the nth nearest neighbours:
2 2

ex p ( / )ij ijw d  (9)

where

i is the regression point index; j is the locational index;

wij is the weight value of observation at location j for estimating the coefficient at location i.

dij is the Euclidean distance between i and j;

is a fixed bandwidth size defined by a distance metric measure.

The calibration of the model involves also the choice of n, the number of data point to be included

in the estimation of local parameters. Different methods are traditionally used to define the finest

bandwidth value or the appropriate value of n. The GWR algorithm in GWR4 software provides

different methods of doing this: the Akaike Information Criteria (Hurvich et al., 1998, Akaike, 1974)

and the Cross- Validation score (CV) procedure (Cleveland, 1979). The bandwidth was optimized

using an algorithm that seeks to minimize the corrected AICc score, given as:
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(10)

In the Eq. (10), n is the sample size, ̂ is the estimated standard deviation of error term, and tr(S)

is the trace of the hat matrix S of GWR, which is defined as:

ŷ Sy (11)

where y is the vector of the dependent variable and is the vector of the GWR estimated value.

Lower values of AICc indicate better model performance.



Following Pasculli et al. (2014) and Slagle (2010), and based on the work of Burnham and

Anderson (2002), the AIC of the regression and the kernel size should be evaluated. AIC provides a

description of the goodness-of-fit for a statistical model by comparing its complexity to its residual

sum of squares. Models with lower AIC values are more performant (Fotheringham et al., 2003). AIC

provides a way for comparing a global OLS model to a local GWR one Ultimately, the GWR

algorithm produced a series of four maps depicting a continuous surface of regression coefficients for

each predictor variable. GWR to construct a radon map was recently applied to elaborate a RPA

model of Abruzzo region incorporating indoor radon and geological data (Pasculli et al., 2014).

In order to have an indication if there was a significant improvement in model performance of

GWR over the ordinary global model, an ANOVA test was formulated (Brunsdon et al., 1998). It is

an approximate likelihood ratio test based on F-test defined as follows:

0 0

1 1

/

/

RSS d
F

RSS d
(12)

Where RSS1 and RSS0 are the residual sum of squares of GWR model and global regression

model (OLS) while d1 and d0 are the degrees of freedom for GWR and global models, respectively.

4.5 Study area

Lazio region is located in central Italy and has an area of 17,207 km2 with 5.7 million of

inhabitants. Lazio extends in central Italy along the Tyrrhenian Sea and is surrounded by the regions

of Tuscany, Umbria, Marche to the north, Abruzzo, Molise to the east and Campania to the south.

The region is divided into five administrative provinces: Rome, Frosinone, Latina, Rieti and Viterbo.

The far most important city in Lazio is the Italian capital Rome, which is, in terms of area and

population, the largest province of Lazio (Fig. 3).

Geologically, the study area is part of a passive Neogene-to-present continental margin along the

eastern side of the Tyrrhenian Sea back arc basin. The Tyrrhenian basin has developed, since the

Miocene, as a consequence of back arc extension associated with the west-dipping and “easterly”

retreating Apennine subduction zone (Carminati et al., 2102, and references therein) (Fig. 3). Along

the Latium Tyrrhenian margin, the extensional tectonics controlled the development of basins that

trend primarily NNW-SSE/NW-SE and subordinately NE-SW. During the Plio-Pleistocene, clastic

sediments (Milli, 1997) and volcanoclastic deposits belonging to the volcanic complexes of the

Roman Magmatic Province (Peccerillo, 2005; Karner et al., 2001; De Rita et al., 1993) filled these

basins. The Lazio region is characterized by a considerable lithological variability represented by

different units of sedimentary and volcanic origin. Lithologies of the region of Lazio are shown in the



Geological Map of Lazio Region (scale 1:250,000) in vector format (Cosentino et al., 2012); moving

from west to east the study area presents: Plio-Pleistocene marine sediments of the coastal

floodplains (several hundreds of meters thick), volcanic deposits (lavas, tuffs, pyroclastics) of the

Roman Comagmatic Province (these deposits constitute the main lithology of the region), and to the

east the mountain ridges of the Apennine Chain, characterized by thick carbonatic sequences affected

by karst, and incised by deep river valleys.

5. Results

5.1 Selection of proxy variables

The proposed modelling approach consists of two fundamental working phases (Fig. 2): the

selection of appropriate geological and geochemical data and the preparation and pre-processing of

the primary GIS layers. The objective of these preliminary phases was to set up a homogeneous

database and calculate derived GIS layers to be used in the GWR analysis for spatial autocorrelation

analysis, as well as modelling and calculation of the final GRP map of the Lazio region.

Data used in the present study include: (1) soil gas radon measurements (kBq/m3); (2) the natural

content of radiogenic elements (Bq/kg) (i.e., U and Ra) of the outcropping rocks; (3) the permeability

(m2) of the outcropping rocks; (4) the presence of faults and fracture as proxy variable of secondary

permeability; (5) the Digital Terrain Model (DTM) (m) as proxy variable of meteorological

parameters (i.e., rainfall and temperature).

The primary GIS layers include the following base maps:

Soil gas radon concentrations (kBq/m3) collected in the Lazio region (Fig.4);

Geological Map of Lazio Region (scale 1:25,000) in vector format (Cosentino et al., 2012)

(see supplementary material);

Hydrogeological map of Lazio Region (scale 1:25,000) in vector format (Capelli et al., 2012

(Fig. 5);

Map of the main faults obtained by Regione Lazio (Fig. 6);

Digital Terrain Model in a grid format at 20x20m cell resolution (Fig 7);

Soil gas radon concentration (7625 samples) collected in the entire region was used as direct

information of the GRP of an area (i.e., dependent variable in the GWR analysis). Soil gas data

(published and unpublished data) are provided by the Fluid Geochemistry Laboratory of the Earth

Science Department of Rome University Sapienza (see Ciotoli et al., 2003; Annunziatellis et al.,

2003, 2008, 2010; Beaubien et al., 2003; Bigi et al., 2014) and by ARPA Lazio (2006).



The Geological Map of the Lazio Region was reclassified into homogeneous geological units

(HGUs) according to the following geological formations: carbonate platform (limestone, marls),

pelagic-slope basin (limestone, chert, marls), continental deposits (clay, sand and conglomerate),

marine deposits (clay and sand), volcanics (lava, tuff, pyroclastics), flysch (Fig. 8). As volcanic rocks

are derived by different volcanic systems of different age and rock types, the volcanic domain was

further subdivided into four different homogeneous units from south to north, respectively: the Alban

Hills volcano, the Sabatini volcano, the Vico volcano and the Vulsini volcano.

Considering that radon is produced by radioactive decay of radiogenic elements (mainly U, Th

and Ra) contained in the substratum beneath the buildings, available radiometric data were used as

proxy variable of radon production in the rocks. Then, the radium content in term of “equivalent”

uranium (eU), and of the average radium content (Bq/kg), obtained from the literature (Castelluccio,

2010; Tuccimei et al., 2006; Voltaggio et al., 2006; Locardi, 1967) was assigned to each new HGUs

of the Geological Map of the Lazio Region (Fig. 9). Similarly, permeability values (m2) obtained by

Spitz and Moreno (1996) were also assigned to each HGU to obtain a map of the rock permeability

(Fig 10). Furthermore, as faults and fractures may constitute main pathways of radon movement in

the subsoil (Baubron et al., 2002; Fu et al., 2005; Ciotoli et al., 2007; Walia et al., 2009; Bigi et al.,

2014) the network of the main faults and fractures of the region has been used as proxy of secondary

permeability, this is also consistent with the selection of the rock permeability as explanatory variable

(Fig. 11). Finally, as climate can strongly affect radon exhalation at the soil/atmosphere boundary,

the digital terrain model of the Lazio region was used as a proxy of the meteorological parameters

(i.e., temperature, barometric pressure and rainfall) (Fig. 7).

Radium content, permeability, faults and DTM were then used as explanatory variables, whereas

radon concentration in soil gas was used as response variable within all the applied regression models

(OLS and GWR) to calculate the final GRP map. The considered geological and geochemical

parameters are assumed homogeneous at the working scale, though they could show a high

variability at more local scale.

5.2 Data pre-processing

Data pre-processing provided 1000x1000m raster grids obtained from the primary GIS layers (i.e.,

radium content and rock permeability) by using “polygon to raster” transformation tool in ArcGIS

(Copyright © 1995-2014 Esri) (Figg. 9 and 10). The problem caused by the presence of multiple

polygons within the unit grid cell was overcome by assigning to the grid cell the value of the largest

polygon inside. The layer of faults was gridded by using Kernel Density algorithm to obtain a



1000x1000m fault density map (m/km2) (Fig. 11). Kernel Density calculates the density of point/line

features around each output raster cell by fitting a smoothly curved surface over each point/line. The

surface value is highest at the location of the point/line and diminishes with increasing distance,

reaching zero at the search radius distance from the point/line. The kernel function is based on the

quadratic kernel function described in Silverman (1986). The DTM at 20x20m grid was re-sampling

at 1000x1000m grid resolution (Fig. 7).

This pre-elaboration phase provided four 1000 x 1000 m grid maps representing the predictor

variables, respectively radium content, permeability, fault density, and DTM. Then a regular point

layer (12911 points) corresponding to the centroid of all the grid cells was generated. Table 1 reports

summary statistics of the raw radon values, as well as the other considered parameters.

The distribution of the 7625 soil gas samples was regularised in order to match with the

1000x1000 grid of the other layers by using the “point to raster” tool. As more than one soil gas

sample may occur within the unit grid, the geometric mean (GM) of radon values measured at these

locations was assigned to the grid cell. Then the application of the “Extract multivalues to point” tool

assigned to the regular 1000x1000 point layer (the centroids of all the 12911 cells) the corresponding

grid values of each created raster map. The final attribute table includes 12911 records with complete

information of all the predictors and 2529 records with the radon data (the response variable). GWR

model was calculated by using only the records (centroids) that have measured/calculated values of

all the variables (2529 samples). This dataset was used as training dataset to construct the GWR

model that then will be validated to the total dataset (7625 samples). After the validation and the

selection of appropriate model, this was applied to all the extracted centroids of the 1km x 1 km grid

to obtain the final radon potential map of the Lazio region. All these techniques are available in the

ArcGIS “Geostatistical Analyst” extension and in the “Spatial Statistics” tool.

5.3 Preliminary analysis of the soil gas radon

Table 2 reports specific statistics for radon data collected in the Lazio region. The similarity

between the Geometric Mean (GM) and the median suggest a log-normal distribution for this

variable. In general, the quite large variability observed in soil gas radon values can be caused to

local variations of the geological, geochemical and geophysical characteristic of the soil. Some

authors proposed a standardisation, in order to emphasize the role of geology filtering out the

variability due to the shallower environmental factors (i.e., porosity, humidity, etc.) (Miles, 1998;

Friedmann, 2005). In the case of radon data, the log-transformation could be a suitable compromise

to reduce its variability (Fig. 12).



Furthermore, radon data were intersected with the HGUs layer in order to calculate statistics

within each of the HGUs (Tab. 3). The table highlights that highest mean values occur in

correspondence of the main volcanic areas of the Lazio region, though the number of samples are

different for each of the HGU. These high radon values can be linked to the high radionuclide content

of these rocks. Carbonate rocks and flysch also show high mean values probably caused by the

presence of faults and fractures, as well as by the enhanced groundwater circulation. The box-plot of

figure 13 well highlights this particular behaviour of radon within the HGUs.

5.4 Spatial autocorrelation

Spatial autocorrelation analysis was carried out in order to assess if the studied variables exhibit a

random pattern or if they show a significant spatial structure. Initially global indexes were applied to

determine the general pattern; following the application of local indicators allowed the identification

the presence of significant clusters of high or low values as well as some interesting spatial outliers.

Global and local indexes of autocorrelation were applied to the variable selected in the section 4.5 to

detect their spatial autocorrelation, spatial pattern and the presence of cluster and outliers in the study

area.

Global Moran’s I and Getis-ord (G) indexes were obtained by using the Spatial autocorrelation

and High/Low Clustering commands of the Spatial Statistics Tools in ArcGIS 10.2. Results for both

indexes expressed as z-score and p values are reported in table 4. Morans’ I result highlights that all

variables are positively spatially autocorrelated (significant p-values). Then further analysis at global

scale should indicate if one would expect that explanatory variables and soil gas radon values appear

clustered or positively associated throughout the Lazio region. In other words, the global Getis-ord

(G) statistics is used to test if the sites with relatively high values of the analysed variables

(respectively low) are localized close to other sites with high values of those variables (respectively

low), or if they show a purely random pattern. Getis-ord (G) results indicate that at global scale high

values of the studied variables seem to be clustered.

As reported in the section 4.1, these results of global spatial autocorrelation can be refined by

using Local Indexes of Spatial Autocorrelation (LISA). Further details of the clustered patterns of the

studied variables can be highlighted by examining the extent of local spatial autocorrelation by using

the Cluster and Outliers Analysis (Anselin Local Moran) and Hot Spot Analysis (Local Getis-ord G)

tools in the ArcGIS environment.

As LISA indexes are scale-dependent, they need an appropriate selection of optimal distance

threshold for the working spatial scale. The “Spatial Statistics Tool” of the ArcGIS software provides



the “Incremental Spatial Autocorrelation” tool to conceptualize the spatial relationships among data.

The “Incremental Spatial Autocorrelation” tool runs the Global Moran’s I test for a series of

increasing distances, measuring the intensity of spatial clustering for each distance. The intensity of

clustering is determined by the z-score returned (e.g., p-value). Typically, as the distance increases

(and consequently the z-score), intensification of clustering is present in the data. At some particular

distance, however, the z-score generally peak. The peak reflects the distance where the spatial

processes causing clustering is most pronounced. The “Incremental Spatial Autocorrelation” tool was

applied to soil gas radon data in order to conceptualize the spatial relationships for the following

“Hot Spot Analysis” by using LISA indexes. In this case, the following input data were used:

beginning distance = 1000 m, distance increment = 5000 m and number of increments = 10. Results

indicate a significant max peak distance value of 16000 m (z-score=206.87 and p=0.000) (Fig 14).

This distance represents the distance where the spatial processes promoting clustering is most

pronounced.

Figure 15 shows the combined results of Anselin Local Moran and Local Getis-ord G statistics in

terms of hot spots (areas where locations with high radon values are surrounded by high values: HH),

cold spots (low values surrounded by low values: LL) and local outliers (HL). Major hot spots are

located in the volcanic areas of Cimini Mts. (Viterbo Province, northern Lazio), and of the Alban

Hills (south of Rome); further hot spot zone is located along the NW-SE Lepini Mts. carbonate ridge

(central-southern Lazio). Major cold spots occur in the Tolfa Mts. and Comino valley area. Finally,

potential spatial outliers are mapped, i.e. locations with high values with low-value neighbours (HL),

they occur between the Bracciano lake and the Tolfa Mts.

5.5 Exploratory regression results

Preliminary Exploratory Regression will try all possible combinations of explanatory variables to see

which model passes all of the necessary OLS diagnostics. This analysis greatly increases the chances

of finding the best model. Summary statistics on candidate models must respect: high goodness of fit,

model significance, collinearity, normal distributed residuals, spatially uncorrelated residuals. Table

5 reports the overall statistics of the ER model. The model did not pass all the required cutoff, though

each independent variable was significantly related to the soil gas radon except for the DTM (Tab. 6).

Significant Jarque-Bera statistic indicates a biased model with not normally distributed residuals. The

null hypothesis for this test is that the residuals are normally distributed. Furthermore, the spatial

autocorrelation test (Global Moran’s I) highlights that residuals are not spatially random, but

significant clustering of high and /or low residuals (model under- and overpredictions).



5.6 OLS regression model

The OLS regression is also the proper starting point for all spatial regression analyses. It provides

a global model of the variable or process you are trying to understand or predict; it creates a single

regression equation to represent that process. The previous model was tested with the Ordinary Least

Square regression in order to evaluate the effects of the geological environment on soil gas radon

measurements and test for the possibility that the effect of the predictor variables on the dependent

variable varies continuously over space. Results confirm that the model explains approximately 15%

of the variation in the explanatory variables. The model significance is assessed by the Joint F-

Statistic and the Joint Wald Statistic. The Joint F-Statistic is trustworthy only when the Koenker (BP)

statistic (see table 7) is not statistically significant. In this case the the Koenker (BP) statistic is

significant, therefore the the Joint Wald Statistic highlights a statistically significant model.

Furthermore, the Koenker (BP) (Koenker's studentized Bruesch-Pagan statistic, BP) statistic

determines whether the explanatory variables in the model have a consistent relationship to the

dependent variable both in geographic space and in data space. When the model is consistent in

geographic space, the spatial processes represented by the explanatory variables behave the same

everywhere in the study area (the processes are stationary). When the model is consistent in data

space, the variation in the relationship between predicted values and each explanatory variable does

not change with changes in explanatory variable magnitudes (there is no heteroscedasticity in the

model). In this case the significance of the Koenker (BP) statistic indicates heteroscedasticity and/or

non-stationarity of the model; this model results, therefore, a good candidate for Geographically

Weighted Regression analysis. The Jarque-Bera statistics reported in table 7 indicates that residuals

are non-normally distributed; a statistically significant Jarque-Bera test can also occur when there is

strong heteroscedasticity.

Table 8 reports the coefficient diagnostic table that captures important elements of the OLS

regression. The table highlights that coefficients of the explanatory variables are consistent (low

Standard Error), but confirms that DTM is not significant in the OLS model (Robust Probability not

significant). Therefore, the DTM is not used as explanatory variables in the GWR regression model.

The resulting OLS regression equation is:

y (soil gas Rn) = 5.12 + 0.0003 (Fault) – 0.0012 (DTM) + 0.041 (Ra) + 0.218 (Perm) (13)

Radium content and rock permeability highlight the highest coefficients.

The histogram of the regression residual highlights that residuals are non-normally distributed and

the Global Moran’s I indicates that are spatially autocorrelated (Fig. 16).



5.7 Spatial regression model

A spatial regression model by using GWR taking into account the relationships between the radon

concentration in soil gas (i.e., dependent variable) and the radium content, the rock permeability, the

fault density (i.e., explanatory variables) was then calculated. The GWR model was constructed by

using GWR4 software was applied to the training dataset (20558 points), for a faster performance,

and then applied to the test data set. All data are standardised to reduce variability and avoid the

problem caused by different measure unit. Coefficients of the explanatory variables are estimated

using nearby feature values by using the kernel density algorithm. The Fixed Gaussian kernel type

was used to solve each local regression analysis at fixed distance (i.e., bandwidth parameter). The

optimal bandwidth (4000m) has been calculated automatically by the GWR4 software.

Table 9 and table 10 report the main statistics of the overall GWR model parameters as well as for

the local parameters. The model provides a total Adjusted R-Squared (Adj.R2) parameter of 0.935.

Local R2 values range between 0.0 and 1.0, and indicate how well the local regression model fits

observed y values. The map of the Local R2 values indicates where GWR predicts well, and where it

predicts poorly; it may provide clues about important variables that may be missing from the

regression model (Fig. 17).

Very high amount of variance was explained by the selected GWR model (R2 Adjusted= 0.935).

Also the model performance (AICc = 143.74) results better than that calculated by the OLS model

(AICc = 19512). Sigma value is the estimated standard deviation for the residuals. Smaller values of

this statistic are preferable. The histogram of the standardized residuals of the regression shows a

Gaussian distribution confirming the good performance of the model (Fig. 18a), and the Morans’I

autocorrelation test highlights that residuals are not spatially autocorrelated (Fig. 18b). The ANOVA

test allowed the comparison between the significance of the Global Residuals (OLS model) and the

Local residuals (GWR model) indicating the improvement provided by the GWR model (Tab. 11).

The mean values of the coefficients calculated by the GWR model confirmed that soil gas radon is

mainly positively related to the radium content, the rock permeability and the fracture density across

the study region (Tab. 10). It is well known that after radium (i.e., radionuclides) concentrations in

soils and rocks, the “interconnection” of pore space (primary permeability) in soil, as well as mainly

the rock fracturing, are probably the most significant factors influencing the concentration of radon in

rocks, soils, as well as in buildings. The GWR model is described by the following equation:

0 1 2 3( , ) ( , ) ( , ) ( , )i iS o ilR n u v u v R a u v P erm u v F a u lt     (14)



The calculated GWR model was then used to predicted values at the 1 x 1 km square grid by using

Simple Kriging (SK) (Webster and Oliver, 2007; Bohling, 2005; Stein, 1999; Isaaks and Srivastava,

1997) to obtain the final Radon Potential map of the Lazio Region. Kriging interpolation requires the

analysis and modelling of the experimental variogram. The variogram map highlights an anisotropic

behaviour of the GWR predictions along N330 direction (Fig. 19a). Therefore, the anisotropic

experimental variogram was then modelled along this direction by using an exponential model with a

nugget value of 0.07, a sill of 1, as well as a maximum range of anisotropy of 50000 m and a

minimum range of anisotropy of 25000 m ( = 0.07nugget + 1.0 Exp (50000, 25000, 337) (Fig. 19b).

The model fitting was provided by cross-validation graph that indicates a Root-Mean-Square

Standardised of 0.790 and a Gaussian standardised error distribution (Fig. 20). Figure 21 shows the

final GRP map.

6 Discussion

Soil gas radon is a complex multivariate phenomenon, affected by different environmental factors,

including geochemical and mechanical characteristics of rocks and soil, as well as meteorological

parameters. This work is one of the first attempt to study the correlations between some of these

factors and a high number of soil gas data in order to define the “geogenic radon potential” of an area

(Dubois et al., 2010).

In this paper a modelling approach accounting for spatial effects by means of the Geographically

Weighted Regression, a local spatial regression technique, was used to assess the effects of the most

affecting factors on soil gas radon, by using more than 7000 radon data from soil gas field surveys

and coupled to some geological and geochemical parameters collected provided by literature review.

The GWR was tested for the entire Lazio region characterised by heterogeneous morphology,

fractured and faulted areas with high permeable rocks, as well as by four volcanic complexes of

different age with a high radionuclide content.

The proposed procedure involves the construction and the comparison of global and local

multivariate regression models, as well as autocorrelation indexes, as suitable tools to highlight the

presence of local effects and the differences among the variables associations across space. The

models were constructed starting from a conceptual model which include the following variables: soil

gas radon (i.e., the response variable), and radium content and permeability of outcropping rocks,

fault and fractures distribution and the Digital Terrain Model as a proxy variable of meteorological

factors (i.e., explanatory variables).



In this specific case study, global and local indicator of spatial association (i.e., Morans’I and

Getis-ord statistics), indicated clear evidences of spatial correlation in the distribution of the

considered geological geochemical variables, as well as soil gas radon data throughout the study area.

In addition to the identification of clustered distribution, the local Moran test reveals the presence of

many locations that do not follow the global process of spatial dependence (i.e., spatial outliers). In

fact, the preliminary OLS global regression model confirmed these results highlighting spatial

autocorrelation and non-random distribution of the residuals. Furthermore, OLS indicated that

morphology (DTM) was not a significant variable in the model, then DTM was excluded by further

elaborations.

The GWR was carried out to study the spatial distributions and the strengths of the local

relationships between soil gas radon and the considered geological and geochemical factors. Results

suggests that the spatial variations in the radium content and permeability of rocks, as well as the

presence of a network of faults and fractures significantly affect the radon concentrations in soil gas.

Local results identify areas where the model predicts well (R2> 0.5) and where it predicts poorly

(R2< 0.5). However, GWR models has an advantage over the global regression models, which often

mask the geographic heterogeneity and the complex associations that might exist between variables

over space.

Fotheringham (1997) suggested that in global models non-complete dataset with missing

information may cause spatial heterogeneity. Since complete datasets are difficult to obtain in the

case of multivariate phenomena, the inclusion of spatial information into local modelling techniques

can significantly improve model predictability. However, the local GWR coefficients should be

interpreted with caution especially in the case of local multicollinearity of the explanatory variables;

this increases the variances of the estimated regression coefficients and can invalidate conclusions

about the relationships based on the estimated coefficients (Pasculli et al., 2014). Many works (Páez

et al., 2011; Griffith, 2008; Wheeler, 2007) highlighted that the lack of multi-collinearity in global

regression models is not a guarantee for high performant GWR models.

Some critical issues to the obtained results can be resumed as follows. First of all, the Lazio

territory shows a high degree of morphological and geological complexity which could be properly

represented only by very accurate and detailed dataset. This condition may explain why the DTM did

not result as significant in the global regression model. Maybe morphology should be considered in

more detail including local characteristics such as the presence of dolines, caves, sinkhole, as well as

other forms (i.e., ridges and valleys). Furthermore, instead of considering the DTM as proxy variable



of meteorological parameters, it would be better to include in the model direct variables such as,

rainfall, air temperature, soil moisture, etc.

In this study, the values and the spatial distribution of the soil gas radon data can be mainly related

to the geochemical characteristics of the recognised HGUs, which in the central-northern part of the

region highlight middle-to high concentrations of radionuclide content (i.e., U, Ra, Th) due to the

presence of volcanism. Whereas in the southern and eastern sectors the GRP could be affected by the

high fracturing (i.e., secondary permeability) despite the overall low radionuclide content of the

outcropping carbonate rocks. However, the distribution of U and Ra in rocks could also be high

variable within the same HGU due to the presence of volcanics in sedimentary deposits, as well as

for alteration processes that can enrich or deplete the radionuclides content. At this regard,

radionuclide content in soil and soil permeability could be important factors to be included in the

conceptual model for the definition of GRP.

7 Conclusions

The use of GWR as a local spatial regression technique with respect to global regression models

suggests that the local spatial variations of the bedrock radium content, the rock permeability, as well

as the karst and fractured areas significantly affect soil gas radon concentrations. Therefore, the GWR

technique highlights a high performance in the mapping of the GRP at the scale of the

geological/geographical scenario of the Latium Region. The presented work can be considered as the

first step toward the development of a conceptual model that should include as much as robust and

correlated explanatory variables to predict the GRP of an area. Obviously, the proposed model is only

one of the possible models that can be applied to define the GRP of a region. This model was

obtained by using literature data trying to respect the principle of parsimony of included variables.

This does not mean that more complex models may not be the best performing.

Specific conclusions of this work are following:

the mapping of the GRP is a multivariate phenomenon; therefore, the application of

multivariable local regression techniques seems to be more appropriate than the global

regression models;

GWR model highlights a higher mapping performance than the global regression models

which often mask the spatial autocorrelation, and the complex associations among spatial

variables;



the proposed procedure was applied to a set of «a priori» selected variables that could affect

the radon emission in the shallow environment, however this does not mean that the proposed

model cannot be implemented by including/excluding other variables;

to achieve this goal, significant improvements in the modelling could derive from more

detailed analysis of the phenomenon including more accurate dataset of explanatory variables

such as the total gamma radiation, the soil characteristics (i.e., permeability and radionuclide

content), as well as the use of real climate data instead of the altitude. The further, and

ambitious step, is to include also the indoor radon as response variable to obtain the map of

the “radon prone areas”.

the proposed method is quite fast to carry out and, starting from soil gas data, can be applied

preliminarily by using a geological map and literature data.

An accurate GRP map can be a useful tool to implement radon policies at both national and local

level, providing the priority to better know the territory for which they have to take decisions. GRP

maps can help in allocating resources to plan more efficiently denser surveys of both soil gas and

indoor radon, as well as remediation and monitoring of affected houses and targeting regulation in

priority areas. For example, it can provide some hints to determine the proper sample size of radon

surveys, as more buildings need to be monitored in those areas characterised by high GRP.
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Figure Captions



Figure 1. Conceptual model of soil gas radon dependence from geological and geochemical

factors. The global and local regression models include a response variable (i.e., radon in soil gas)

and some explanatory variables (i.e., radium content of the outcropping rocks, rock permeability,

presence of faults and fractures and the Digital Terrain Model, DTM).

Figure 2. Work flow of data processing and analysis

Figure 3. Geological framework of the study area. (modified from Mele et al., 2006)

Figure 4. Map of the soil gas sample distribution. Soil gas data (published and unpublished data)

are provided by ARPA Lazio (2006), and by the Fluid Geochemistry Laboratory of the Earth Science

Department of Rome University Sapienza (see Ciotoli et al., 2003; Annunziatellis et al., 2003, 2008,

2010; Beaubien et al., 2003; Bigi et al., 2014). Base Map from ESRI, De Lome, USGS, NPS.

Figure 5. Map of the Hydrogeological Complexes of the Lazio Region (scale 1:25,000) in vector

format (Capelli et al., 2012). The color scale indicates the aquifer potential. Base Map from ESRI, De

Lome, USGS, NPS.

Figure 6. Map of the main faults of the Lazio Region. Base Map from ESRI, De Lome, USGS,

NPS.

Figure 7. Digital Terrain Model (DTM) of the Lazio region at 20 x 20 m resolution, then

resampled at the working grid resolution of 1km x 1km. Base Map from ESRI, De Lome, USGS,

NPS.

Figure 8. Maps of the Homogeneous Geological Units (HGUs) derived from the Geological Map

of Lazio Region (scale 1:25,000) in vector format (Cosentino et al., 2012) (see supplementary

material). Base Map from ESRI, De Lome, USGS, NPS.

Figure 9. Map of the radium content of outcropping rocks. The radium values have been obtained

by the literature (Castelluccio, 2010; Tuccimei et al., 2006; Voltaggio et al., 2006; Locardi, 1967) and

assigned to the HGUs considering.

Figure 10. Map of the rock permeability. The permeability values have been obtained by Spitz and

Moreno (1996) and assigned to the HGUs considering the map of the hydrogeolgical complexes.

Figure 11. Map of the fault and fracture density of the Lazio region. The map was constructed by

using Kernel Density algorithm to obtain a 1000x1000m fault density map (m/km2).

Figure 12. Histograms of raw radon data (a); histogram of log-transformed data (b)

Figure 13. Box-plot of radon data within each HGU. The rounded square includes the radon

concentration measured in the volcanic areas.



Figure 14. Incremental Spatial Autocorrelation graph for the soil gas radon data. The graph was

calculated in order to conceptualize the spatial relationships for the following “Hot Spot Analysis” by

using LISA indexes.

Figure 15. Anselin Local Moran and Local Getis-ord G statistics of soil gas radon values in terms

of hot spots (areas where locations with high radon values are surrounded by high values: HH), cold

spots (low values surrounded by low values: LL) and local outliers (HL).

Figure 16. Analysis of the OLS residuals. The histogram of the regression residual highlights that

residuals are non-normally distributed (a); and the Global Moran’s I indicates that are spatially

autocorrelated (b).

Figure 17. The map of the Local R2 values indicates where GWR predicts well, and where it

predicts poorly; it may provide clues about important variables that may be missing from the

regression model.

Figure 18. The histogram of the standardized residuals of the GWR a Gaussian distribution

confirming the good performance of the model (a), and the Morans’I autocorrelation test highlights

that residuals are not spatially autocorrelated (b).

Figure 19. Variogram map (a) highlights the presence of anisotropy in the GWR predicted values.

The calculated experimental variogram (b)was then modelled along this direction by using an

exponential model with a nugget value of 0.07, a sill of 1, as well as a maximum range of anisotropy

of 50000 m and a minimum range of anisotropy of 25000 m

Figure 20. Cross-validation graph (a) provides the fitting of the exponential model with a Root-

Mean-Square Standardised of 0.790. The graphs of the standardised residuals (b) indicates a

Gaussian distribution of the errors of the prediction.

Figure 21. Final GRP map obtained by constructing a local regression model by GWR.
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Table 1. Main statistic of the raw radon values, as well as the other parameters 
to be considered under this study. The statistics of the other variables was 
calculated considering the 12911 point of the 1km x 1km grid.  

Variable N Min Max Mean St.dev. 
222Rn (kBq m-3) 7625 0.1 828 38.65 54.40 
226Ra (Bq/kg) 12877 6.5 617 130 137 

Permeability (m2) 12911 10-20 10-10 10-15 - 

Fault density (m/km-2) 12911 10-5 19160 4151 3643 

DTM (m) 12911 0 2385 397 394 

 

Table 2. Detailed statistics of soil gas radon data collected in the Lazio region. AM , arithmetic mean; GM, 
geometric mean; Std.Dev, standard deviation 

N AM SE GM Median Min Max Stdev 

7610 33.83  
(37.60-40.06) 

0.62 19.51 
(18.96- 20.08) 

21.46  
(20-77-22.57) 

0.37 828 54.48 

 

Table 3. Main statistics of radon data within the HGUs. AM , arithmetic mean; GM, 
geometric mean; Std.Dev, standard deviation 

HGU N AM GM Median Min Max Std.Dev. 

Continental deposits 935 26.71 11.78 11.84 0.37 828.00 60.65 

Flysch 1546 35.83 17.96 18.50 0.44 592.37 54.64 

Marine Deposits 377 14.00 8.21 8.00 0.37 134.64 17.00 

Carbonate 1159 39.24 15.65 17.76 0.37 797.00 68.67 

Sabatini Volcanics 305 20.95 12.70 14.06 0.37 240.32 24.13 

Tolfa Volcanics 53 45.76 32.30 34.04 4.81 200.54 37.88 

Vico Volcanics 74 84.81 37.93 41.50 2.00 391.00 107.52 

Volsini Volcanics 1163 54.93 34.05 38.85 0.37 480.26 53.37 

Alban Hill Volcanics 1967 42.98 26.63 31.08 0.37 444.00 42.13 

 

 

 

 

 

 

 

Table 5. Exploratory regression results. 

Model Parameter Cutoff Trials # Passed % Passed Result 

Adjusted R2 > 0.5 15 0 0 0.15 

VIF < 7.5 15 15 15 1.16 

Jarqe-Bera p-value > 0.1 15 0 0 0.00 

Spatial Autocorrelation  p-value (Global Morans’I) > 0.1 15 0 0 0.00 

AICc     19658 

Table 4. Morans’I and Getis-ord tests for spatial autocorrelation of the selected 

variables. 

Variable Morans’ I z-score p-value Getis-ord G z-score p-value 

Soil_Rn 0.56 204.00 0.000 0.00 13.20 0.000 

Fault 0.54 188.80 0.000 0.00 10.57 0.000 

Radium 0.35 219.90 0.000 0.15 20.95 0.000 

DEM 0.63 218.80 0.000 0.11 2.75 0.005 

Permeability 0.04 25.10 0.000 0.00 3.31 0.001 

Table
Click here to download Table: Tables.docx



 

 

Table 6. Variable significance in the model (** 

= 0.05, *** = 0.01) 

Variable % significant VIF Violation 

Radium 100.00*** 1.15 0 

Perm 100.00** 1.08 0 

Fault 78.00*** 1.16 0 

DTM 0.00 1.08 0 

 

Table 7. Main parameters of the Ordinary Least Squared regression 

model. DoF=Degree of Freedom; * indicates significance 

Parameter Value Prob p-value 

N. Obs.    

Multiple R2 0.154   

Adjusted R2 0.152   

AICc 19512   

Joint-F-statistic 92.03 Prob (>F), (5, 2523) DoF 0.000* 

Joint Wald statistic 168.15 Prob (>2), (5) DoF 0.000* 

Koenker (BP) Statistic 120.69 Prob (>2), (5) DoF 0.000* 

Jarque-Bera Statistic 646757.82 Prob (>F), (2) DoF 0.000* 

 

Table 8. Coefficient diagnostic table of the OLS  global regression model (* 
= statistical significant). 

Variable Coeff StdErr Robust t Robust Prob VIF 

Intercept 5.1268 1.4974 3.5883 0.0003* -------- 

Fault 0.0003 0.0000 3.2495 0.0011* 1.16 

DTM -0.0012 0.0012 -0.7051 0.4807 1.08 

Radium 0.0411 0.0026 6.0615 0.0000* 1.15 

Perm 0.2187 0.1038 2.0085 0.0446* 1.08 

 

 

 

 

 

 

 

 

Table 9. Main parameters of the 
GWR local model. 

Parameter Value 

Bandwidth 4000 

Sigma 1.63 

AICc 1231.48 

R2 0.950 

Adj. R2  0.935 



 

 

 

 

 

 

 

 

 

 

Table 10. Main statistics of the coefficients of the explanatory variables for 
the GWR model 

Variable Mean Robust STD Min Max Median IQR 

Intercept 13.49 7.71 -16.17 607.88 11.41 10.40 

Fault 1.32 4.67 -97.18 503.97 0.35 6.30 

Radium 1.61 1.12 -67.71 83.58 0.22 1.51 

Permeability -0.39 0.72 -42.87 121.28 -0.13 0.97 

Table 11. ANOVA test for the comparison of the OLS and GWR 

regression models. 

ANOVA SS DF MS F 

Global Residuals 350288.448 2525.000   

GWR Improvement 326677.861 395.661 825.651  

GWR Residuals 23610.587 2129.339 11.088 74.462 
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