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Abstract 

The characterization of the coupling direction between brain regions is fundamental for disclosing 
brain functioning. To this end, several computational methods have been developed that exploit 
either the temporal or the spectral characteristics of electrophysiological signals measured by e.g. 
EEG and MEG. Among these methods, the Phase Slope Index (PSI) estimates the directionality of 
frequency-specific neural interactions by relying on the sine of the phase slopes of the complex 
coherencies between time series, which is just an approximation for small angles of the actual phase 
slopes. The purpose of our study is to: 1) build a directionality estimator, namely id , which 

directly takes into account the non-approximated phase slopes; 2) assess the performance in 
estimating the coupling direction of PSI and id  in exhaustive simulations. Our findings show that 

while id  obtains better performance than PSI for the no noise case, a Signal-to-Noise Ratio equal 

or lower than one completely reverses the results in favour of PSI. 
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1. Introduction

The development of signal processing techniques plays an increasingly fundamental role in the 
fields of neuroscience and neural engineering (Berger et al. 2010, Hyvärinen et al. 2004, 
Marzetti et al. 2008, Power et al. 2014). Indeed, the application of advanced processing 
methods to functional neural imaging data can provide fundamental insights on brain 
functioning in health and disease. Specifically, recent holistic approaches to neuroimaging 
focus on the functional relations between different brain areas, commonly referred to as brain 
functional connectivity, to understand how the complex human behaviour is realized. In this 
framework, a key issue in the development of those computational methods is the determination 
of the directionality of brain areas interaction (Baccalá and Sameshima 2001, Chen et al. 2006, 
Friston et al. 2003, Marinazzo et al. 2008, Nolte et al. 2008, Rosenblum and Pikovsky 2001). 
Being able to disclose the directionality of neural couplings is fundamental for the 
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understanding of large scale information processing in the brain (Babiloni et al. 2005, 
Hillebrand et al. 2016) thus permitting to disentangle feedback and feedforward functional 
pathways (Varela et al. 2001). Understanding the directionality of connections would thus allow 
to reveal the dynamical functional relationships between brain areas established during 
cognitive processing. To this end, a noninvasive functional imaging technique allowing for a 
direct measurement of the brain electrophysiological activity and with a millisecond time 
resolution, such as MagnetoEncephaloGraphy (MEG) or ElectroEncephaloGraphy (EEG), is 
needed (Baillet 2017, Hämäläinen et al. 1993) as well as the development of specific analysis 
methods.  

A feature of neural interactions which enables a method to identify driver and receiver roles 
of specific brain regions in the coupling, is the noninstantaneous temporal propagation among 
functional connected brain areas. Namely, the synchronization among brain regions occurs with 
time lags (Fries 2015) which range from a few milliseconds up to a hundred of milliseconds 
(Baldauf and Desimone 2014, Bastos et al. 2015, Tass 2007). As we will discuss in more detail 
in the next paragraph, the presence of such nonzero time lags leads to a nonzero frequency 
derivative of the phase difference between two-time series, i.e. phase slopes, whose values 
directly depend on those delays, and whose sign reveals the directionality of the underlying 
interaction. This is the idea behind the formulation of the Phase Slope Index (PSI) (Nolte et al. 
2008), one of the most robust and reliable methods currently available to disclose the 
directionality of frequency-specific neural interactions. Indeed, PSI is basically a weighted sum 
of the approximate phase slopes. PSI was tested in simulations (Haufe et al. 2013, Nolte et al. 
2010) and successfully used to establish directionalities from neurobiological time series, e.g. 
resting state subdural ElectroCorticoGraphy (ECoG) (Casimo et al. 2016), subthalamic Local 
Field Potential (LFP) (Hohlefeld et al. 2013), task MEG (Kadis et al. 2016) as well as resting 
state EEG (Nolte et al. 2008). 

In this paper, we build a new directionality estimator, based on the PSI concept, in which 
the small angles approximation used in PSI is avoided and we test if the estimation of the 
direction of coupling can be improved in this way. 

1.1 Phase slope and directionality 

We aim here at clarifying how the sign of the frequency derivative of the phase difference 
between two-time series informs about temporal precedence, i.e. directionality. A common way 
to assess the phase difference between two-time series is to estimate the phase of their cross-
spectrum. If we assume a temporal precedence between the twotime series, say one is the driver 
and the other is the receiver, and considering a time lag between the former and the latter, then 
the phase differences between them increases with the increase of frequency, i.e. in such a way 
that the phase slopes of the cross-spectrum between the driver and the receiver is positive. 

In order to better understand this concept and thus define the PSI, let us consider two 
signals x and y such that 

( ) ( ),y t ax t     (1) 

 where (τ,a)∈ԹxԹ൅	.	From (1), it follows that between x and y there is a causal relationship; in 
particular, if ߬ is positive, x is the driver and y is the receiver; while negative values of ߬ imply 
the opposite. The absolute value of ߬ is the time delay of the coupling.  

In the Fourier domain, the relationship between the two signals expressed in (1) becomes 

 2( ) ( )i fy f ae x f   and the cross-spectrum, i.e.  *
( ) ( )x f y f   where    denotes the 

expectation value and * the complex conjugation, turns out to be equal to 



A. Basti et al.: Disclosing Brain Functional Connectivity from Electrophysiological Signals…52

 *( ) ( ) ( )i fae x f x f    where ( ) : 2f f   is the phase difference between x and y at the

frequency f. 

Given that ( )f is a linear function of the frequency, we have that the phase slope, given 

by d ( ) : d ( d ) d ( )f f f f      , where df  is an incremental step in frequency, is constant 

and frequency-independent, in fact 

d ( ) 2 ( d ) 2 2 d .f f f f f            (2) 

This means that the sign of d ( )f informs about the role played by x and y in the coupling. 

In fact, since df  is positive, we have that the sign of d ( )f is totally determined by the sign of 

߬, and vice versa. Thus, a positive phase slope implies a positive ߬ meaning that x is the driver, 
while a negative phase slope implies negative ߬, i.e., x is the receiver. See Fig. 1 for a schematic 
representation of the phase slope. 

Fig. 1. Slope of the phase differences between a signal and its delayed version. 

The PSI (Nolte et al. 2008) is a measure of directionality based on the above concept. 
Specifically, PSI exploits the sign of the sine of the phase slopes of the cross-spectrum between 
two time-series given that, for small angles, this is equal to the sign of the phase slopes. Indeed, 
an estimate of the phase slope d ( )f  can be obtained by relying on the imaginary part of the 

product of coherencies between x and y, i.e. cross-spectrum divided by the square root of the 
product between the power-spectra, at frequencies f+df and f as expressed below in (3). By 
calculating this product, we have that 

* 2 ( ( d ) ( ))
, ,Im( ( d ) ( )) Im( )i f f f

x y x yC f f C f e      

2 d ( )Im( ) sin(d ( )) d ( )i fe f f        (3) 

where sin(d ( )) d ( )f f    is the small-angle approximation which holds for small df . 

In Eq. (3) we have used that the complex coherency , ( )x yC f , obtained by dividing the cross-

spectrum by the square root of the product between the power-spectrum of x and y, can be 
written as 
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 

   

*2
2 ( )

,
* *
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( ) ( ) ( ) ( )

i f
i f i f

x y
ae x f x f

C f e e

a x f x f x f x f

 
   

  
  

  (4) 

Nevertheless, in general, an interaction between a driver and a receiver leads to more 
complex expressions for the relationship between the two signals than the ones considered in 

(1). This means that, e.g. the magnitude of *
, ,( d ) ( )x y x yC f f C f  could be different from 1 and 

1d ( )f  different from 2d ( )f  if the two frequencies f1 and f2 are such that 1 2f f . A good 

strategy to take into account the above considerations when using the phase slopes for 
estimating the directionality is to perform a sum over a set of frequency of interest in a range F, 
i.e.,

 * *
, , , ,: Im ( d ) ( ) | ( d ) ( ) | sin(d ( )).x y x y x y x y

f F f F

C f f C f C f f C f f
 

        (5) 

 This allows to obtain a weighted sum of the approximate phase slopes, which 
considers different frequencies according to the statistical relevance and which vanishes for 
mixture of independent noise sources (Nolte et al. 2004). The PSI is defined as the standardized 
version of (5), that is PSI : / std( )   where the estimate of std( )  can be obtained by e.g. 

the Jackknife method.  

We recall that the sine of the phase slopes, used in (5) to define the PSI, represents only an 
approximation of the actual phases of the products of coherencies. The aim of this paper is 
twofold. First, we will build a directionality estimator, namely id , which takes directly into 

account the non-approximated phase slopes. Second, we will assess the performance in 
estimating the coupling direction of PSI and of id  in exhaustive simulations. 

 The paper is organized as follows. In the Methods sections, we will introduce the 
definition of the non-approximated estimator of phase slopes (Section 2.1), and describe the 
interaction model set up to mimic directional brain areas coupling, as measured from 
electrophysiological sensors, with different time delay values and different level of the SNR 
associated with the correlated noise, which is known to have a weight on sensor level larger 
than the weight of the uncorrelated noise (Section 2.2). In the next two paragraphs of the same 
section, the practical setting for the directional coupling estimation and the criteria for 
performance evaluation are presented, respectively. The Results for the two approaches are then 
shown and discussed and, finally, future perspective for phase slope based approaches are 
drawn. 

2. Methods

2.1 Definition of id  as the weighted sum of the actual phase slopes 

We will show that it is possible to calculate the phase slopes  d ( ) f Ff   assuming that each 

of them lies in the interval ( , )  . This strategy allows to completely avoid the small-angle 

approximation used in PSI and to define a method for directionality estimation which is the 
based on a weighted sum of the actual (i.e., non-approximated) phase slopes. 

In fact, depending on the signs of the real and the imaginary parts of the products of 
coherencies, we have that  
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(6) 

where Re indicates the real part of a complex number and Im its imaginary part as above. 

The modified PSI which directly considers the d ( )f values, and which corresponds to the 

weighted sum of the actual phase slopes, can therefore be defined as 

*
, ,: | ( d ) ( ) | d ( ).id x y x y

f F

C f f C f f


     (7) 

id  can be thought as a modified PSI in which, in place of the sine function, there is the 

identity function of the phase slopes, i.e. the function : ( , ) ( , )id        such that 

(d (f)) d (f)id    . This is the reason why we used the subscript id in terming this estimator

id . As for PSI, to assess a statistical significance in the observed results, it is better to 

consider a standardized version of id , : / std( )id id id   . A complete description of a 

possible approach to estimate the standard deviation is provided in Section 2.3. 

The precise calculation of the phase of a given signal is not possible in noisy environments 
and thus, for real data, the estimate of the phase will be perturbed with respect to the real 
unknown value. This would mean that also the calculation of sin(d ( ))f , that appears in the 

definition of the PSI, will be perturbed by the presence of noise. Nevertheless, it is important to 
note that the use of trigonometric inversion such as the one used in (6) does not introduce 
further errors, given that this approach is merely based on the application of trigonometric 
functions; hence the same kind of perturbation which afflicts the original PSI afflicts the 
calculation of the phase slopes in (6) and thus the calculation of id in (7). When using the term 

"actual" phase slope referred to the definition of id we do not mean that the method is able to 

exactly reconstruct the real unknown phase, rather we imply that an exact mathematical 
expression for the phase is used in its definition in place of the approximated expression used 
by the PSI. 

2.2 Synthetic interaction model 

The sets of data here simulated to test the performances of the two methods consist in pairs of 
time series which mimic the evolution of sensor signal pairs as a weighted superposition of the 
interaction of two directionally connected sources with biological noise terms. The interaction 
model that we built in this study, schematically depicted in panel a) of Fig. 2, aims at 
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resembling the situation in which two sources are coupled in the brain with some temporal 
precedence between them, and the available information to estimate this coupling are data as 
measured from scalp electrophysiological sensors outside the brain. We further assume that, 
consistently with a realistic case, the sensors measure not only the interacting source activity 
but also the activity of uncorrelated brain noise.  

Each pair of time courses ( , )Tz x y


 is thus defined as the following bivariate time series 

of length L, 

F F

( ) ( )
( ) (1 ) .

s t n t
z t

S N
   

 


  (8) 

 In (8), the components of ( ) ( ( ), ( ))Ts t d t r t


represent the signals generated respectively 

by the driver ( )d t  and the receiver ( )r t  at the discrete time t, and reflect the interaction 

between brain sources the direction of which we are interested to detect. The term ( )n t


simulates biological noise as the instantaneous mixing of the evolution of three neural sources 
at t, independent between them and with respect to the driver and receiver sources. 

F
S  and

F
N are the Frobenius matrix norms of [ (1),..., ( )]S s s L

 
, and [ (1),..., ( )]N n n L

 
. The 

coefficient [0,1]   indicates the noise strength defining the Signal-to-Noise Ratio (SNR), e.g., 

a value for  equal to 0.5 means a balanced contribution between signal and noise for the sensor 

signal pair z


and, consequently, a SNR equal to 1. An example of sensors time series is shown 
in the panel b of Fig. 2. 

Fig. 2. Graphical representation of the interaction model and example of sensors time series 

The evolution of the signal term is modeled according to 

1

( ) ( ) ( )
Q

k k
k

d t a d t h t


     (9) 

for the driver, and 
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( ) ( ) ( )r t bd t t      (10) 

for the receiver; while the noise evolution is modeled as  

1, 1 1
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2, 2 2
1

3, 3 3
1

( ) ( )

( ) ( ) ( ) .

( ) ( )

Q

k k
k

Q

k k
k

Q

k k
k

c n t h t

n t B c n t h t

c n t h t













 
  

 
 
    
 
 
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 








  (11) 

In (9), (10) and (11), Q is a positive integer and ,a , b, c , ( ), ( ), ( )k i k it t t    � , with 

k=1,…,Q and i=1,2,3,  as well as the components of the mixing matrix B∈Թ2x3, are realizations 
of independent normal random variables.  

Each time courses generated in this study is sampled at 254 Hz, it has a length of L=15240 
data points corresponding to a 1 min of continuous measurement each, and it is obtained by 
setting in (9) and (11), Q=5 (Haufe et al. 2013; Haufe and Ewald 2016) and 3.9kh k ms. In 

this study, we generated a total of 36000 pairs of time series. Specifically, we generated the 
synthetic data as 30 sets of 100 pairs of time courses for each of the twelve values considered 
for the time delays. Given that the physiological time delays between the driver and the receiver 
sources range from a few milliseconds up to a hundred of milliseconds (Baldauf and Desimone 
2014, Bastos et al. 2015, Tass 2007), we chose to vary the time lags in the model (denoted by 
) in (10) from 7.8 ms to 93.6 ms with an incremental step of 7.8 ms. All the time series d, r and 

in  with i=1,..,3 are bandpass filtered in the gamma band (25-40 Hz) by using a IIR Butterworth 

filter with zero phase delay implemented in FieldTrip toolbox (Oostenveld et al. 2011). 

Finally, the   value is set to 0.5, i.e. a SNR equal to 1, for all the simulations with noise. 

This situation is aimed at resembling a poor SNR condition which reflects the coupling between 
the high frequency weak signals observed when the brain is in the so called resting state 
condition, i.e., wakeful relax state in which no specific stimulus is presented to the subject and 
no task is required to be performed. 

2.3 Parameter settings for the estimation of PSI and id

To calculate the spectral coherencies in (5) and (7), we first divided each time series into 30 
epochs of the same length, containing 2 seconds of continuous data, and we further divided 
each epoch into 3 segments of 1 second duration, with 50% overlap, which corresponds to a 
frequency resolution df  equal to 1 Hz. We multiplied the data of each segment with a Hanning 

window and finally estimated the power/cross-spectra as an average of the products of the 
Fourier transforms over all segments (Nolte et al. 2008). 

To assess the statistical significance of the observed PSI and id  results, we firstly normalized 

the measures by an estimation of their standard deviations calculated by using the Jackknife 
method (Nolte et al. 2008, Nolte et al. 2010). Specifically, in this work, the standard deviation 

of e.g. id  is defined over a set of its estimates each, termed here j
id  with j=1,...,30, obtained
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from the data in which the j-th epoch has been removed. The standard deviation of � id  is thus 

finally estimated as 30  where   is the standard deviation of the set  1 30,...,id id  . 

By interpreting this normalization strategy as a pseudo-Z score, it is possible to fix a level 
of significance and thus to read the observed p-values according to a Gaussian distribution. 
Here, we chose 1.96 as the threshold value corresponding to a level of significance of 0.05 
(two-tailed). This means that, if the absolute value of PSI or of id  exceeded 1.96, the 

direction of coupling detected by the sign of the method was considered as significant. 

2.4 Performance evaluation 

The approach we pursued here to evaluate the performance of the connectivity methods is that 
of considering its Mean Squared Error (MSE) in estimating the directionality. 

Specifically, for each of the 30 sets of 100 pairs of time series and for each of the twelve time 
delays considered in this study, we calculated the MSE in estimating the parameters  i 

where  1,1i    describe if the direction of the i-th simulated interaction is source1-to-

source2, e.g. 1i  , or source2-to-source1, e.g. 1i   . Specifically, 

2

2

(sgn(PSI( ))- )
MSE(PSI)

MSE( )
(sgn( ( ))- )

i
i

id
id i

i

i

i












(12) 

where e.g. sgn(PSI( ))i  is equal to 1 , respectively, if a statistical significant source1-to-

source2 or source2-to-source1 direction for the i-th coupling is detected by PSI, while, it is 
equal to 0 if the detected directionality is considered as not statistically significant.  

Hence, a value for the ratio between the MSEs, termed MSE ratio in the following, larger 
than 1 implies, for that time lag, a better performance of id  over PSI, while a value smaller 

than 1 implies a better performance of PSI over id . For each time delay value considered, a 

two-sided sign test, which tests the hypothesis that the ratio between MSEs has median equal to 
1 against the alternative that its distribution does not have median equal to 1, is used. 

The codes for PSI and id  calculation were implemented in Matlab (R2012b, The 

Mathworks, Inc., Natick Massachusetts, United States). The computational cost for the 
calculation did not significantly differ between the two estimators. Indeed, for each pair of time 
series, PSI required roughly 60 ms and id  roughly 61 ms on a desktop PC (Intel® i7-6700 

CPU @ 3.40 GHz; RAM 16 GB). 

3. Results and discussion

Figure 3 shows the average (denoted by the dots) and standard deviation (denoted by the bars) 
of the MSE ratio as a function of the time lag value   between the driver and the receiver, 
obtained from data simulating a realistic noisy situation (SNR=1). Furthermore, significant p-
values for the two-sided sign tests are shown. 
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From Fig. 3, it is evident that the difference in the performance between PSI and id
depends on the   value. Indeed, while for   smaller than 40 ms there is no statistically 
significant difference between them, a significantly better behaviour of PSI is observed for 
larger values of . 

Fig. 3. Ratio between the Mean Squared Error (MSE) of PSI and id for SNR=1 

To answer the question whether PSI has obtained better performance, for large  , because 
of its higher ability in facing the effects of the biological noise, we generated a total of 36000 
pairs of time series in a situation with SNR   , i.e. a   value equal to 0 in the model (8). 

This situation can resemble, as opposite to the previous one, the situation of very high SNR as 
that obtained in the study of evoked brain activity in which multiple repetitions of the same 
stimulus are presented to the subject or multiple instances of the same task are performed by the 
subject, e.g., high frequency activity related to visual stimulation. If the same results obtained 
for SNR=1 were observed for SNR   , this would suggest that the PSI would have better 
performance than id  regardless of the noise level.  

Conversely, Fig. 4 shows a different result with respect to the one shown in Fig. 3. Indeed, 
the ratio between the MSEs for SNR    is significantly larger than 1 for the most of the 
values, meaning that id  has obtained better performance than PSI. 

Furthermore, it is worth to notice that the MSE of the both methods decreases as the 
increase of the time delay value, e.g., PSI has obtained a percentage which goes from about 
80% to about 40% with a SNR=1 and from about 40% to about 15% with a SNR= .Those 
results are in accordance with the fact that the larger the time delay, the larger the phase slope 
(equation 2), provided the time delay value does not lead to a change of sign due to the 
exceeding of the  value.  
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Fig. 4. Ratio between the Mean Squared Error (MSE) of PSI and id for SNR=

When, for a representative time delay larger than 40 ms, the noise contribution is 
parametrically increased, i.e.,  is increased by steps of 0.1, the ratio of MSEs decreases 

towards the reversed situation obtained for SNR=1. This is shown in Fig. 5 for a representative 
case, i.e., 70ms.  

Fig. 5. Ratio between the Mean Squared Error (MSE) of PSI and id for a time delay value of 

70ms 

Taken together our findings show that id  obtains better performance than PSI for high 

SNR , while the presence of biological noise, which in this study is simulated as the 
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contribution to the sensors of the mixing of three independent neural sources, negatively affects 
the performance of id . Indeed, in this case PSI results to be a better estimator of the 

directionality of interactions for delays larger than 40 ms, while no statistical difference 
between the two estimators is found for smaller delays.  

A reasonable explanation of why a weighted sum of the approximated phase slopes, i.e. 
PSI, behaves better than the weighted sum of the actual phase slopes, i.e. id , might be found 

in the shape of the phase slopes functions in id  and in PSI. Indeed, as we previously noted, 

id  can be thought as a modified PSI in which, in place of the sine function, there is the 

identity function of the phase slopes. The direct proportionality between the angles and the 
weights that the identity function in id  gives to those phase slopes can be the reason why PSI 

has obtained higher performance than id  in the presence of noise term. In fact, the function in 

the latter measure assigns the largest weights to the phase slopes around   leading to unstable 
estimates of the directionality given the possible phase jumps from 0 to   in the presence of 
mixture of independent noise sources. Conversely, PSI reduces these instable estimates by 
weighting with small values large phase slopes. 

Finally, even though we have used matrices which randomly mix the independent noise 
sources, we do think that the obtained results do not depend on specific definitions of that 
matrix and, thus, that results similar to those obtained in this study would have been obtained 
e.g. by a priori fixing an electrophysiological technique with a realistic head/forward model
(i.e., by fixing a specific mixing matrix).

4. Conclusions

The Phase Slope Index (PSI) (Nolte et al. 2008) is an estimator of the direction of brain areas 
coupling from electrophysiological time series. Specifically, PSI is the weighted sum of the 
phase slopes, i.e. of the discrete derivatives with respect to frequency of the phase difference 
between the two time-series, approximated by using the sine function. In this work, we have 
introduced and tested, in exhaustive simulations, a modified version of PSI which corresponds 
to the weighted sum of the actual phase slopes. We termed this measure as id . 

Our findings proved that id  obtains better performance than PSI in the absence of noise, 

while the presence of biological noise completely changes the results. Indeed, a balanced 
contribution between signal and noise makes PSI a better estimator of the direction of coupling. 
In conclusion, unless the presence of the biological noise, such as the effects of the volume 
conduction or the source leakage effects (Palva and Palva 2012) can be excluded, e.g. by 
considering situations in which the SNR is known to be high or by using a computational 
approach to reduce the correlated noise contribution (O’neill et al. 2015), the use of PSI on real 
study should be preferred. 

The sine function used in the formulation of PSI, as well as the identity function used in 
definition of id , can be seen as two out of all the possible weight functions of the phase slopes 

which can be defined. In future studies, it is important provide answer to the question whether it 
is possible to define a weight function of the phase slopes to obtain the best performance in 
disclosing directionality in comparison with the two tested here. 

A worth further direction to take is that of focusing on the development of a multivariate 
extension of the phase slope based metrics, which could take into account the 
multidimensionality in the data in a way similar to that of the generalization of the imaginary 
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part of coherency method termed as multivariate interaction measure (Ewald et al. 2012). 
Indeed, both PSI and id  are bivariate estimators of directionality and, thus, they rely on the 

assumption that the signals are scalar quantities. Nevertheless, while this assumption is valid for 
e.g. MEG/EEG sensor signals, given that those signals are one-dimensional, it is a clear
oversimplification for brain level data estimated through MEG/EEG inverse process, which
reflect the evolution of current dipoles along three directions in the space.
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