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Abstract

This paper characterises the interbank deposit network as a flow network that is able

to channel liquidity flows among banks. These flows are beneficial, allowing banks to

cope with liquidity risk. First, we analyse the effi ciency of three network structures—star-

shaped, complete and incomplete—in transferring liquidity among banks. The star-shaped

interbank network achieves the complete coverage of liquidity risk with the smallest amount

of interbank deposits held by each bank. This result implies that the star-shaped network

is most resilient to systemic risk. Second, we analyse the banks’decentralised interbank

deposit decisions for a given network structure. We show that all network structures

can generate an ineffi ciently low amount of interbank deposits. However, the star-shaped

network induces banks to hold an amount of interbank deposits that is the closest to the

effi cient level. These results provide a rationale for consistent empirical evidence on sparse

and centralized interbank networks.
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1. Introduction

Banks are characterised by a maturity mismatch between long-term assets and short-term

liabilities. Liquidity transformation is indeed one of the main functions provided by the

banks. A necessary consequence is that banks are exposed to a substantial amount of

liquidity risk. As a form of coinsurance, banks share this risk by holding gross liquid

positions, where each bank deposits a sum in other banks and receives deposits from other

banks. These cross-holdings of interbank deposits form an interbank network.

This network of interbank deposits serves the purpose of reallocating liquidity from

banks that have a liquidity surplus to banks that face liquidity deficits. The same interbank

network, though, becomes a channel of contagion in case of defaults. Thus, there is a trade-

off between the coverage of liquidity risk and exposure to contagion. On one hand, the

larger the interbank deposits are, the larger the liquidity transfer may be (hence, the

larger the insurance against liquidity risk is). On the other hand, the larger the interbank

deposits are, the larger the exposure to systemic risk is. It is then relevant to identify the

network structure that allows for the largest liquidity transfer with the smallest interbank

exposures.

We address this issue in a novel way by applying flow network analysis to interbank

networks.1 We consider interbank networks as directed and weighted graphs, where the

banks are represented as nodes and the interbank obligations are represented as links that

connect the banks. We then transform these graphs into flow networks by characterizing

two sets of banks depending on the liquidity shock they experience, either facing a liquidity

surplus or dealing with a liquidity shortage. We model the ex-post re-allocation of liquidity

across banks as a flow going from the banks in surplus to the banks in deficit. This

modelling device allowed us to characterise the carrying capacity of an interbank network,

which is the largest flow of liquidity that an interbank network can convey from banks in

surplus to banks in deficit.

We take the structure of the interbank networks as given, and analyse the flow of

liquidity in three interbank structures: complete, star-shaped (also known as money centre)

and incomplete regular networks. In the complete network, every bank is connected to all

other banks; in the star-shaped network, one bank is at the centre and is connected to

all peripheral banks, while the peripheral banks are connected only with to bank at the

1See Ahuja, Magnanti and Orlin (1993) for an exhaustive textbook treatment of flow networks.
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centre. In the incomplete regular network, each bank is connected to other banks in the

network and all banks have the same number of neighbouring banks.

We first compare the size of the effi cient interbank deposits determined by a social

planner across the three interbank networks. An effi cient interbank deposit is the mini-

mum deposit that guarantees the complete coverage of liquidity risk, that is, the complete

transfer of liquidity from surplus banks to deficit banks. The planner’s objective is to

prevent the costly early liquidation of long-term assets. The complete and star-shaped

networks attain full insurance against liquidity risk with the same total amount of inter-

bank deposits. However, the way this amount is split among banks is very different in the

two networks. In the complete network, the total amount is split evenly among all the

banks. In the star-shaped network, the peripheral banks equally share only half of the

total amount. The advantage of the star-shaped network becomes particularly relevant

when the number of the banks is large; a peripheral bank in the star-shaped network holds

an amount of interbank deposits that is roughly half of the amount that a bank holds in

the complete network. The incomplete regular network achieves the complete coverage of

liquidity risk only if it is suffi ciently connected. Even under this condition, this network

requires banks to hold a higher amount of interbank deposits than the complete network.

The intuition for this result is as follows. In the complete network, and a fortiori in

the incomplete one, the cross-holding of interbank deposits between pairs of banks that

are both in need of liquidity, or both have an excess of liquidity, does not improve the

ability of the network to transfer liquidity from surplus banks to deficit bank (i.e., the

carrying capacity of the network). Such interbank deposits are somehow redundant with

respect the coverage of liquidity risk. In the star-shaped interbank network, the centre

bank acts as a hub that channels liquidity from banks in surplus towards banks in deficit

with no redundant interbank exposures between peripheral banks. It is the crucial position

of the bank in the centre of the network that allows the bank to channel most effi ciently the

liquidity flow through the network. Overall, the star-shaped interbank network achieves the

largest possible liquidity transfer (i.e., it is characterised by the largest carrying capacity)

for any given size of interbank deposits.

We compare the star-shaped and complete interbank networks, endowed with their

effi cient interbank deposits, in terms of their resiliency to systemic risk.2 Following an

2The comparison in terms of exposure to systemic risk is not extended to incomplete regular networks

because they provide an effi cient transfer of liquidity only under restrictive conditions (see Section 2.2).
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exogenous default of one or more banks in the system, we evaluate the exposure of the

two networks to financial contagion. The star-shaped network guarantees the complete

coverage of liquidity risk with the least exposure to systemic risk. The smallest shock

capable of inducing the insolvency of all banks in a star-shaped network is larger than the

corresponding shock in a complete network. The key determinant of the resiliency of a

network is the ratio between customer deposits and interbank deposits in each bank, which

determines the allocation of losses among the creditors of the defaulting banks. The higher

this ratio is, the smaller the flow of losses that circulates within the interbank network

is, and the more resilient the network is to solvency shocks. The star-shaped network,

compared to the complete one, allows each bank to have the highest ratio between customer

and interbank deposits since it requires banks to hold the lowest amount of interbank

deposits.

We then analyse the performance of a given network when the decision regarding in-

terbank deposits is decentralised and not made by the planner. Banks can obtain liquidity

either by holding interbank deposits or by prematurely liquidating their long-term assets.

The early liquidation of the long-term assets is assumed to be costly and occurs at a dis-

count (or at cash-in-the-market prices). We show that banks, to prevent the costly early

liquidation of long-term assets, have the right incentives to hold effi cient interbank deposits

both in the complete and the star-shaped networks. Therefore, the star-shaped network is

the most effi cient and most resilient network.

To make banks deviate from the effi cient decision, we consider the existence of an inter-

mediation cost due to the presence of information frictions in the interbank market. The

intermediation activity is executed by a clearing house that collects the relative revenue.

The presence of the intermediation cost induces banks to hold an amount of interbank

deposits that is smaller than the effi cient one in both networks. However, while the com-

plete network is characterised by a unique equilibrium value of interbank deposits, the

star-shaped network has a range of possible equilibrium values within which the peripheral

banks and the bank at the centre exert their bargaining power. It turns out that the com-

plete network and the star-shaped network are characterised by the same ineffi ciency when

peripheral banks decide the size of the interbank deposits. Conversely, when the bank

at the centre can determine the decentralised interbank deposit, the star-shaped network

induces banks to hold an amount of interbank deposits that is the closest to the corre-

sponding effi cient level. This result is guaranteed under two conditions. The first is when
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the intermediation cost is suffi ciently high. In this case, the bank at the centre is willing

to hold an interbank deposit larger than that desired by a peripheral bank. The second is

when the bank at the centre acts not only as a liquidity hub but also as a clearing house,

collecting the relative revenue. In this case, the centre bank is willing to hold the effi cient

interbank deposit. It follows that, in both cases, the star-shaped network is less ineffi cient

in providing full coverage from liquidity risk.

Finally, we compare the two decentralised networks in terms of exposure to systemic

risk. It turns out that the star-shaped network is still more resilient than the decentralised

complete network when the peripheral banks may choose the decentralised interbank de-

posits. Otherwise, if the bank at the centre has power in determining the interbank de-

posits, there is a range of parameters under which the complete network is more resilient.

This occurs because the decentralised interbank deposit in the complete network can be-

come relatively small compared to that chosen in the star-shaped network, making the

complete network more resilient to shocks.

To motivate our analysis, we refer to recent empirical studies that documented the

structures of existing interbank networks. This strand of empirical research was spurred

by the crucial role that interbank markets played in the 2007-2008 financial crisis. The

picture of the interbank network that emerged is consistent across different studies. Based

on transaction data from the Fedwire system, Soromäki et al. (2007) and Beck and Atalay

(2008) found that the actual interbank lending networks formed by commercial banks in

the United States is quite sparse. It consists of a core of highly connected banks, while

the remaining peripheral banks connect to the core banks. An almost identical feature is

found in banking networks in the United Kingdom, Canada, Japan, Germany and Austria

(see, respectively, Langfield, Liu and Ota, 2014; Embree and Roberts, 2009; Inaoka et al.,

2004; Craig and von Peter, 2014; Boss et al., 2004). Our model provides the first rationale

for these findings since it highlights how sparse and centralized interbank networks can

indeed be optimal and more effi cient than less sparse and more decentralised networks.

Several papers empirically analyzed the relationship between the interbank network

structure and exposure to contagion. Degryse and Nguyen (2007) investigated the evolution

of contagion risk in the Belgian banking system. They found that a change from a complete

structure (where all banks have symmetric links) towards a money-center structure (where

money centres are symmetrically linked to otherwise disconnected banks) decreased the risk

and impact of contagion. Mistrulli (2011) focussed on the Italian interbank network and,
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analysing its evolution through time, found that complete connection among banks is not

always less conducive to contagion than other structures. He showed that less connected

networks could be more resilient to contagion. The evidence provided by these studies is

supportive of our theoretical results.

The remainder of the paper is organized as follows. In the rest of the introduction, we

discuss the related literature. Section 2 presents the model, the effi cient interbank deposits

in each network (Section 2.1) and the implications for systemic risk (section 2.2). Section

3 gives our analysis of the decentralised interbank deposit decision. Section 4 concludes

the paper and the Appendix contains the proofs of our lemmae and propositions.

1.1 Related Literature

The motivation for our paper stemmed from the banking literature that investigated the

relationship between interbank deposit structures and systemic risk. This literature fo-

cussed on simple network structures and ad hoc realizations of liquidity shocks in order to

obtain analytical results. Allen and Gale (2000) showed that the banking system is more

fragile when the interbank market is incomplete (cycle-shaped) than when the interbank

market is complete. Brusco and Castiglionesi (2007) and Freixas, Parigi and Rochet (2000)

instead showed that an incomplete cycle-shaped interbank market is more resilient than a

complete interbank market.

Like the cited banking literature, the present paper considers the interbank network

as a way to eliminate aggregate liquidity risk and analyzes how different network struc-

tures are able to cope with idiosyncratic risk, that is, how effi ciently interbank networks

channel liquidity from banks that have excessive liquidity holdings to banks that are in

need of liquidity. Unlike the banking literature, we consider networks with arbitrary num-

bers of banks and a wide variety of network structures. Along with the complete and

regular incomplete interbank networks, we also examine the star-shaped network.3 More

importantly, our approach allows us to contemplate generic realizations of liquidity shocks.

While Allen and Gale (2000) assumed alternate liquidity shocks (i.e., adjacent banks have

opposite liquidity shocks), we do not restrict the analysis to any particular realisation of

3Freixas, Parigi and Rochet (2000) also analyzed a three-banks example of a money-centre system, argu-

ing that too-central-to-fail policies could be rationalized by avoiding contagious defaults to the peripheral

banks. Unlike the present paper, they did not compare the money-centre system with other structures of

interbank networks.
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liquidity shocks (i.e., adjacent banks can have the same liquidity shock).

Our analysis was also inspired by the work by Eisenberg and Noe (2001). They rep-

resented the network formed by a payment system as a lattice and studied the flows of

payment that clear this network of financial obligations. Given the operating cash flows

of the agents in the system, and a generic network of obligations, they showed that the

clearing payments vector is unique under a mildly restrictive condition.4 Since the clearing

payments vector cannot be characterised in analytical form for generic networks, Eisenberg

and Noe (2001) provided a computational characterization of this vector. Our work also

studies flows of payments in networks of obligations, but our method and focus are different.

We use flow network theory (as opposed to lattice theory) to characterise the maximum

flow of interbank payments. Even if there is no clear advantage of using either approach,

the flow network theory seems to be more directly applicable in analysing issues related to

the transfer of liquidity, such as those induced by short-term interbank obligations.

The present paper is related to the growing theoretical literature that models interbank

relationships as networks (see the survey by Allen and Babus, 2009). Leitner (2005) showed

how the threat of contagion may be part of an optimal network. The possibility that the

failure of a bank can spread to the entire network makes it ex-ante optimal to establish

links among banks to obtain mutual insurance and prevent the collapse of the network.

Babus (2016) showed that this form of insurance between banks emerges endogenously

in a network formation game. Castiglionesi and Navarro (2016) instead rationalized the

formation of the interbank network structure as a trade-off between liquidity coinsurance

and counterparty risk. Allen, Babus and Carletti (2012) analyzed the interaction between

financial connections due to overlapping portfolio exposure and systemic risk. Castiglionesi

and Wagner (2013) used a three-bank model to study weather liquidity cross-insurance

among banks is socially effi cient. Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) and Eboli

(2013) showed that the complete network has a robust-yet-fragile nature, in that it is

resilient to relatively small shocks but becomes fragile if the shocks reach a given threshold.

A recent paper by Babus and Hu (2017) highlighted the benefit of less connected and

more centralized networks. Unlike our paper, they considered informational networks that

allowed for the observation of the past behaviours of the connected traders. With limited

4Eisenberg and Noe (2001) used Tarski’s fixed-point theorem to establish that the clearing payments

vector has a lower and an upper bound. To guarantee uniqueness, they introduced a regularity condition

that requires that, in the set of agents involved in a contagion process, there is at least one agent with

strictly positive operating cash flow.
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commitment, transactions must take place through intermediaries in the network. They

showed that a star-shaped network sustains trade more easily, and the centre trader must

be compensated. It is also a stable network and, under certain conditions, a constrained

effi cient network. Similarly to Babus and Hu, we find that the star-shaped network is

stable when the centre bank is rewarded for its intermediation. However, our analysis

shows that the bank at the centre can also be willing to act as a liquidity hub without

being compensated for its intermediation.

An alternative stream of literature resorted to numerical simulations to shed light on

the dynamics of contagion processes in generic and complex financial networks. In this

literature, the analysis relied on numerical simulations of default contagion either on ran-

domly generated networks (see Alenton et al., 2007; Cifuentes, Ferrucci and Shin, 2005)

or on national interbank systems (see Upper, 2010). More recently, Gofman (2017) used

computational methods to investigate the effects of policies that aim to improve financial

stability by imposing limits in terms of the number of connections in the interbank market.

The author generates interbank networks with core-periphery structures. In particular, he

calibrated one network on the topology of the Fed funds market and compared its perfor-

mance with seven networks obtained by imposing a progressively lower cap on the number

of connections that a bank can establish. Gofman (2017) found that a trade-off between

effi ciency (i.e., the capability to transfer liquidity in the network) and stability (i.e., expo-

sure to systemic risk) exists. On one hand, highly interconnected banks improve effi ciency,

which is consistent with our analysis. In particular, Gofman showed, using an example,

that the star-shaped network is the most effi cient one. On the other hand, Gofman found

that as progressively lower caps are set to the connections of core banks, the stability of a

core—periphery network first improves and then rapidly deteriorates.

Flow network theory has been shown to be a useful tool for the analysis of economic

issues. Che, Kim and Mierendor (2013) successfully applied it to the theory of auctions.

To the best of our knowledge, the present paper is the first to apply flow network theory

to study the effi ciency and decentralised behaviour of interbank networks in transferring

liquidity among banks.
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2. The Model

Let N := (Ω,Λ) be an interbank network, i.e., a connected, directed and weighted graph.

Each node ωi, (i = 1, 2, ..., n), in Ω represents a bank, and the links in Λ ⊆ Ω2 represent the

interbank deposits that connect the banks in Ω. The capacity (i.e., the weight) of a link

cij ∈ Λ is the amount of money that bank ωj deposited in bank ωi. The direction of the

link goes from the debtor node, ωi, to the creditor node, ωj. We assume that all interbank

deposits are reciprocal, i.e. cij = cji for all cij ∈ Λ. The liabilities of bank ωi comprise

customer (household) deposits, hi, interbank deposits, di, and equity, ei. On the asset side,

bank ωi holds long-term assets, ai, which are liabilities of agents that do not belong to Ω,

and short-term interbank deposits, ci, which are deposits made by bank ωi in other banks

of the network. The budget identity of bank ωi is as follows: ai + ci = hi + di + ei.

To analyse the flows of liquidity that can be carried by an interbank network, N , we

need to model a liquidity shock. We consider a liquidity shock that consists of a reallocation

of customer deposits across banks, while the aggregate liquidity in the network remains

constant. We assume that, upon the occurrence of the shock, a bank can either experience

an increase in customer deposits (i.e., a liquidity surplus) equal to δ or face a decrease in

customer deposits (i.e., a liquidity deficit) of the same amount, −δ, under the following
constraint:

∑
Ω δi = 0.5 Herein, we refer to a bank that experiences negative (positive)

liquidity shock as a deficit (surplus) bank. If a deficit bank is not able to collect suffi cient

liquidity through the interbank network, then such a bank has to liquidate its long-term

assets at a loss (or at cash-in-the-market prices).

The effi ciency of an interbank network in providing coverage of liquidity risk depends

on the banks’ex-ante choices about which neighbouring banks to place interbank deposits,

and how much to deposit in these banks. These choices determine the shape of the network

N and the capacity of its links, respectively. While we take the network structure as given,

we characterise the effi cient amount of interbank deposits.

The effi cient interbank deposit is derived under the assumption that the social planner

5Assuming symmetric liquidity shock is conventional in the banking literature to represent liquidity

risk. For example, in Allen and Gale (2000) banks use the interbank network to insure against customer

deposits fluctuations from the expected liquidity shock γ = (ωH +ωL)/2, where ωH (ωL) is the high (low)

liquidity shock. The liquidity flow from a surplus bank would be δ = γ − ωL, and the liquidity needed for
a deficit bank would be −δ = −(ωH − γ). Notice that ωH − γ = γ −ωL. In our model, the fluctuations of
customer deposits have an expected value equal to zero.
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maximizes the payoffs of the final claimants of the banks, that is, shareholders and deposi-

tors. The objective of the planner is to avoid losses from the early liquidation of long-term

assets. The planner’s goal is then to achieve the complete coverage of liquidity risk by

being able to reallocate liquidity from surplus to deficit banks.6 The social planner acts

as a network administrator that manages the liquidity flow within the interbank network.

In order to obtain the largest liquidity flow (or carrying capacity) in a given network, the

planner is assumed to coordinate the withdrawals among the banks. Herein, the planner

decides which bank withdraws from which bank and the amount to be withdrawn. The co-

ordination of withdrawals by the planner realizes the largest liquidity transfer from surplus

to deficit banks.

We analyse and compare the effi ciency of three classes of networks: complete, incomplete

regular and star-shaped networks. To make a meaningful comparison of the performance of

the three types of networks in providing the complete coverage of liquidity risk, we assume

that each bank in the complete and incomplete networks have the same size of peripheral

banks in the star-shaped network. In particular, these banks hold the same amount of

customer deposits. This assumption guarantees that each of these banks is exposed to the

same liquidity risk, that is, to the same shock, (δ,−δ).
Given the size of a peripheral bank, we assume that the centre bank in the star-shaped

network has the same balance sheet ratios of a peripheral bank but that it is (n− 1) times

larger. That is, each balance sheet item of the centre bank is (n − 1) times larger than

the same balance sheet item of a peripheral bank. This assumption is coherent with the

observed core-periphery interbank networks. For example, Craig and von Peter (2014)

estimate that “the median size of (German) banks in the core is 49 times that of banks in

the periphery”(p. 337). It is important to highlight that the asymmetry in the size of the

banks in the star-shaped network is not relevant in obtaining the results in Section 2.7

6Notice that this definition of effi ciency is analogous to that given by Allen and Gale (2000). They

characterized the first-best allocation by maximizing the utility of depositors (the only claimants of banks’

liabilities) and avoiding the costly early liquidation of long-term assets. Our approach differs from that

of Allen and Gale (2000) because we do not assume that neighbouring banks would be hit by alternate

(opposite) shocks, instead considering a more general distribution of liquidity shocks.
7This assumption becomes instead relevant in Section 3, and we will discuss it again in this context

(see footnote 22).
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2.1 The Effi cient Interbank Deposits

An interbank network provides complete coverage against liquidity risk if it guarantees

that each deficit bank collects an amount of liquidity that is suffi cient to meet its own

shortage. This coverage has to be achieved for any realisation of liquidity shock. To

evaluate and compare the effi ciency of the three interbank networks, we characterise the

minimum interbank deposit that ensures the feasibility of the complete coverage of liquidity

risk. We begin by analysing the star-shaped network and then analyse the complete and

the incomplete regular networks.

Star-Shaped Network. A star-shaped interbank network consists of a bank at the

centre, ωc, that places an interbank deposit in each of the (n − 1) peripheral banks,

ωp. The latter, in turn, place their interbank deposits in ωc and exchange no deposits

among themselves. Let N s = {Ωs,Λs} be a star-shaped interbank network with Λs =

{cs|∀(ωp, ωc) ∈ N s}. That is, the interbank deposit between each peripheral banks and the
bank at the centre has a capacity equal to cs. Therefore, the centre bank, ωc, holds a total

amount of interbank deposits equal to (n− 1)cs.

Proposition 1 In a star-shaped interbank network, full coverage of liquidity risk is achieved

with c∗s = δ if interbank deposits withdrawals are coordinated.

The proof is in the Appendix. The reasoning is as follows. Let x be the number of

peripheral banks that experience a surplus. This implies that (n − 1 − x) of peripheral

banks face a liquidity deficit. By assumption, the liquidity shock leaves the total stock

of customer deposits unchanged. Therefore, the change of the stock of customer deposits

of the centre bank, ∆hc, is equal to the opposite of the change of the customer deposits

held by all peripheral banks. That is, ∆hc = (n − 1 − x)δ − xδ = (n − 1 − 2x)δ. Thus,

for x > (n − 1)/2, the centre bank faces a liquidity shortage, while, for x < (n − 1)/2, it

experiences a liquidity surplus.

When a liquidity shock occurs, the (n − 1 − x) peripheral deficit banks withdraw the

interbank deposit, cs, from the bank at the centre, while the latter withdraws cs from each

of the x peripheral surplus banks (withdrawals are coordinated by the social planner).

Suppose that cs = δ. In this case, each peripheral bank in deficit collects an amount of

liquidity equal to the needed liquidity shock, δ. If x > (n − 1)/2, the centre bank faces a

liquidity shortage equal to (n − 1 − 2x)δ and collects a net amount of liquidity equal to
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xcs − (n − 1 − x)cs = (n − 1 − 2x)δ. Similarly, if x < (n − 1)/2, the liquidity surplus of

the bank at the centre is enough to cover the liquidity shortages of the peripheral banks.

The star-shaped network achieves the complete coverage of liquidity risk with coordinated

withdrawals and c∗s = δ (and, a fortiori, for any cs > c∗s).
8

Complete Network. In a complete interbank network, each bank places a deposit in

every other bank. Let N c = {Ω,Λc} with Λc = {cij|i 6= j; i, j = 1, ..., n} be a complete
interbank network where all banks have the same size and the links in Λs have the same

capacity, cij. Each bank holds, in this network, a total amount of interbank deposits equal

to cc = (n− 1)cij.

Proposition 2 In a complete interbank network, full coverage of liquidity risk is achieved

with c∗c = n−1
n

2δ (or, equivalently, with c∗ij = 2δ
n
).

The proof is in the Appendix. The reasoning is as follows. In a complete interbank

network, there are n/2 deficit banks and the same number of surplus banks. Each deficit

bank withdraws, from each of its n/2 neighbours in surplus, a deposit equal to cij, collecting

a total amount of liquidity equal to cijn/2. The complete coverage of liquidity risk is

achieved if cijn/2 is at least equal to the liquidity need, δ. The effi cient interbank deposit

is then c∗ij = 2δ/n (and, a fortiori, any cij > c∗ij), which implies c
∗
c = n−1

n
2δ.9 Note that,

contrary to the star-shaped network, in the complete interbank network, the reallocation

of liquidity is achieved with or without the coordination of deposit withdrawals. In the

complete network, whether a deficit bank withdraws only from surplus banks or from all

other banks, the effi cient interbank deposit does not change. This is because each deficit

bank is directly connected to all surplus banks, from which it collects the required liquidity,

and mutual withdrawals among deficit banks offset one another.

Incomplete Regular Networks. Incomplete interbank networks are diffi cult to analyse,

unless some restrictions are imposed on their shape. For the sake of tractability, we focus on
8If withdrawals were not coordinated, the size of the effi cient interbank deposit, c∗s, would be strictly

larger than δ. For example, if the bank at the centre equally split withdrawals among all peripheral banks

irrespective of their liquidity need (i.e., pro rata), the minimum effi cient interbank deposits would be

c∗s = 1.5δ.
9If n = 4, the interbank deposit c∗c coincides with that obtained by Allen and Gale (2000). In their

four-bank complete network, the effi cient interbank deposit is equal to 3(ωH − γ)/2 (where ωH = δ and

γ = 0 in our set up).
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regular incomplete networks. In such networks, all nodes have the same number of incoming

and outgoing links. LetN r = {Ω,Λr} with Λr = {cij|i 6= j; i = 1, ..., n; j = 1, ..., k with k < n− 1}
be an incomplete regular interbank network where the links in Λr have the same capacity,

cij. Let k be the number of incoming (or outgoing) links, then cr(k) = kcij is the total

amount of interbank deposits held by each bank. To ensure that an incomplete network

achieves the complete coverage of liquidity risk, it is necessary that the network is suffi -

ciently connected. This minimum connectivity is guaranteed if each bank places interbank

deposits in at least n/2 banks.10

Proposition 3 In an incomplete regular interbank network with k ≥ n/2, full coverage

of liquidity risk is achieved with c∗r(k) = k
k+1−n/2δ if interbank deposits withdrawals are

coordinated.

The proof is in the Appendix. The result shows how an incomplete network, even if

suffi ciently connected, needs a relatively high interbank deposit to achieve the full coverage

of liquidity risk. Notice that the effi cient interbank deposit, c∗r(k), decreases in k. The

minimum amount of total interbank deposits held by each bank is then obtained when

k = n − 2, which implies that c∗r(k = n − 2) = 2δ. Then, the effi cient interbank deposit,

c∗r(k), is larger than the effi cient deposit c∗c = n−1
n

2δ, for any k ≥ n/2. The reasoning is

as follows. In an incomplete network, a bank that experiences a liquidity deficit may not

be connected to all the surplus banks (a feature that instead characterises the complete

network). The number of interbank deposits that go from the surplus banks into the deficit

banks may be relatively small. These deposits constitute the links over which the flow of

surplus liquidity generated by the shock must pass to reach the deficit banks and achieve

the complete reallocation of liquidity. To support this flow, the capacity of the interbank

deposits that each bank has to hold in the incomplete network has to be larger than that

determined in the complete network.11

10Allen and Gale (2000) analyzed an incomplete interbank network with n = 4 and k = 1, showing

that it allows banks to cover their liquidity risk and implement the effi cient allocation of deposits. The

result hinges on the assumption that adjacent banks are hit by liquidity shocks of opposite sign (i.e.,

shocks are alternate). With a more general liquidity shock structure, incomplete interbank networks do

not necessarily provide full coverage of liquidity risk when k < n/2.
11Notice that considering less connected regular networks (e.g., a circular one) would not change the

result in Proposition 3. This result would actually hold a fortiori. Indeed, the sparser a regular interbank

network is, the fewer the interbank deposits that channel liquidity from surplus to deficit banks are, and
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Since the incomplete network is clearly dominated by the complete one, we do not take

incomplete regular networks into account past this point. From this point on, we restrict

our analysis to the comparison of the star-shaped and the complete networks.

Comparison. We notice that, with n = 2, the effi cient bilateral interbank deposit held

in the two networks is the same and equal to the liquidity shock, δ. The total amount

of interbank deposits is also the same, equal to 2δ, in the two networks. This is intuitive

since, in a two-bank network, the structure of the network does not play a role. When

n ≥ 3, the effi cient interbank deposit may become different in the two networks.

Let us first consider the total amount of effi cient interbank deposits, Ds and Dc, in

the star-shaped and complete networks, respectively. In the star-shaped network, we have

(n − 1)c∗s deposits held by the (n − 1) peripheral banks and the (n − 1)c∗s deposits held

by the bank at the centre. In total, we have Ds = 2(n − 1)δ deposits. In the complete

network, we have a total of nc∗c deposits, that is, D
c = 2(n − 1)δ. Therefore, the two

networks have the same total amount of interbank deposits. However, the way the total

amount of interbank deposits is split among each individual bank is very different in the

two networks.

The total amount of interbank deposits of each bank (with the exception of the bank

at the centre of the star-shaped network) is characterised as follows:

c∗c =
n− 1

n
2δ > c∗s = δ. (1)

In the complete network, the total deposits, Dc, are split evenly among n banks. In the

star-shaped network, the bank at the centre holds half of the total deposits, Ds, and the

other half is equally split among the (n − 1) peripheral banks. If n is large enough, a

peripheral bank in the star-shaped network holds a total amount of interbank deposits

that is roughly half of the effi cient amount that a bank holds in the complete network.

This represents a sizable reduction.

The reason for this result lies in the different topologies of the two networks. The star-

shaped network is characterised by a sparse and maximally centralized structure. This

feature enables the bank at the centre to act as a liquidity hub through which it is possible

to coordinate the interbank withdrawals in order to collect liquidity from surplus banks and

the larger the capacity of these deposits must be to allow the complete reallocation of liquidity within the

network.
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transfer it into deficit banks. Given the uneven allocation of the total amount of interbank

deposits, the flow of liquidity that can cross the bank at the centre is (n− 1) times larger

than the flow that can cross a peripheral bank, which is equal to δ. The carrying capacity

of the bank at the centre, (n−1)δ, can be used to reallocate liquidity among the peripheral

banks. As a result, the effi cient bilateral interbank deposit, c∗s, is the smallest deposit that

enables a deficit peripheral bank to collect the needed liquidity, δ.

Conversely, the complete network has a maximally connected and decentralised struc-

ture. Given the even allocation of the total amount of interbank deposits, the carrying

capacity of each bank (i.e., the flow of liquidity that can cross a bank) is the same and

equal to c∗c > δ. That is, a deficit bank has to deposit, in the other banks, more than what

it needs in order to collect the needed liquidity, δ. This is because the deposits between

banks that experience the same liquidity shock cannot be used in ex-post liquidity reallo-

cation. Even if the withdrawals were coordinated, there is no way to use this interbank

capacity. A planner, being constrained by the network structure, can use such interbank

deposits to move liquidity among surplus banks or among deficit banks but not across both

sets of banks (as would be needed). In a sense, part of the interbank deposits in a complete

network is redundant with respect to covering liquidity risk.

The superior performance of the star-shaped interbank network in reallocating liquidity

is also visible by comparing the carrying capacity of the two networks. The largest liquidity

flow from surplus banks to deficit banks that the complete network can achieve is equal

to δn/2. Conversely, the carrying capacity of the star-shaped network depends on the

realisation of the shock. If the shock equally splits the peripheral banks into surplus and

deficit banks (i.e., x = (n−1)/2), then we have a minimum carrying capacity equal to δn/2.

If all the peripheral banks are either in surplus (i.e., x = 0) or in deficit (i.e., x = n− 1),

the star-shaped network reaches a maximum carrying capacity equal to δ(n − 1), which

coincides with the carrying capacity of the bank at the centre.

We conclude with an example to illustrate the different characteristics of the complete

and star-shaped networks. Consider four banks, ω1, ω2, ω3 and ω4. Assume that they

are linked in a complete network structure, and that each bank holds a total amount of

interbank deposits, c∗c = δ3/2, and a bilateral interbank deposit, c∗ij = δ/2. Upon the

occurrence of the shock, two of these banks face a deficit, say ω1 and ω2, while the other

two experience a surplus. Then, ω1 and ω2 withdraw their deposits from ω3 and ω4, each

collecting 2c∗ij = δ. The carrying capacity (or total flow of liquidity) of the complete
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network is then equal to 2δ. Note that both ω1 and ω2 collect δ while the total capacity of

the incoming links of each of them is higher, equal to 3c∗ij = 3δ/2. Similarly, the surplus

banks, ω3 and ω4, have a bilateral interbank deposit with a capacity of c∗ij that remains idle.

Therefore, there is a spare capacity of two bilateral links (one link between the two deficit

banks and one link between the two surplus banks) that is equal to 2c∗ij = δ. Assume now

that the four banks are disposed in a star-shaped network. Each peripheral bank holds an

interbank deposit, c∗s = δ, with the bank at the centre. Suppose that all three peripheral

banks face a deficit (or a surplus). This is the scenario characterised by the largest ex-post

reallocation of liquidity. Then, each peripheral bank withdraws c∗s from the bank at the

centre (or the other way around, if all peripheral banks are in surplus). This means the

carrying capacity of the star-shaped network is equal to 3δ, and it is fully used without

spare capacity.

2.2 Systemic Risk

We assumed, so far, that reducing the magnitude of interbank deposits is valuable since

it reduces the risk of contagion. In this section, we make this idea explicit by considering

systemic risk, which is broadly defined as the risk that the network is affected by a domino

effect that propagates the losses originating from the initial exogenous default of one or

more banks, that is, a default cascade that involves otherwise solvent banks and possibly

affects the entire network. We evaluate the resiliency of complete and star-shaped networks

to systemic risk assuming that at least one of the banks in the network is bankrupt due to

an exogenous solvency shock.

Definition 1 Bank ωi defaults on its creditors if ai + ci < hi + di (or, equivalently, if

ei < 0), that is, if a bank is not able to honour its debts.

The initial exogenous solvency shock represents a loss of value of the long-term assets,

a, that is able to cause the insolvency of one or more banks. Let Φ be the set of primary

defaults, that is, the set of banks hit by the initial solvency shock. We assume that such

exogenous shock does not affect the value of the long-term assets, a, of the banks that

are not in set Φ. We also assume that all claimants of a defaulting bank have the same

seniority, that is, the losses incurred by a defaulting bank above its equity are split equally

(i.e., pro rata) among the neighbouring banks and the depositors. Default contagion occurs
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if the losses transmitted by the banks in Φ are large enough to cause secondary defaults,

that is, the default of one or more banks in Ω\Φ.
We characterise two thresholds of contagion as measures of the exposure of an interbank

network to systemic risk. The first threshold of contagion τ 1 is the smallest shock that

causes secondary defaults. The final threshold of contagion τ 2 is the smallest shock that

induces the failure of all banks in the network. Therefore, ceteris paribus, the higher these

two thresholds are and the more resilient the network is, the larger the size of the external

shock needed to induce default contagion is. If the two thresholds coincide, the smallest

shock that causes a secondary default is also suffi cient to determine the collapse of the

entire network. We characterise these thresholds for the complete and the star-shaped

interbank networks.

In the complete network, the first and the final thresholds coincide.

Proposition 4 In a complete network, τ c1 = τ c2, and they are equal to

τ c = nei + ei
hi
dij
, (2)

where dij = cji is the amount deposited by bank j in bank i.

The proof is in the Appendix. The reason why the first and the final thresholds of

contagion are the same is as follows. In the complete network, each bank is exposed to

every other bank with the same bilateral deposit, cij. Since the losses of a defaulting bank

are borne pro rata by all its creditors, the losses caused by the primary defaults are evenly

spread among all the other banks. As a consequence, the banks not hit by the original

shock either all survive if their equity suffi ces to absorb the losses or they all fail if the

original shock is larger than τ c.

In a star-shaped network, the first and final thresholds of contagion may also coincide.

This happens if the bank at the centre is in the set of primary defaults. Let us indicate,

with ec and ep, the amount of equity, and, with hc and hp, the amount of customer deposits

held by the centre bank and a peripheral bank, respectively.

Proposition 5 If the bank at the centre, ωc is in the set of primary defaults, Φ, then, in

a star-shaped network, we have τ s1 = τ s2, and their value is as follows:

1. For Φ = ωc, we have

τ s = (n− 1)ep + ec + ep
hc
ds
, (3)

where ds = cs is the amount deposited by a peripheral bank in the bank at the centre.
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2. For Φ = {ωc, ωp| for some p ∈ Ω\ωc} and σc < (n− 1)ep + ec + ep
hc
ds

= τ s, we have

τ̃ s =

[
(n− 1)ep + ec + ep

hc
ds

](
1 +

hp
ds

)
− σc

hp
ds

= τ s + (τ s − σc)
hp
ds
, (4)

where σc is the loss of value of the external assets borne by the bank at the centre.

The proof is in the Appendix. This shows that the resiliency of the star-shaped network

depends on whether the shock hits the centre bank only or some peripheral banks as well.

The initial default of the bank at the centre alone (i.e., Φ = ωc) causes contagion if the

exogenous shock, σc, suffered by such a bank is larger than the threshold, τ s. In this

case, each peripheral bank receives a loss larger than its own equity, and they all default.

Otherwise, if σc < τ s, contagion occurs only if bank ωc receives additional (endogenous)

flow of losses from peripheral banks, that is, only if one or more peripheral banks are in

Φ, along with ωc. In the latter case, the star-shaped network is more resilient.

When the solvency shock hits only the bank at the centre, the losses reach the pe-

ripheral banks in Ω\Φ directly. Debtholders (depositors) of the banks absorb losses only

once. When peripheral banks are also included in Φ, the losses suffered by such banks are

transferred pro rata to their depositors and to the bank at the centre. The latter, in turn,

redirects these losses pro rata towards its own depositors and the peripheral banks in Ω\Φ.
Thus, there is an indirect passing of losses from the affected peripheral banks to the centre

and from the centre to all peripheral banks, and, in such passages, depositors absorb part

of the shock. This implies that, for a given exogenous shock, there is a larger flow of losses

that reaches the peripheral banks in Ω\Φ when the shock is concentrated on the centre

bank compared to the losses caused by the same shock if it is split between the bank at

the centre and some peripheral banks. As a consequence, τ̃ s > τ s.

If, instead, the bank at the centre is not in the set of primary defaults, the first and

final thresholds of contagion in the star-shaped network do not coincide.

Proposition 6 If ωc /∈ Φ, then, in a star-shaped network, the first threshold of contagion

is equal to

τ s1 = mep + ec

(
1 +

hp
ds

)
, (5)

where m = ec

(
1
hp

+ 1
ds

)
is the minimum number of peripheral defaults, which is suffi cient

to induce the default of the bank at the centre. The final threshold of contagion is equal to

τ s2 =

[
(n− 1)ep + ec + ep

hc
ds

](
1 +

hp
ds

)
. (6)

18



The proof is in the Appendix. When the exogenous shock hits only peripheral banks,

the failure of the entire network occurs if the shock is strictly larger than τ s2. By inspection,

τ s2 > τ̃ s. Intuitively, when only peripheral banks are in the set of primary defaults, the

star-shaped network is more resilient to external shocks. The results in Propositions 5 and

6 clearly highlight the sheltering role played by the bank at the centre.

The results on systemic risk show that both the complete and the star-shaped networks

are robust-yet-fragile with respect to default contagion. Both structures are resilient to

shocks smaller than their respective final thresholds of contagion, but, at the same time,

they are exposed to the risk of a complete collapse if the initial shock is larger than such

thresholds. However, the resiliency to external shocks and, therefore, the exposure to

systemic risk of the two networks are different. Notice that the lowest final threshold of

contagion in the star-shaped network is given by τ s in Equation (3). In the complete

network, the unique final threshold is given by τ c in Equation (2). Assuming that the

banks hold effi cient interbank deposits in both networks, the inequality τ s > τ c implies

that

(n− 1)ep + ec + ep
hc
c∗s
> nei + ei

hi
c∗ij
.

Recalling that hc = (n − 1)hi, ep = ei, c∗s = δ and c∗ij = δ2/n, it follows that ep hcc∗s is

larger than ei hic∗ij for n > 2. Moreover, (n − 1)ep + ec > nei; thus, τ s > τ c. Notice that

the inequality, τ s > τ c, holds even assuming that the aggregate stock of equity is the same

in both networks, that is, even if (n − 1)ep + ec = nei. Summing up, τ s2 > τ̃ s > τ s > τ c,

therefore, the star-shaped network is more resilient than the complete one.12

The key determinant of the higher resiliency of the star-shaped network is that it

achieves the complete coverage of liquidity risk with the highest ratio between the external

obligations, h (customer deposits), and intra-network obligations, c (interbank deposits),

of each bank. This ratio dictates the pro-rata allocation of losses among the creditors of

the defaulting banks. For any exogenous shock, the larger h/c is, the smaller the flow of

losses that circulates within the interbank network is, and the larger the flow of losses that

12The ranking of contagion thresholds holds as well if we set, not only the total stocks of equity, but also

the stocks of customer deposits and external assets to be the same in both networks. The proof is available

upon request. We do not assume the same stock of customer deposits in the two networks because this

would imply that a peripheral banks in the star-shaped network has roughly half the amount of deposits

(hence, an exposure to liquidity risk) as that of a bank in the complete network. This would render trivial

the results on the advantage of the star-shaped network in terms of the complete coverage of liquidity risk,

obtained in Section 2.1.
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exits the network to end up in the portfolios of depositors is. The ratio h/c in the star-

shaped network is the same for a peripheral bank and the bank at the centre. Indeed, for a

peripheral bank, hp/c∗s = hp/δ. For the bank at the centre, hc/(n− 1)c∗s = (n− 1)hp/(n−
1)δ = hp/δ. In the complete network, this ratio is equal to hi/c∗c = nhi/2δ(n − 1). Given

that hp = hi, the ratio h/c in the star-shaped network is roughly double that of the

analogous ratio in the complete network.

We conclude with two observations on the containment of exogenously given systemic

risk. First, the star-shaped network has the highest resiliency when the bank at the centre

is not among the set of primary defaults. Any intervention that makes this systemic bank

safer (like too-central-to-fail policies or stricter monitoring of its activities) increases the

resiliency of the star-shaped network. Second, in the star-shaped network, it is possible to

increase the first threshold of contagion τ s1 in Equation (5) without affecting the second

threshold τ s2 in Equation (6). This can be obtained if every peripheral bank transfers x

capital to the systemic bank. The equity of the bank at the centre, ec, would increase by

(n− 1)x, while the equity of the defaulting peripheral banks, mep, would decrease by mx.

Since m ≤ (n − 1), τ s1 increases. In order to increase the resiliency of the network, the

systemic bank should be relatively more capitalized than the peripheral banks. The higher

capitalization of the systemic bank is not linked to its level of risk but to its position in the

network. It intensifies the shelter role of the bank at the centre, improving the resiliency

of the star-shaped network.

3. Decentralized Interbank Deposits

We analyse the bank’s optimal (private) amount of interbank deposits. This choice depends

on the type of network the bank belongs to. We study how each bank chooses the amount

of interbank deposits taking the network structure as a datum. Thus, our objective is to

compare how close the decentralised decisions in the complete and the star-shaped networks

are to their respective effi cient interbank deposits. On the ex-post withdrawal decision, we

assume that deficit banks withdraw interbank deposits first from the neighbours that have

a liquidity surplus.13

We assume that banks are profit maximizers and that each bank chooses the interbank

13This assumption is in agreement with the banking literature (e.g., Allen and Gale, 2000) where the

bank’s liquidity shock is observable (contrary to the depositor’s shock, which is private information).
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deposits by minimizing the expected loss induced by the random fluctuations of customer

deposits. Recall that if a deficit bank cannot cover its liquidity need with interbank de-

posits, it has to liquidate its long-term illiquid asset a. We assume that banks face an

expected net loss from the premature sale of illiquid assets a.14 Avoiding such loss repre-

sents the benefit of holding interbank deposits.

We capture early liquidation loss in terms of the liquidity pricing of illiquid assets, that

is, the premature liquidation of asset a occurs at the cash-in-the-market or fire-sale price,

p. To determine the price, p, we follow Kyle (1985), assuming a linear relationship between

p and the excess demand (or supply) of the asset:

p = po + λ(q + u),

where po is the price that reflects the fundamental value, v, of the asset, q is the quantity

traded by informed traders, u is the quantity traded by liquidity traders (including the

bank in case it faces a liquidity shortage) and λ captures the severity of fire-sale pricing.

The larger λ is, the larger the deviation of the selling price p from p0 is. Kyle’s assumptions

are that E(u) = 0, q = f(v, u) and E(v) = p0. It follows that E(q) = 0 as well.

Under these assumptions, we have E(p) = p0 if the bank does not incur any asset sales.

However, when the bank sells as of assets, the expected impact on the selling price is equal

to ∆p = p− p0 = −λas. Normalizing p0 equal to 1, the bank expects to sell its assets at

p = 1 − λas. The expected revenue from the asset sale is therefore equal to as(1 − λas).
This revenue is needed to cover the liquidity shortage, ls, that the bank eventually faces,

that is, ls = as − λa2
s. The last function is a concave parabola with vertex (1/2λ, 1/4λ),

passing through the origin and is invertible in the relevant interval, ls ∈ [0, 1/4λ]. Thus,

we can determine the amount as to liquidate as follows:

as =
1

2λ

(
1−

√
1− 4λls

)
.

Notice that as ∈ [0, 1/2λ] since
√

1− 4λls ∈ [0, 1]. Moreover, ∂as/∂λ > 0: the larger λ is,

the larger the amount of assets to be sold to cover the liquidity shortage, ls,is.

14Notice that if the expected liquidation cost faced by the deficit banks was equal to the expected gain

obtained by the surplus banks, then risk-neutral banks would not necessarily hold interbank deposits since

they would break even. However, there are reasons to believe that the expected liquidation costs of illiquid

assets are larger than their expected gains. First, the sale of illiquid assets could trigger a chain of bank

runs, including surplus banks. Second, some illiquid assets could be sold outside the banking system; in

this case some, value would be lost for the surplus banks.
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Let us consider a bank that holds no interbank deposits. Given a liquidity shortage of

ls, and given that the probability of facing a liquidity deficit is 1/2, the expected loss of

premature asset liquidation, π, for such a bank is as follows:

π =
1

2
λas =

1

4

(
1−

√
1− 4λls

)
.

When a bank belongs to an interbank network, the expected loss of early liquidation is

reduced by the amount of liquidity that the bank can fetch from its neighbouring banks.

Let l(ci) be the liquidity that bank ωi obtains through its interbank deposits, where ci =

{cij|j ∈ N (i)} is the vector composed of such interbank deposits and N (i) ⊂ Ω is the

set composed of the banks that have an interbank deposit with bank ωi. The amount of

liquidity that bank ωi needs to raise through the sale of long-term assets is ls − l(ci), and
the corresponding expected loss of asset liquidation is as follows:

πi(l(ci)) =

 1
4

(
1−

√
1− 4λ(ls − l(ci))

)
for ls − l(ci) > 0

0 for ls − l(ci) ≤ 0.
(7)

Notice that a liquidity surplus, that is, l(ci) ≥ ls, does not generate revenue for the bank.

Moreover, since bank ωi is indifferent among the vectors of interbank deposits, ci, such

that l(ci) ≥ ls (i.e., the interbank deposits that deliver the complete coverage from liquidity

risk), we assume that a bank chooses the smallest of these deposits, that is, ci, such that

l(ci) = ls.15

Recall that interbank deposits have to be mutually agreed upon, that is, cij = cji, for

all pairs of neighboring banks (ωi, ωj). Then, the amount of liquidity that bank ωi collects

from its neighbouring banks, and therefore the expected loss function πi(ci), depends also

on the interbank deposit decision made by neighboring banks. We show that banks have

the incentive to allocate interbank deposits evenly among their neighbours both in the

complete and in the star-shaped networks (as this is done by the planner).

In the complete network, recalling that cc is the total amount of interbank deposits

that bank ωi allocates among its neighbours, we have the following.

Lemma 1 In the complete interbank network, N c, we have cij = cc
n−1

for all ωi in Ω and

for all ωj in N (i).

15Intuitively, l(ci) grows monotonically in its argument. This is a feature that emerges from the char-

acterization of bank’s liquidity collection in both the interbank networks.
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The proof is in the Appendix. The reason is as follows. If bank ωi deposits the same

amount, cij, in each of its neighbours, then the liquidity, l(ci), that it can collect is equal

to n
2
cij independently from the realisation of the random liquidity shock. Conversely, if the

interbank deposits of bank ωi are not evenly split, then liquidity collection, l(ci), becomes

a random variable that depends on the realisation of the liquidity shock. This random

variable has a mean equal to n
2
cij with positive variance. Given that the loss function

πi(l(ci)) in Equation (7) is strictly convex, Jensen’s inequality implies that the expected

loss of asset liquidation is minimal when bank ωi distributes its interbank deposits evenly

among its neighbours, that is, when the allocations of interbank deposits between banks

is perfectly symmetric. We have cij = cik for all ωi in Ω and for all ωj and ωk in N (i).

This implies that the bilateral interbank deposits are all equal to cij and that the vector

of interbank deposits is the same in each bank, that is, ci = cj, for all ωi and ωj in Ω.

In the star-shaped network, the decision on the bilateral interbank deposit depends on

whether the bank is a peripheral bank, ωp, or the bank at the centre, ωc. In principle, the

centre bank could have different bilateral deposits in each peripheral bank. However, it is

optimal for the centre bank to allocate its deposits evenly among the peripheral banks. Let

us indicate, with cst, the total amount of interbank deposits that the centre bank allocates

among the (n− 1) peripheral banks.

Lemma 2 In the star-shaped interbank network, N s, we have cs = cst
n−1

for all ωp in Ω\ωc.

The proof is in the Appendix, and the reasoning is the same as in the complete network.

If the centre bank, ωc, deposits the same amount in each of the peripheral banks, then the

liquidity that it can collect is certain independently from the realisation of random liquidity

shock. Conversely, if the centre bank does not allocate its interbank deposits evenly, the

liquidity collected becomes a random variable that depends on the realisation of liquidity

shock. The strict convexity of the expected loss function implies that the expected loss of

asset liquidation is the lowest if bank ωc distributes its interbank deposits evenly among

the peripheral banks.16 As long as the peripheral banks agree on cs, in this network, the

allocations of interbank deposits between banks is perfectly symmetric. Bilateral interbank

deposits are all equal to cs.

Finally, in order to analyse banks’individual incentives to hold interbank deposits, we

need to define an equilibrium. Since establishing an interbank deposit requires the consent
16The exact expression of the loss function for the bank at the centre is established in Lemma 4; however,

it has the same property of strict convexity of the loss function in (7).
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of two banks (while the breaking up of a bilateral deposit can be unilaterally decided by

one bank), we adopt the equilibrium notion of pairwise stability by Jackson and Wolinsky

(1996).17 Given bank ωi’s expected loss function, πi(ci), with ci = {cij|j ∈ N (i)} =

(cij, c−ij) the vector of bilateral interbank deposits, we obtain the following definition.

Definition 2 A vector of interbank deposits, cdi =
{
cdij|j ∈ N (i)

}
, forms a pairwise-stable

equilibrium interbank network, N , if:

1. For all ωi and ωj ∈ Ω, with cdij > 0, we have

πi(c
d
ij, c

d
−ij) < πi(0, c

d
−ij) and πj(c

d
ij, c

d
−ij) < πj(0, c

d
−ij).

2. For all ωi and ωj ∈ Ω and for all c̃ij 6= cdij we have:

if πi(cdij, c
d
−ij) > πi(c̃ij, c

d
−ij) then πj(c

d
ij, c

d
−ij) < πj(c̃ij, c

d
−ij).

Condition (1) states that, in equilibrium, it is not possible for any bank to profit from

severing the bilateral interbank deposits unilaterally with a neighbouring bank. Condition

(2), in addition, requires that there are no bilateral interbank deposits that lead to a

Pareto-improvement. That is, if there are alternative interbank deposits, c̃ij, that make

bank ωi strictly better off, they must make the other bank, ωj, strictly worse off.

With the symmetric bilateral interbank deposits established in Lemmae 1 and 2, it is

easy to check whether a vector of interbank deposits forms an equilibrium.

Lemma 3 A vector of symmetric interbank deposits forms an equilibrium if and only if,

for all ωi and ωj ∈ Ω and for all c̃ij 6= cdij, πi(c
d
ij, c

d
−ij) < πi(c̃ij, c

d
−ij).

To prove this, assume that banks ωi and ωj agree to deviate and hold a bilateral de-

posit, c̃ij 6= cdij. The rest of the bilateral deposits with the other banks still have the

equilibrium value of cd−ij. Thanks to the symmetric distribution of interbank deposits, the

values of cd−ij are the same for banks ωi and ωj. Therefore, πi(c̃ij, c
d
−ij) = πj(c̃ij, c

d
−ij).

This implies that if two banks deviate from a symmetric distribution of the interbank

17Pairwise stability is a relatively weak equilibrium concept. It is independent from any particular pro-

cedure through which interbank deposits are formed (and that we do not model). Modeling the formation

process explicitly might lead to a more restrictive definition of the equilibrium (see Section 5 in Jackson

and Wolinsky, 1996).
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deposits, their expected loss is the same. Note that, in Definition 2, Condition (1)

is equivalent to πi(cdij, c
d
−ij) < πi(0, c

d
−ij), and, likewise, Condition (2) is equivalent to

πi(c
d
ij, c

d
−ij) < πi(c̃ij, c

d
−ij). With symmetric interbank deposits, when two banks have to

choose their bilateral interbank deposits, their expected payoff coincides. Thus, to identify

an equilibrium interbank deposit, it suffi ces to verify that for one of the two banks there

is no other interbank deposit that makes the bank better off. We characterise the decen-

tralised interbank deposits for the complete interbank network and then do the same for

the star-shaped network.

Complete Interbank Network. In the complete interbank network, upon the occur-

rence of liquidity shock, a deficit bank, ωi, withdraws n2 deposits cij, from banks in liquidity

surplus, collecting liquidity, l(ci) = n
2
cij. Thus, the shortage of liquidity faced by a deficit

bank is
(
δ − n

2
cij
)
. The expected loss for early asset liquidation that each bank, ωi, faces

is equal to

πi(ci) =
1

4

(
1−

√
1− 4λ

(
δ − n

2
cij

))
. (8)

Proposition 7 The vector of interbank deposits, cdi =
{
cdij = δ 2

n
|∀j ∈ N (i)

}
, is the unique

pairwise-stable equilibrium of the complete interbank network.

The proof is in the Appendix. In the complete network, banks avoid liquidation loss

by holding the effi cient amount of bilateral interbank deposits. Indeed, cdij = c∗ij = 2δ/n,

which implies that cdc = c∗c = 2(n − 1)δ/n. The reason is that the holding of interbank

deposits brings only benefits to banks and there is no reason for banks to hold an amount

of deposits smaller than the effi cient one.

Star-Shaped Interbank Network. We first characterise the expected loss function of

the early asset liquidation of a generic peripheral bank, ωp, and then we characterise the

same function of the bank at the centre, ωc. A peripheral bank that suffers a negative

liquidity shock retrieves an amount of liquidity equal to cs from the bank at the centre.

The liquidity shortage faced by a peripheral deficit bank is (δ − cs), and its expected loss
function is as follows:

πp(cs) =
1

4

[
1−

√
1− 4λ (δ − cs)

]
.

For the bank at the centre, recall that the amount of customer deposits held by ωc
is hc = (n − 1)hp and the liquidity shock leaves the total stock of customer deposits
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unchanged. The reduction of customer deposits, −∆hc, that ωc can face is a random

variable that takes on a value yδ, where y = 2x− (n−1) and x is the number of peripheral

surplus banks. As the shock occurs, the (n−1−x) peripheral deficit banks withdraw their

deposits, cs, from the bank at the centre, while the latter withdraws its deposits, cs, from

x peripheral surplus banks. Thus, if y > 0, the amount of liquidity that ωc collects is equal

to xcs − (n− 1− x)cs = ycs. For a given realisation of x, the liquidity shortage that bank

ωc needs to cover through early asset liquidation is equal to y (δ − cs).18

Lemma 4 In the star-shaped network, the expected loss of the bank at the centre, ωc, due

to early asset liquidation is as follows:

πc(cs) =

n−1∑
x=[n−12 ]+1

(
n− 1

x

)
0.5n−1

{
1

2

[
1−

√
1− 4λ (δ − cs) y

]}
,

where x = |(Ω\ωc)+| and y = 2x− (n− 1).

The proof is in the Appendix. With the expected pay-off functions, πp(cs) and πc(cs),

we obtain the following.

Proposition 8 The vector of interbank deposits, cd = [cds = δ|∀ωp, ωc ∈ Ω], is the unique

pairwise-stable equilibrium of the star-shaped interbank network.

The proof is in the Appendix. As in the complete network, banks choose effi cient

interbank deposits, that is, cds = c∗s = δ. The reason is that the holding of interbank

deposits only benefits banks. Overall, banks make the effi cient choice of interbank deposits

when they face an expected loss due to the premature sale of illiquid assets.19 To compare

the two networks in terms of effi ciency we consider the explicit costs of holding interbank

deposits.

3.1 Costly Interbank Deposits

We assumed, so far, that liquidity can be reshuffl ed inside the network at no cost using

interbank deposits. That is, liquidity insurance among banks occurs in the form of pure
18For the sake of simplicity, in what follows, we restrict the number of banks, n, to be an even integer.
19This result resembles that obtained by Allen and Gale (2000), where the interbank market is able to

decentralise the effi cient allocation. Without unexpected liquidity shocks that induce costly early asset

liquidations, banks internalise effi cient interbank deposit decisions since holding deposits is beneficial in

preventing the expected cost of early asset liquidation.
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transfers, where banks in need of liquidity withdraw from banks in excess without any

repayment. In the context of imperfect capital markets, however, the exchange of interbank

deposits entails repayments. Castiglionesi and Wagner (2013) showed that the existence

of frictions, such as moral hazard (i.e., the magnitude of the shock δ depends on the effort

made by banks) or liquidity shocks that are not verifiable/contractible (i.e., surplus banks

have to be induced to not withdraw when in surplus), make the presence of minimum

repayments necessary to establish interbank relationships.20

The existence of repayments may represent a cost for the banks in presence of a spread

between the interest rate at which banks can borrow and the interest rate at which banks

can lend, with the former being higher than the latter.21 Because of this spread, banks face

a positive expected cost when they insure the liquidity risk through interbank deposits. Let

us normalise the net lending rate to zero, and let us indicate, with γ > 0, the net borrowing

rate (which also coincides with the spread). Then, Ci(γ, ci) is the expected cost faced by

bank ωi that depends on γ and the vector of interbank deposits, which is determined by

the position of the bank in the network.

The spread between borrowing and lending rates represents an intermediation cost for

banks. The assumption is that banks determine the amount of their interbank exposi-

tion bilaterally, but the exchange of liquidity is settled through a clearing house, which

charges different rates to borrowing and lending banks. The spread is an intermediation

revenue for the clearing house, and this revenue is used to cover the operating costs of the

intermediation activity (e.g., of electronic trading platforms).

We take the reason for the existence of these frictions as given, and we use them to

compare how distant the two networks are from the effi cient full coverage of liquidity risk.

Given the benefit (captured by the expected liquidation loss, πi) and the cost (represented

by the expected cost of intermediation, Ci) of holding interbank deposits, every bank ωi
minimises ψi(ci) = Ci+πi. Let us analyse again the complete and the star-shaped networks

20Castiglionesi and Wagner (2013) show in a three-bank model, that banks insure each other less than

the effi cient amount when interbank insurance is provided with repayments. They do not compare how

such friction affects the effi ciency of different network structures.
21In the London wholesale money market, the LIBOR and the LIBID are the rates at which banks

exchange liquidity. The LIBOR is an ask rate at which banks are willing to lend (i.e., the interest at

which banks borrow), and the LIBID is a bid rate at which banks are willing to borrow (i.e., the rate

at which banks lend). There is a spread between these two rates with the LIBOR being higher than the

LIBID. While the LIBID is not offi cially announced, the LIBOR is published daily by the British Bankers’

Association.

27



in turn.

Complete Interbank Network. Recall that each bank, ωi, is equally likely to be a

surplus or deficit bank. Moreover, every deficit bank has n/2 bilateral deposits with surplus

neighbours each of them equal to cij. Similarly, every surplus bank has cijn/2 bilateral

deposits with deficit neighbours. Therefore, the expected intermediation cost is as follows:

Ci =
1

2
cij
n

2
γ

Given the expected loss function, πi, in (8), a bank, ωi, minimises the following objective

function:

ψi(ci) = Ci + πi = cij
n

4
γ +

1

4

[
1−

√
1− 4λ

(
δ − n

2
cij

)]
. (9)

Proposition 9 The vector of interbank deposits,

cdi =

{
cdij =

2

n
δ − 1

2λn

[
1−

(
λ

γ

)2
]
|∀j ∈ N (i)

}
,

of each bank, ωi, is the unique pairwise stable equilibrium of the complete interbank network.

The proof is in the Appendix. The result shows that if the cost of holding interbank

deposits is suffi ciently small, namely, if λ ≥ γ > 0, the banks hold the effi cient amount of

interbank deposits, cdij = c∗ij = 2
n
δ. This occurs when the marginal cost of holding one unit

of deposits is not higher than the marginal benefit. Conversely, for

γ ∈
(
λ,

λ√
1− 4λδ

)
,

banks hold a positive but ineffi cient amount of interbank deposits, 0 < cdij < c∗ij. Finally,

if γ ≥ λ/
√

1− 4λδ, then cdij ≤ 0, that is, banks do not hold interbank deposits since it is

too costly. The equilibrium decentralised interbank deposit, cdij, depends on the severity of

the losses caused by early asset liquidation, λ, and the cost of borrowing in the interbank

market, γ. As intuition suggests, cdij is increasing in λ and decreasing in γ. Accordingly,

the difference, c∗ij −cdij, is decreasing in λ and increasing in γ.

Star-Shaped Interbank Network. Because of the asymmetric structure of the star-

shaped network, the expected cost, πc(cs), faced by the bank at the centre is different

from that faced by the banks at the periphery, πp(cs). However, this difference does
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not affect the decentralised equilibrium interbank deposit when interbank deposits are

exchanged without intermediation costs. Both the bank at the centre and the ones at the

periphery hold the effi cient amount of interbank deposits, δ. However, when the exchange

of interbank deposits is costly, the difference between functions πp and πc becomes relevant

for the determination of the equilibrium interbank deposit.22

Let us compute the expected intermediation cost, Csp, for a peripheral bank, ωp. For

this bank it is equally likely to be in surplus or in deficit, and, in both cases, it holds an

amount of interbank deposits equal to csp. The expected cost is then

Csp =
1

2
cspγ,

and bank ωp’s objective function is

ψp(csp) = Csp + πp(csp) =
1

2
cspγ +

1

4

[
1−

√
1− 4λ (δ − csp)

]
. (10)

Let us consider now the bank at the centre, ωc. Its expected cost is not only determined

by its liquidity shock, but also by its central position in the network. Indeed, the bank at

the centre has to withdraw its deposit, csc, from the peripheral surplus banks not only when

it experiences a deficit (to serve its own liquidity needs) but also when it experiences a

surplus. In the latter case, the centre bank has to withdraw from surplus peripheral banks

since the liquidity surplus of the centre bank is not enough to serve the peripheral deficit

banks. The centre bank then has to pay the intermediation cost on these withdrawals.

The expected cost, Csc, depends on the number of peripheral banks in surplus (i.e., on the

realisation of random variable x).

Csc =
n−1∑
x=0

(
n− 1

x

)
0.5n−1γcscx = γcsc

n−1∑
x=0

(
n− 1

x

)
0.5n−1x = γcsc

n− 1

2
,

22The presence of the intermediation cost makes the assumption regarding the asymmetric composition

of the star-shaped network crucial. The centre bank bears an intermediation cost that is n−1 times larger
than that borne by a peripheral bank. In a symmetric star-shaped network, the centre bank is endowed

with the same stock of customer deposits of a peripheral bank. Both types of banks face the same liquidity

risk, and no bank would find it convenient to be at the center by bearing the much higher intermediation

cost. A symmetric star-shaped network would likely be sustainable if the centre bank is compensated by

the peripheral banks to cover the higher costs (a result that is obtained in the context of OTC markets

by Babus and Hu, 2017). In what follows, we show that an asymmetric star-shaped network can be stable

even without such compensation.
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and bank ωc minimises the objective function

ψc(csc) = Csc+πc(csc) = γcsc
n− 1

2
+

n−1∑
x=n−1

2
+1

(
n− 1

x

)
0.5n−1

{
1

2

[
1−

√
1− 4λ (δ − csc) y

]}
.

(11)

The presence of the intermediation cost, γ, makes the interbank deposit, cdsp, that min-

imises Equation (10) different, in general, from the interbank deposit, cdsc, that minimises

Equation (11).

Lemma 5 The vector of optimal interbank deposits for a peripheral bank is

cdsp =

{
cdsp = δ − 1

4λ

[
1−

(
λ

γ

)2
]
|∀ωp ∈ N s

}
,

and, for the bank at the centre, is as follows:

cdsc =

{
cdsc > c̃sc = δ − 1

4λỹ

[
1−

(
λỹ

γ(n− 1)

)2
]
|ωc ∈ N s

}
,

where ỹ is the expected value of y conditional on y > 0. Moreover, assume γ ≥ ηλ with

η > 1, then, cdsp ≤ c̃sc < cdsc.

The proof is in the Appendix. The optimal decision of the peripheral banks turns out

to be identical to a generic bank, ωi, in the complete network. That is, if λ ≥ γ > 0, the

peripheral banks would hold the effi cient amount, cdsp = c∗s = δ. Conversely, for

γ ∈
(
λ,

λ√
1− 4λδ

)
,

peripheral banks hold a positive but ineffi cient amount, 0 < cdsp < c∗s. If γ ≥ λ/
√

1− 4λδ,

then cdsp ≤ 0. Concerning the bank at the centre, the optimal interbank deposit cannot

be explicitly characterised. For this bank, the benefit of holding interbank deposits is a

random variable that, in turn, is a non-linear function of binomial random variable x. To

overcome this issue, we use Jensen’s inequality to obtain c̃sc, which is a lower bound of the

actual optimal interbank deposit, cdsc. Notice that, as in the complete network, the optimal

deposit, cdsp, and the lower bound, c̃sc, are increasing in λ and decreasing in γ.

Finally, Lemma 5 establishes a suffi cient condition that allows cdsp and c
d
sc to be ordered.

In particular, the condition γ ≥ ηλ with η > 1 guarantees that cdsp ≤ c̃sc, which implies

that cdsp < cdsc since c̃sc < cdsc. The parameter η gets close to 1 as the number of banks,
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n, increases.23 Why does a suffi ciently high γ guarantee that the optimal deposit for the

peripheral banks is smaller than the corresponding deposit of the bank at the centre?

First, notice that, for cs < δ, the expected intermediation cost is linear in cs (and is n− 1

times larger for the centre than for the peripheral banks). However, the expected benefit

(i.e., the avoided losses of early asset liquidation) is increasing and strictly convex in cs.

Second, recall that the bank at the centre, conditional on being in deficit, has a liquidity

shortage equal to ỹ (δ − cs), which is larger than that faced by a deficit peripheral bank,
δ − cs. With everything else equal, a higher intermediation cost, γ, induces to hold a

smaller deposit, cs, and to face a larger liquidity shortage, (δ − cs). Then, the higher γ is,
the higher the marginal benefit of holding the deposits of both a peripheral and the centre

bank is. However, the marginal benefit of the centre bank grows faster in γ than that of a

peripheral bank. This implies that, for suffi ciently high γ, the bank at the centre is willing

to hold a larger amount of interbank deposits to avoid the higher expected losses of early

asset liquidation.

Notice that ỹ is increasing in n. With everything else equal, a larger n increases the

liquidity shortage that the bank at the centre faces in case of liquidity deficit, and it makes

the holding of interbank deposits more valuable to such a bank. Therefore, for higher n,

a lower γ is needed to induce the bank at the centre to hold a larger amount of interbank

deposits than the peripheral banks (whose liquidity shortage does not depend on n).

The following proposition characterises the equilibrium interbank deposits in the star-

shaped network.

Proposition 10 Assume γ ∈
[
ηλ, λ√

1−4λδ

)
; then, the vectors of interbank deposits, cds ∈

[cdsp, c
d
sc], are the pairwise-stable equilibria of the star-shaped network.

The proof is in the Appendix. The reason that the pairwise equilibrium is not unique

is because the optimal interbank deposits of the peripheral banks and the bank at the

centre do not coincide anymore. The condition γ ≥ λη guarantees that cdsp < cdsc, and any

deposits in the interval [cdsp, c
d
sc] is pairwise-stable. Indeed, any bilateral deviation between

a peripheral bank and the bank at the centre is not Pareto-improving; while the peripheral

bank would like to reduce the deposit, the bank at the centre would like to increase it.

Moreover, both banks do not have the incentive to sever the deposit unilaterally as long

23For n = 10, η = 1.201, for n = 25, η = 1.125, for n = 30, η = 1.096, for n = 50, η = 1.091 and for

n = 100, η = 1.062.
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as γ < λ/
√

1− 4λδ. This is the condition that guarantees the optimal cdsp to be strictly

positive, and, therefore, it also guarantees that cdsc > 0. Finally, notice that cs /∈ [cdsp, c
d
sc]

does not represent a pairwise-stable equilibrium since there would be Pareto-improving

bilateral deviations.

The interbank deposit that actually emerges as the equilibrium in the star-shaped

network depends on historical conditions and on the bargaining power of the two types

of banks. However, in order to compare the relative effi ciency of the complete versus the

star-shaped networks, we do not need to precisely determine which will emerge as the

equilibrium deposit. It is enough to consider the smallest deposit, cdsp, among the possible

equilibria and, therefore, the largest possible ineffi ciency of the star-shaped network.

Comparison. We compare how close the decentralised deposits held by the banks in

the two networks are to their respective effi cient values. Recall that the total amount of

effi cient interbank deposits in the star-shaped network, Ds, and in the complete network,

Dc, is the same and equal to 2(n − 1)δ. Let Dd
s = 2(n − 1)cds and Dd

c = n(n − 1)cdij

be the total amount of decentralised interbank deposits in the star-shaped and complete

networks, respectively. To compare the relative effi ciency of the two networks, we look at

the differences between the ineffi cient decentralised deposits and the effi cient ones, that is,

we compare Ds −Dd
s with D

c −Dd
c .

Assume that λ/
√

1− 4λδ > γ ≥ λη. In the star-shaped network, we consider the

smallest among the equilibrium deposits, cdsp.

Dc −Dd
c = 2(n− 1)δ − n(n− 1)cdij =

n− 1

2λ

[
1− 1

γ2

]
and

Ds −Dd
s = 2(n− 1)δ − 2(n− 1)cdsp =

n− 1

2λ

[
1− 1

γ2

]
.

Therefore the complete and star-shaped networks show the same ineffi ciency when, in

the latter, the smallest equilibrium deposit is considered. This implies that, whenever

cds ∈ (cdsp, c
d
sc], the star-shaped network is characterised by a level of interbank deposits

that is closer to the effi cient amount compared to the complete network.

Proposition 11 Assume γ ∈
[
ηλ, λ√

1−4λδ

)
; then, the decentralised star-shaped network is

closer to the effi cient coverage of liquidity risk than the decentralised complete network.
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If γ < λη, we cannot establish whether cdsp < cdsc or c
d
sp > cdsc; thus, we cannot fully

characterise the equilibrium deposit, cds, and comparing the two networks becomes more

diffi cult. Clearly, if the inequality, cdsp < cdsc, still holds, then the result in Proposition 11

would carry over under this condition as well. However, we cannot exclude the possibility

that cdsp > cdsc. In such a case, similarly to Proposition 10, any vector cds ∈ [cdsc, c
d
sp]

represents a pairwise-stable interbank deposit equilibrium, and the star-shaped network is

farther from effi ciency than the complete network. Indeed, consider λ < γ < λη; then, the

deposits cdsp and c
d
ij induce the same ineffi ciency in the two networks as before. However, in

the range [cdsc, c
d
sp), the star-shaped network is more ineffi cient than the complete network.

The problem is represented by the bank at the centre that could require a relatively

small interbank deposit when the intermediation cost is not suffi ciently high. Recall that

γ ≥ ηλ guarantees that the bank at the centre is willing to hold an amount of interbank

deposits that is larger than the peripheral banks in order to avoid the higher expected

losses of early asset liquidation. When γ < λη, the interbank deposit, cs, gets closer to the

effi cient amount δ; thus, the liquidity shortage, (δ−cs), becomes smaller, and the liquidation
losses faced by the bank at the centre may not compensate its higher intermediation costs.

In this case, the bank at the centre may not be willing to hold an amount of deposits larger

than the peripheral banks.

One feasible solution is to exploit the position of the bank at the centre of the star-

shaped network. Notice that the centre bank is the only bank that can intermediate all

bilateral interbank transactions. This is clearly not feasible for a peripheral bank in N s

and is equally unfeasible for a bank in the complete network.24 We assume that the centre

bank operates as the clearing house as well. The spread represents a source of revenue for

the bank at the centre rather than an intermediation cost that compensates the operating

expenses of the clearing house activity.25

By acting as the clearing house, the bank at the centre repays the amount borrowed from

24Consider the complete network with cdij < δ2/n = c∗ij . A deficit bank can collect, from n/2 surplus

banks, an amount strictly smaller that its own liquidity shortage, δ. Hence, its links with other deficit

banks cannot be used to transfer liquidity to them. Similarly, a surplus bank can transfer, to deficit banks,

an amount strictly smaller than its own surplus, δ. Then, its links with other surplus banks cannot be

exploited to intermediate liquidity.
25This assumption is in agreement with empirical evidence based on loan-level data from the Euro area

interbank market provided by Gabrieli and Georg (2016). They showed that banks with a more central

position in the interbank network charge larger intermediation spreads because these banks have access to

cheap borrowing.

33



the surplus peripheral banks at the lending interest rate (which is zero), and it charges the

borrowing rate, γ > 0, to each peripheral deficit bank. The bank at the centre collects an

expected amount of intermediation revenue, Rsc, that depends on the number of peripheral

banks in deficit (i.e., on the realisation of random variable (n− 1− x)).

Rsc =
n−1∑
x=0

(
n− 1

x

)
0.5n−1γcsc(n− 1−x) = γcsc

n−1∑
x=0

(
n− 1

x

)
0.5n−1(n− 1−x) = γcsc

n− 1

2
.

For simplicity, let us assume that the expected revenue, Rsc, cancels out the operating

costs of acting as clearing house. That is, the expected losses (or profits) are Csc = 0. The

objective function of the bank at the centre then becomes ψc(cs) = Csc + πc(csc) = πc(csc)

and reaches a minimum when cdsc = c∗s = δ (with no intermediation cost, the effi cient

deposit is the one that minimises πc(csc)).26 It follows that cdsp ≤ cdsc = δ. Similar to

Proposition 10, if λ < γ < λ/
√

1− 4λδ, any vector of interbank deposit cds ∈ [cdsp, c
d
sc = δ]

is a pairwise-stable equilibrium in the star-shaped network. Since the star-shaped and the

complete networks have the same ineffi ciency if the equilibrium deposit is cdsp, it follows

that the decentralised star-shaped network is closer to the effi cient coverage of liquidity

risk than the decentralised complete network. For γ ≤ λ, both networks induce banks to

hold the effi cient amount of interbank deposits.

Proposition 12 Assume that the bank at the centre of the star-shaped network acts as a

clearing house. Then, i) if λ < γ < λ/
√

1− 4λδ, the decentralised star-shaped network

is closer to the effi cient coverage of liquidity risk than the decentralised complete network,

and ii) if 0 < γ ≤ λ, both networks provide the effi cient coverage of liquidity risk.

Effi ciency versus Systemic Risk. Finally, let us analyse how the (ineffi cient) decen-

tralised interbank networks perform in terms of systemic risk. Recall that, in Section 2.2,

we obtain the ranking of the contagion thresholds in the two networks by considering the

effi cient interbank deposits. We seek to determine if that ranking still holds if the ineffi cient

decentralised deposits characterised in this Section are taken into account.

26If the expected revenue is higher than the operating expenses, then the expected profit from intermedi-

ation is positive, or, equivalently, the expected cost, Csc, is negative. In such a case, the bank at the centre

would like to increase the interbank deposits. However, the maximum feasible amount a deficit peripheral

bank would withdraw is δ (for peripheral banks intermediation is still costly). As long as Csc ≤ 0, the
centre bank acting as clearing house would choose the corner solution given by the effi cient deposit, δ.
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Let us consider the lowest final threshold of contagion in the star-shaped network, τ s,

and the unique final threshold of contagion in the complete network, τ c. When banks hold

ineffi cient interbank deposits in both networks, that is when λ < γ < λ/
√

1− 4λδ, the two

thresholds are as follows:27

τ s = (n− 1)ep + ec + ep
hc
cds

τ c = nei + ei
hi
cdij
.

Recall that the comparison between the two thresholds did not depend on the total amount

of equity that characterises the networks; therefore, we can assume that (n−1)ep+ec = nei.

Moreover, ep = ei and hc = (n − 1)hi. Under the assumed parametrisation of γ, the

equilibrium interbank deposits are cds ∈ [cdsp, c
d
sc = δ], with cdsp given in Lemma 5 and

cdij given in Proposition 9. To compare the two thresholds, assume that the equilibrium

interbank deposit in the star-shaped network is cds = cdsp + ε < δ.

We have that τ c > τ s, that is, the complete network is more resilient than the star-

shaped network, if and only if

δ − 1

4λ

[
1−

(
λ

γ

)2
]

+ ε > (n− 1)

{
2

n
δ − 1

2λn

[
1−

(
λ

γ

)2
]}

.

After rearranging, we get

γ >
λ√

1− 4λδ + n
n−1

4λε
.

Notice that, if ε = 0 (i.e., cds = cdsp), the previous condition does not hold and the star-

shaped network is still more resilient than the complete network (as with the effi cient

interbank deposits). However, for ε > 0 and for γ comprised in the range

λ√
1− 4λδ

> γ >
λ√

1− 4λδ + n
n−1

4λε
,

we have that τ c > τ s, that is, the complete network is more resilient than the star-shaped

network.

The comparison between τ c and the other two thresholds, τ s2 and τ̃
s, is more diffi cult to

establish, but the result that the star-shaped network is more resilient than the complete

27Notice that we consider the case in which the centre bank acts as a clearing house as well. A similar

analysis and conclusions apply if ηλ < γ < λ/
√
1− 4λδ (i.e., if the bank at the centre faces intermediation

costs).
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one does not hold unequivocally in the decentralised analysis. On one hand, decentralised

interbank deposits in the star-shaped network are closer to effi cient ones than the analo-

gous deposits in the complete network; therefore, banks in the latter network incur higher

costs in terms of premature asset liquidation. On the other hand, though, the decentralised

interbank deposits in the complete network could be suffi ciently small to render this net-

work less exposed to the risk of financial contagion. This result displays the existence of a

trade-off between the coverage of liquidity risk and the exposure to systemic risk. We did

not fully exploit this trade-off in this paper since we took the network structure as given

both in the social planner solution and in the decentralised one. A challenging avenue of

research is to fully endogenise such a trade-off.

4. Conclusions

In this paper, we compare the performance of three classes of networks: star-shaped,

complete and incomplete regular networks. We define effi ciency as the complete transfer

of liquidity from banks in surplus to banks in deficit in order to prevent the costly early

liquidation of long-term assets. We show that the complete network achieves the full

coverage of liquidity risk if each bank holds an amount of deposits that is roughly twice

the amount held by the peripheral banks in the star-shaped network. Incomplete regular

networks provide complete insurance against liquidity risk only with interbank deposits

that are larger than those required in the complete and star-shaped networks. The benefits

of holding a smaller amount of interbank deposits lies in the containment of systemic risk.

We show that the star-shaped network is less exposed to systemic risk than the complete

network, as it holds the smallest interbank deposits and because of the shelter role of the

bank at the centre.

We then study the decentralised interbank decision while taking the network structure

as given. When banks do not bear an intermediation cost of holding interbank deposits,

they make the effi cient decision in both the complete and the star-shaped networks. When

banks face such a cost, in both types of networks, banks hold an amount of interbank

deposits that is smaller than their respective effi cient amount. However, the star-shaped

network induces to hold an amount of interbank deposits that is closer to its effi cient

amount. This implies that the decentralised star-shaped network induces smaller losses

due to the premature liquidation of long-term assets. However, this feature could expose
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the system to higher systemic risk than the decentralised complete network because of

the larger interbank deposits. A complete study of the trade-off between the coverage of

liquidity risk and the risk of contagion is a challenging area for future research.

Appendix

To demonstrate Propositions 1, 2 and 3, we turn an interbank network N = {Ω,Λ}, as
defined above, into a flow network. We then apply some results of flow network theory. To

transform N into a flow network, it is suffi cient to add to it the liquidity shock. Formally,

this means to add a set of source nodes (i.e., nodes with no incoming links) and a set of

sink nodes (i.e., nodes with no outgoing links). To each surplus bank, ωi in Ω+ ⊆ Ω, we

attach a source node, si and a link, lsi, that connects the surplus bank to the source node.

Correspondingly, to each deficit bank, ωi in Ω− ⊆ Ω, we attach a sink node, ti, and a link,

lit, that connects the deficit bank to the sink node. A liquidity shock that hits an interbank

network is defined as a four-tuple ∆ = {S, T,Λ+,Λ−} where S = {si|∀i ∈ Ω+} is the set of
source nodes, T = {ti|∀i ∈ Ω− } is the set of sink nodes, Λ+ = {lsi} and Λ− = {lit} are the
sets of links that connect sources and sinks to the surplus and deficit banks, respectively.

Adding the liquidity shock ∆ to an interbank liquidity network, N , we obtain an in-

terbank liquidity flow network, L, which is an n-tuple: L = {N,∆} = {Ω, S, T,Λ,Λ+,Λ−}.
An interbank liquidity flow, L, is a value assignment to the links in Λ, Λ+ and Λ− such

that: i) no link carries a flow larger than its own capacity (capacity constraint); ii) the

divergence of a node, i.e., the difference between its inflow and its outflow, is null for all

nodes in Ω (flow conservation property). A flow that complies with these two requirements

is feasible. In other words, a flow is feasible if it comes out of the sources, crosses the

network and ends entirely in the sinks, without exceeding the capacity of the links that

carry the flow. The value of the largest feasible flow that can cross a flow network is called

the carrying capacity of the network.

Finding the carrying capacity of a network is a fundamental problem in the theory of

flow networks —known as the maximum flow problem. A solution to this problem is given

by the minimum cut-maximum flow theorem provided by Ford and Fulkerson (1956).

Theorem 1 (Ford and Fulkerson 1956) In every flow network, the maximum value of

a flow equals the capacity of a cut of minimum capacity.
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The theorem states that the carrying capacity of a network is equal to the capacity of

the cut which has the smallest capacity among all possible cuts of the network. A cut is a

partition,
{
U,U

}
, of the set of nodes, {Ω, S, T}, of a flow network such that S ⊆ U and

T ⊆ U, i.e. all source nodes are in U and all sink nodes are in U . The capacity of a cut

is the sum of the capacities of its forward links, which are the links going from U into U .

In other words, the cut of smallest capacity is the bottleneck of a network and sets the

upper bound to the magnitude of the flows that such a network can transfer from sources

to sinks. The maximum feasible flow of a network is achievable by social planner with a

proper value assignment to the flows carried by each link in Λ.28

The three following propositions use the Ford-Fulkerson theorem to characterise the

minimum interbank deposit that enables the social planner to obtain a complete ex-post

reallocation of liquidity in the star-shaped, the complete and incomplete networks.

Proof of Proposition 1. Let Ls = {Ω, S, T,Λs,Λ+,Λ−} be a star-shaped interbank
liquidity flow network. For the sake of notational simplicity, we assume that n = |Ω| is an
odd number. Let (U,U) be a cut of Ls, i.e. S ⊆ U and T ⊆ U . Let Z = U\S be the set
of banks in U and, correspondingly, let Y = U\T be the set of banks in U . Let z− be the
number of deficit peripheral banks in Z, and let y+ be the number of surplus peripheral

banks in Y . Recall that the variation of the customer deposits of the centre bank ωc is

equal to ∆hc = (n − 1 − 2x)δ, where x is the number of deficit peripheral banks in Ls.

Correspondingly, we attach to the bank at the centre a source node if ∆hc > 0 and a sink

node if ∆hc < 0. In the former case, the capacity is equal to (n − 1 − 2x)δ, while in the

latter case the capacity is equal to −(n− 1− 2x)δ = (2x− n+ 1)δ. Thus the structure of

Ls, and the capacities of its possible cuts, also depend on the realisation of the shock.

We now seek to characterise the cut of Ls with the minimum capacity. We have three

possible scenarios:

1. ∆hc > 0, i.e. x < (n − 1)/2 and ωc ∈ Ω+. The formula that characterises the

capacity of a cut of Ls depends on whether the centre bank is in Z or Y . In this case, we

have

Γ(U,U) = |Y | cs +
(
z− + y+

)
δ if ωc ∈ Z, and (12)

Γ(U,U) = |Z| cs +
(
z− + y+

)
δ + (n− 1− 2x)δ if ωc ∈ Y . (13)

The first addenda of these equations are the sums of the capacities of the links that go

28To obtain the maximum flow, the planner must ensure that all forward links that cross the minimum

cut are filled to capacity, while all backward links that cross such a cut must carry no flow.
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from Z into Y , Γ(Z, Y ), where each link has capacity cs. The second addenda are the sums

of the capacities of the links starting from deficit peripheral banks in Z and ending in the

sink nodes in T , plus the sums of the capacities of the links starting from the source nodes

in S and ending in surplus peripheral banks in Y , each with capacity δ. Finally, the third

addendum of (13) is the capacity of the link that goes from the source node attached to

the centre bank to the latter (that, in this case, lies in the set Y ).

Let us analyse equation (12). Note that (z− + y+) in (12) is minimal for sets Y such

that Y ⊆ Ω−, for |Y | ≤ (n − 1)/2, and Y ⊃ Ω−, for |Y | > (n − 1)/2. This is so because

(z− + y+) diminishes of one unit as we move one deficit peripheral bank from Z into Y ,

while (z− + y+) increases of one unit if we move one surplus peripheral bank from Z into

Y . Since we seek to minimize (12), we restrict the attention to sets Y such that Y ⊆ Ω−

or Y ⊃ Ω−. With this facilitating restriction, it can be checked by inspection that:

a) if cs > δ, then with Y = ∅ (12) is minimized and equal to (n− 1− x)δ;

b) if cs < δ, then with Y = Ω− (12) is minimized and equal to (n−1−x)cs < (n−1−x)δ;

c) if cs = δ, then with Y = Ω− (12) is minimized and equal to (n−1−x)cs = (n−1−x)δ.

Consider now equation (13). If ωc ∈ Y we have that (z− + y+) is minimal for sets

Z such that Z ⊆ Ω+, for |Z| ≤ n/2, and Z ⊃ Ω+, for |Z| > n/2, for the same reason

expounded above. Again, since we seek to minimize (13), we restrict the attention to the

sets Z such that Z ⊆ Ω+ and Z ⊃ Ω+. Then it can be checked by inspection that:

a) if cs > δ, then (13) is minimized for Z = ∅ and is equal to (n− 1− x)δ;

b) if cs < δ, then (13) is minimized for Z = Ω+ and is equal to xcs + (n− 1− 2x)δ <

(n− 1− x)δ;

c) if cs = δ, then (13) is minimized for Z = Ω+ and is equal to xcs + (n− 1− 2x)δ =

(n− 1− x)δ.

Therefore, the planner achieves the complete reallocation of liquidity in Ls if cs ≥ δ,

filling the deficit δ of all the n− 1−x deficit banks with a flow equal to the flow out of the
source nodes (i.e. the sum of the surpluses), xcs + (n− 1− 2x)δ.

2. ∆hc < 0, i.e. x > (n− 1)/2 and ωc ∈ Ω−. Again, the formula that characterises the

capacity of a cut of Ls depends on whether the centre bank is in Z or Y . We have

Γ(U,U) = |Y | cs +
(
z− + y+

)
δ + (2x− n+ 1)δ if ωc ∈ Z, and (14)

Γ(U,U) = |Z| cs +
(
z− + y+

)
δ if ωc ∈ Y . (15)

The third addendum of (14) is the capacity of the link that goes from the centre bank to

the sink node attached to it (since, in this case, ωc lies in the set Z). Like above, and for
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the same reasons, we restrict the attention to sets Z and Y such that Z ⊆ Ω+ or Z ⊃ Ω+,

and Y ⊆ Ω− or Y ⊃ Ω−. Then it can be checked by inspection that:

a) if cs > δ, then (14) is minimized for Y = ∅ and is equal to (n− 1− x) δ + (2x −
n+ 1)δ = xδ;

b) if cs < δ, then (14) is minimized for Y = Ω− and is equal to (n− 1− x)cs + (2x−
n+ 1)δ < xδ;

c) if cs = δ, then (14) is minimized for Y = Ω− and is equal to (n− 1− x)cs + (2x−
n+ 1)δ = xδ.

Consider now equation (15). We have that:

a) if cs > δ, then (15) is minimized for Z = ∅ and is equal to (n− 1− x) δ + (2x −
n+ 1)δ = xδ;

b) if cs < δ, then (15) is minimized for Z = Ω+ and is equal to (n− 1− x)cs + (2x−
n+ 1)δ < xδ;

c) if cs = δ, then (15) is minimized for Z = Ω+ and is equal to (n− 1− x)cs + (2x−
n+ 1)δ = xδ.

Therefore, the planner achieves the complete reallocation of liquidity in Ls if cs ≥ δ,

filling the deficit of all deficit banks with a flow equal to the flow coming out of the source

nodes: (n− 1− x)δ + (2x− n+ 1)δ = xδ.

3. ∆hc = 0, i.e. x = (n− 1)/2, which means that there is an equal number of surplus

peripheral banks and of deficit peripheral banks. Since the centre bank is neither in surplus

nor in deficit, we attach no source or sink node to it. We have

Γ(U,U) = |Y | cs +
(
z− + y+

)
δ if ωc ∈ Z, and (16)

Γ(U,U) = |Z| cs +
(
z− + y+

)
δ if ωc ∈ Y . (17)

Like above, and for the same reasons, we restrict the attention to sets Z and Y such

that Z ⊆ Ω+ or Z ⊃ Ω+, and Y ⊆ Ω− or Y ⊃ Ω−.

Note that, for |Y | ≤ (n − 1)/2,we have y+ = 0 and z− = ((n− 1)/2− |Y |), while for
|Y | > n/2, y+ = (|Y | − (n− 1)/2) and z− = 0. Likewise, for |Z| ≤ (n−1)/2, we have y+ =

((n− 1)/2− |Z|) and z− = 0, while for |Z| > (n−1)/2, y+ = 0 and z− = (|Z| − (n− 1)/2).

Thus we rewrite the above equations respectively as:

Γ(U,U) = |Y | cs + |(n− 1)/2− |Y || δ if ωc ∈ Z, and (18)

Γ(U,U) = |Z| cs + |n/2− 1− |Z|| δ if ωc ∈ Y . (19)
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Therefore, if ωc ∈ Z:
i) if cs > δ, then with Y = ∅ (18) is minimized and equal to δ(n− 1)/2;

ii) if cs < δ, then with Y = Ω− (18) is minimized and equal cs(n− 1)/2 < δ(n− 1)/2;

iii) if cs = δ, then with Y = Ω− (18) is minimized and equal cs(n− 1)/2 = δ(n− 1)/2.

Likewise, if ωc ∈ Y :
i) if cs = δ, then with Z = ∅ (19) is minimized and equal to δ(n− 1)/2;

ii) if cs < δ, then with Z = Ω+ (19) is minimized and equal cs(n− 1)/2 < δ(n− 1)/2;

iii) if cs = δ, then with Z = Ω+ (19) is minimized and equal cs(n− 1)/2 = δ(n− 1)/2.

Therefore, the planner achieves the complete reallocation of liquidity in Ls if cs ≥ δ,

filling the deficit of all the (n− 1)/2 deficit banks with a flow equal to the flow coming out

of the source nodes: δ(n − 1)/2. The planner achieves the complete coverage of liquidity

risk in Ls by coordinating interbank deposits withdrawals and with the smallest interbank

deposit cs = δ.

Proof of Proposition 2. Let Lc = {Ω, S, T,Λc,Λ+,Λ−} be a complete interbank
liquidity flow network. Let (U,U) be a cut of Lc and let Z, Y , z− and y+ be defined as in

the proof of Proposition 1. Then the capacity Γ(U,U) of a cut in Lc is

Γ(U,U) = |Z| |Y | cij +
(
z− + y+

)
δ

= |Z| (n− |Z|)cij +
(
z− + y+

)
δ,

where |Z| |Y | cij is the sum of the capacities of the links starting from banks in Z and

ending in banks in Y . Like in the proof of Proposition 1, and for the same reasons, we

restrict the attention to sets Z and Y such that Z ⊆ Ω+ or Z ⊃ Ω+, and Y ⊆ Ω− or

Y ⊃ Ω−. Under this restriction, we have y+ = (n/2− |Z|) and z− = 0 for |Z| ≤ n/2,,

while for |Z| > n/2, we have y+ = 0 and z− = (|Z| − n/2). Hence we rewrite the capacity

Γ(U,U) as:

Γ(U,U) = |Z| (n− |Z|)cij + |n/2− |Z|| δ. (20)

The first addendum of equation (20) is a concave parabola with two minima at the

extremes of the range of |Z|, i.e. it is minimal and equal to zero for |Z| = 0 and |Z| = n.

The second addendum is a piecewise linear and convex function with minimum equal to

zero for |Z| = n/2. It can be checked by inspection that, for all cij < δ, equation (20)

is m-shaped, with three local minima corresponding to |Z| = 0, |Z| = n/2, and |Z| = n.

More precisely:
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1. for cij = 2
n
δ, i.e. for cc = n−1

n
2δ, (20) has three global minima, for |Z| = 0, |Z| = n/2,

and |Z| = n, all equal to n
2
δ;

2. for cij > 2
n
δ, i.e. for cc > n−1

n
2δ, (20) has two global minima, for |Z| = 0 and |Z| = n,

both equal to n
2
δ;

3. for cij < 2
n
δ, i.e. for cc < n−1

n
2δ, (20) has a minimum for |Z| = n/2 and equal to(

n
2

)2
cij = n2

4(n−1)
cc <

n
2
δ.

Thus, a complete interbank network N c with an interbank deposit cc ≥ n−1
n

2δ has a

carrying capacity suffi cient to provide full coverage of liquidity risk n
2
δ. Note that this

capacity is achievable even without the planner’s withdrawal coordination. The planner

achieves the complete coverage of liquidity risk in Lc with the smallest interbank deposit

cc = n−1
n

2δ (or cij = 2
n
δ). Notice that the coordination of withdrawals by the planner is

suffi cient but not necessary to obtain the full coverage of liquidity risk. Given the symmetric

structure of the network, the same result would obtain if all deficit banks withdraw from

all their neighbouring banks (not only the surplus banks).

Proof of Proposition 3. Let Lr = {Ω, S, T,Λr,Λ+,Λ−} be an incomplete regular
interbank liquidity flow network with degree k ≥ n/2. Let (U,U) be a cut of Lc and let Z,

Y , z− and y+ be defined as in the proof of Proposition 1.

The capacity Γ(U,U) of a cut in Lr is Γ(U,U) = Γ(X, Y ) + (z− + y+) δ. Like in the

proofs of propositions 1 and 2, we restrict the attention to sets Z and Y that minimize

(z− + y+), i.e. such that Z ⊆ Ω+ or Z ⊃ Ω+, and Y ⊆ Ω− or Y ⊃ Ω−. Note that:

1. By the assumption of bilateral obligations among the banks in Ω, we have that

Γ(X, Y ) = Γ(Y,X). For convenience, below we write eq. (22) exploiting the fact that, for

|X| = n/2, ..., n, Γ(X, Y ) is equal to Γ(Y,X) for |Y | = n− |X|.
2. For |X| = 0, ..., n/2, Γ(X, Y ) is minimal for sets X which are maximally connected,

i.e. sets X such that each node in X is connected to all other nodes in X (recall that

k ≥ n/2). The same applies to Γ(Y,X) for |Y | = 0, ...n/2: it is minimal for sets Y in

which each node is connected to all other nodes in Y .

Hence, since we are seeking the cut that minimises Γ(U,U), we further restrict our

attention to partitions (X, Y ) of Ω where: i) for |X| ≤ n/2, X is maximally connected and

X ⊆ Ω+; ii) for |Y | ≤ n/2, Y is maximally connected and Y ⊆ Ω−. With this restriction,

we minimize the number of links that go from the set of surplus banks into the set of deficit

banks (i.e. the bridge that connects the two sets). Under this restriction we have that i)

for |X| ≤ n/2, y+ = (n/2 − |X|), x− = 0 and each bank in X has k − |X| − 1 links with
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banks in Y , while ii) for |X| ≥ n/2, x− = (|X| − n/2) = (n/2 − |Y |), y+ = 0 and each

bank in Y has k − |Y | − 1 links with banks in X. Hence we write the capacity Γ(U,U) of

a cut in Lr as

Γ(U,U) = |X| [(k + 1)− |X|] cij +
(n

2
− |X|

)
δ for |X| ≤ n/2, (21)

Γ(U,U) = |Y | [(k + 1)− |Y |] cij +
(n

2
− |Y |

)
δ for |Y | ≤ n/2. (22)

It can be checked by inspection that, for cij < 1
k
δ, both equations (21) and (22) are strictly

concave, with local minima at the extremes of the ranges of their respective arguments.

More specifically, we have that:

1. for cij(k) = 1
k+1−n/2δ, i.e. for cr(k) = k

k+1−n/2δ, we have i) equation (21) has two

global minima, for |X| = 0, and |X| = n/2; and ii) equation (22) has two global minima,

for |Y | = 0, and |Y | = n/2. Each of such minima is equal to n
2
δ. Thus, with these interbank

deposits, the carrying capacity of N r is equal to n
2
δ .

2. for cij(k) > 1
k+1−n/2δ, i.e. for cr(k) > k

k+1−n/2δ, both equations (21) and (22) are

minimal and equal to n
2
δ for, respectively, |X| = 0 and for |Y | = 0. With such deposits

the upper bound to the carrying capacity is set by the value of the liquidity shock. This

means that the interbank deposits are larger than what is necessary for the coverage of

liquidity risk, if interbank deposits are coordinated.

3. for cij < 1
k+1−n/2δ, i.e. for cr(k) < k

k+1−n/2δ, both equations (21) and (22) are

minimal and equal to n
2
(k + 1− n

2
)cij <

n
2
δ for, respectively, |X| = n/2 and for |Y | = n/2.

In this case the interbank deposits are not suffi ciently large to support a complete post-

shock reallocation of liquidity from surplus banks to deficit banks.

To sum up, an incomplete interbank network Lr with an interbank deposit cr(k) ≥
k

k+1−n/2δ has a carrying capacity suffi cient to provide full coverage of liquidity risk (n/2)δ.

The planner achieves the complete coverage of liquidity risk in Lr by coordinating interbank

deposits withdrawals and with the smallest interbank deposit cr(k) = k
k+1−n/2δ.

To compare the exposure to systemic risk of different network structures, we represent

them as financial flow networks. We turn an interbank network, N = (Ω,Λ), into a

financial flow network, F , by adding to it: i) a set A = {a} of source nodes, that represent
the external assets a held by the banks in Ω; ii) two sets, Q and T , of sink nodes, where

Q represents the equity holders of the banks in Ω and T represents the households who

hold debt claims (customer deposits) against the banks in Ω; iii) a set of links, Λa = {lai },
that connect the external assets a to the banks in Ω that own them; iv) a set of links,
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Λq =
{
liQ
}
, that connect the banks in Ω to their shareholders in Q; and v) a set of links,

Λh = {liT}, that connect the banks in Ω to their bondholders and depositors in T . Let

F c =
{

Ω, A,Q, T,Λc,Λa,Λq,Λh
}
and F s =

{
Ω, A,Q, T,Λs,Λa,Λq,Λh

}
be the financial flow

networks corresponding to the complete and star-shaped interbank networks, respectively.

The flows that cross the two financial flow networks represents a flow of value going from the

external assets (the source nodes A) into the portfolios of the final claimants: shareholders

(sink Q) and depositors (sink T ).

Propositions 4, 5 and 6, make use of the following property of network flows: the value

of the net forward flow that crosses a cut is the same for all the cuts of the network.29

Applying this property to a financial flow network, F , we have that the value of the net

forward flow that crosses all cuts of F equals the value of the exogenous shock, i.e. the

flow that crosses the cut {A, (Ω, T,Q)}. It follows that the value of the exogenous shock
is equal to the forward flow that goes from the set of defaulting nodes into the rest of the

network, i.e. the flow that crosses the cut {(A,Φ), (Ω\Φ, Q, T )}.
Proof of Propositon 4. Let m be the number of primary defaults caused by a shock

m = |Φ| and let bi ∈ [0, 1] be a parameter that measures the percentage loss-given-default

of a node, i.e. it measures the share of the value of the liabilities issued by the i-th bank

which is lost upon its default. Each node ωi ∈ Φ sends a flow equal to its own equity ei to

the sink Q, a flow equal to bihi to the sink T and a flow equal to bidij to each of its (n−m)

creditors in Ω\Φ. Thus the forward flow that crosses the cut {(A,Φ), (Ω\Φ, Q, T )}, which
is equal to the shock that comes out of the source nodes, is

mei +mbihi +mbidij(n−m), (23)

where the term mei is the value of the flow of losses going from Φ to Q, the term mbihi is

the flow of losses that goes from Φ to T , and the sum mbidij(n −m) is the flow of losses

going from Φ to Ω\Φ. In a complete network N c, each node in Ω\Φ receives a flow of

losses equal to mbidij from its defaulting debtors. For default contagion to occur, this flow

of losses must be larger than or equal to the absorbing capacity of a node that is given by

its capital: mbidij ≥ ej. The value of an exogenous shock that is exactly large enough to

cause such a condition to be fulfilled, i.e. such that mbidij = ej, constitutes both the first

and the final threshold of contagion of a network N c. All nodes in Ω\Φ default together

if such a threshold is reached. This condition requires that mbi = ej/dij. Substituting this

29See Ahuja, Magnanti and Orlin (1993) page 179.
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value in (23), and recalling that ei is the same for all banks in Ω, we obtain the first and

final contagion threshold of a complete network:

τ c = mei +
ei
dij
hi +

ei
dij
dij(n−m) = nei + ei

hi
dij
.

Proof of Proposition 5. We use again the result that the shock out of the source nodes

is equal to the forward flow that crosses the cut {(A,Φ), (Ω\Φ, Q, T )}. Considering the
two cases in the proposition, we have

1) if Φ = ωc, the flow that crosses the cut {(A, ωc), (Ω\ωc, T,Q)} is equal to

ec + bchc + bcds(n− 1), (24)

where bc is the loss-given-default parameter of ωc. Contagion occurs for any shock such that

bcds(n− 1) ≥ ep(n− 1). The smallest of such shocks is the one that causes bcds(n− 1) =

ep(n − 1), hence bc = ep/ds. This condition characterises both the first and the final

threshold of contagion. Substituting bc = ep/ds into equation (24), we obtain

τ s = ec +
ep
ds
hc +

ep
ds
ds(n− 1) = ec + (n− 1)ep + ep

hc
ds
.

2) ifΦ = {ωc, ωp| for some p ∈ (1, ..., n− 1)}, the flow that crosses the cut {(A,Φ), (Ω\Φ, T,Q)}
is equal to

(m− 1)ep + ec + (m− 1)bphp + bchc + bcds(n−m),

wherem = |Φ|, the sum (m−1)ep+ec is the flow of losses that goes from the set of primary

defaults into the sink Q, the sum (m− 1)bphp + bchc is the flow of losses that goes from Φ

into the sink T , and the term bcds(n −m) is the flow of losses that goes from the central

node to its creditors in Ω\Φ. Both first and complete contagion occur for any shock such
that bcds(n−m) ≥ ep(n−m), hence bc ≥ ep/ds. Taking the smallest of such shocks —i.e.,

bc = ep/ds —we obtain the first and final threshold

τ̃ s = ec + (n− 1)ep + ep
hc
ds

+ (m− 1)bphp. (25)

To determine (n− 1)bp we apply the conservation property to the bank at the centre, and

given σc is the loss of value of the external assets borne by ωc, we have

σc + (m− 1)bpds = ec + (n− 1)bcds + bchc

= ec + (n− 1)ep + ep
hc
ds
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thus

(m− 1)bp =

[
ec + (n− 1)ep + ep

hc
ds

]
1

ds
− σc
ds
.

Since (m− 1)bp > 0 it has to be σc < τ s. Plugging (m− 1)bp in equation (25), we have the

result

τ̃ s =

[
ec + (n− 1)ep + ep

hc
ds

](
1 +

hp
ds

)
− σc

hp
ds
.

Proof of Proposition 6. If Φ = {ωp|for some p ∈ (1, ..., n− 1)} and ωc /∈ Φ, the flow

that crosses the cut {(A,Φ), (Ω\Φ, T,Q)} is equal to

mep +mbphp +mbpds, (26)

where mep and mbphp are the flows that Φ sends into Q and T , respectively, and mbpdp is

the flow that the central node ωc receives from the defaulting nodes in Φ. The smallest shock

that reaches the first threshold of contagion is such that mbpds = ec, hence mbp = ec/ds.

Substituting this value into equation (26), we obtain τ s1 = mep + ec(1 + hp/ds).

The numberm of peripheral banks in the set of primary defaults (which is necessary and

suffi cient to induce the default of the bank at the centre) is minimal when the shock borne

by each of these defaulting banks is maximal, i.e. when the shock is equal the external

assets ap held by a peripheral bank. Thus, the loss-given-default of a peripheral bank is

bp = ap−ep
hp+ds

. By the balance sheet identities we have that ap = hp + ep, hence bp = hp
hp+ds

.

Plugging bp in mbpds = ec we obtain m = ec

(
1
hp

+ 1
ds

)
.

The final threshold of contagion is set by the flow that crosses the cut {(A,Φ, ωc), (Ω\(Φ, ωc), T,Q)}
which is equal to

ec +mep +mbphp + bchc + bcds(n−m− 1), (27)

where mep + ec is the flow of losses going from the primary defaults into the sink Q;

mbphp + bchc is the flow of losses going from the primary defaults into the sink T ; and

bcds(n−m−1) is the flow of losses that goes from the bank at the centre into the peripheral

banks not in the set of primary defaults Ω\(Φ, ωc). All banks in Ω\(Φ, ωc) default if the
bank at the centre sends to each of them a flow larger than or equal to ep. The final

threshold of contagion is equal to the smallest of such shocks, i.e. bc = ep/ds. Plugging bc
into equation (27) we get

τ s2 = ec + (n− 1)ep + ep
hc
ds

+mbphp. (28)
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To obtain mbp, we apply again the flow conservation property to the bank at the centre

(i.e., the flow that enters the central node has to be equal to the flow that exits from it).

we have

mbpds = ec + (n− 1)bcds + bchc

= ec + (n− 1)ep + ep
hc
ds
.

Thus

mbp =

[
ec + (n− 1)ep + ep

hc
ds

]
1

ds
.

Substituting mbp in equation (28), we obtain the final threshold τ s2

τ s2 =

[
ec + (n− 1)ep + ep

hc
ds

](
1 +

hp
ds

)
.

Proof of Lemma 1. Suppose that a bank ωi in N c deposits the same amount cij in each

of its n−1 neighbours. Then cc = (n−1)cij. Assume that bank ωi faces a liquidity deficit.

In this case, bank ωi withdraws cij from each of its n/2 neighbours that have a liquidity

surplus. The liquidity l(ci) collected through the complete interbank network is equal to

l(ci) =
n

2
cij =

n

2(n− 1)
cc

with certainty. Hence, the expected cost of asset liquidation faced by bank ωi is

πi (l(ci)) = πi

(
n

2(n− 1)
cc

)
.

Suppose now that bank ωi allocates its interbank deposits among its neighbours in an

heterogeneous fashion. That is, assume that the vector of interbank deposits ci is such

that: i)
∑

j∈N (i) cij = cc; and ii) cij 6= cik for at least one pair (ωk, ωj) in N (i). In this

case, the amount of liquidity l(ci) collected by bank ωi is equal to
∑

j∈Ω+ cij and it is

not certain any longer. It depends on the realisation of the liquidity shock and on which

banks happen to belong to the set of surplus banks Ω+. That is, the amount l(ci) is now

a random variable, and it is the sum of n/2 interbank deposits (not equal to one another)

withdrawn from a set of n/2 surplus banks (ωj|j ∈ Ω+). The set (cij|j ∈ Ω+) of these

deposits is a random sample out of the set composed of all elements of ci, i.e. out of the

set (cij|j ∈ N (i)). Thus the expected value of the mean of the sample (cij|j ∈ Ω+) is equal

to the mean of the elements of ci, i.e.

E

(∑
j∈Ω+ cij

n/2

)
=

∑
j∈N (i) cij

n− 1
=

cc
n− 1

= cij.
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Therefore, the liquidity l(ci) the bank ωi expect to collect is a random variable with

expected value equal to

E(l(ci)) =
n

2
E

(∑
j∈Ω+ cij

n/2

)
=

n

2(n− 1)
cc =

n

2
cij = l(ci),

and with strictly positive variance.

Recall that the expected cost of premature asset liquidation πi(l(ci)) in (7) is a strictly

convex function in l(ci). By applying the Jensen inequality we have, for any amount of

total interbank deposit cc, the following

E(πi(l(ci))) > πi(E(l(ci))) = πi (l(ci)) = πi

(
n

2(n− 1)
cc

)
The expected cost of asset liquidation faced by bank ωi that allocates its interbank deposits

evenly among its neighbours is strictly smaller than the expected cost faced by a bank that

does not do so.

Proof of Lemma 2. Let (Ω\ωc)+ be the set of peripheral banks that experience a

surplus as the liquidity shock occurs and let x = |(Ω\ωc)+|. The natural number x is a
binomial random variable that takes on values 0, 1, 2, ..., n− 1 with probability(

n− 1

x

)
0.5x0.5n−1−x =

(
n− 1

x

)
0.5n−1.

Given the definition of the liquidity shock, if x peripheral banks experience a liquidity

surplus then n − 1 − x of them face a liquidity deficit. As the liquidity shock occurs, the

centre bank withdraws its deposits from the peripheral banks in surplus.

Suppose that the centre bank ωc splits its total interbank deposits cst equally among

the n− 1 peripheral banks. The centre deposits c̃s in each of the peripheral banks. Then,

for any given realisation of x, the net amount of liquidity that ωc collects through the

network is l(c̃s) = xc̃s with certainty. The expected cost of asset liquidation that ωc faces

is then πc(xc̃s) = πc(x
cst
n−1

).

Assume now that ωc allocates its interbank deposits in the peripheral banks in a het-

erogeneous fashion. That is, cst =
∑

p∈Ω\ωc csp, where csp is the amount that ωc deposits

in the peripheral bank ωp, and csj 6= csk for at least one pair (ωk, ωj) ∈ Ω\ωc. In this case,
the amount of liquidity l(cs) collected by the bank at the centre is equal to

∑
p∈(Ω\ωc)+ csp.

The value l(cs) depends both on the number x of peripheral banks in surplus and on which

ones of the n − 1 peripheral banks happen to be in surplus. The l(cs) depends on both
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the cardinality and on the composition of the set (Ω\ωc)+ which, in turn, depends on the

realisation of the liquidity shock. The set of deposits that the bank at the centre has in the

peripheral surplus banks [csp|p ∈ (Ω\ωc)+] is, therefore, a random sample of x elements

out of the set of the n − 1 deposits of ωc in the peripheral banks [csp|p ∈ (Ω\ωc)]. The
expected mean of such a sample of deposits, E

(
1
x

∑
p∈(Ω\ωc)+ csp

)
is equal to the mean of

the population from which it is drawn, i.e. the mean of all deposits of ωc in the peripheral

banks. It follows that the expected value of the mean of the sample [csp|p ∈ (Ω\ωc)+] is

equal to the mean of the elements of cs, i.e.

E

1

x

∑
p∈(Ω\ωc)+

csp

 =
1

n− 1

∑
p∈Ω\ωc

csp =
cst
n− 1

.

In the case of uneven allocation of interbank deposits, the liquidity collection of ωc, for any

given value of x, is a random variable with mean

E(l(cs)) = xE

1

x

∑
p∈(Ω\ωc)+

csp

 = x
cst
n− 1

= l(c̃s)

and with strictly positive variance.

Given that the objective function of the centre bank πc(l(cs)) is strictly convex in its

argument, Jensen’s inequality implies that for any amount cs and any given realisation of

x, we have

E(πc(l(cs))) > πc(E(l(cs))) = πc (l(c̃s)) = πc

(
x

cst
n− 1

)
The expected loss of asset liquidation faced by ωc if it allocates evenly its interbank deposits

is strictly smaller than the expected cost if it does not do so.

Proof of Proposition 7. First notice that πi(ci) = 0 for
(
δ − n

2
cij
)
≤ 0 and, given that

a bank is assumed to choose the smallest deposit that guarantees the complete coverage

from liquidity risk, the vector of bilateral interbank deposits cdi =
{
cdij = δ 2

n
|∀j ∈ N (i)

}
is

chosen to obtain a zero expected liquidation loss. The vector cdi corresponds to a pairwise-

stable equilibrium because no pair of banks benefits by choosing a bilateral interbank

deposit c̃ij < cdij = δ 2
n
. Given Lemma 3, it suffi ces to consider the deviation of one bank.

Assume bank ωi deviates by lowering the amount of the bilateral interbank deposit with

bank ωj. That is, c̃i = (c̃ij, c
d
−ij). If bank ωi experiences the liquidity deficit δ, it expects

to collect from its surplus neighbouring banks an amount strictly less than n
2
cdij = δ since

there is now the possibility that bank ωj will be in surplus. In that case, bank ωi collects
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an amount of liquidity equal to (n
2
− 1)cdij + c̃ij = δ − (cdij − c̃ij) < δ. Therefore bank

ωi faces a strictly positive expected liquidation loss πi(c̃ij, cd−ij) > 0 = πi(c
d
ij, c

d
−ij) and

it will not deviate from cdi . The vector c
d
i =

{
cdij = δ 2

n
|∀j ∈ N (i)

}
is also the unique

equilibrium since any vector different from cdi would induce a deviation. Suppose banks

hold a vector of interbank deposits equal to c̃i =
{

0 ≤ c̃ij < cdij|∀j ∈ N (i)
}
. When each

bilateral interbank deposit is strictly less than δ 2
n
all banks expect to collect an amount

of liquidity l(c̃i) = n
2
c̃ij < δ. Banks, therefore, face a strictly positive expected loss

of liquidation: π(n
2
c̃ij) > 0. Suppose that bank ωi deviates by slightly increasing the

bilateral interbank deposit with its neighbouring bank ωj. That is, c̃εi = (c̃ij + ε, c̃−ij). In

this way, bank ωi increases the amount of liquidity that expects to collect from bank ωj
when it experiences a surplus. This reduces the expected loss of asset liquidation, that is

πi (c̃
ε
i ) < πi (c̃i). It follows, from Lemma 3, that any bank would deviate from the vector

of interbank deposits c̃i by slightly increasing the bilateral exposure. By continuity, banks

do not have incentives to deviate anymore when the vector of interbank deposits reaches

cdi .

Proof of Lemma 4. Let x = |(Ω\ωc)+| be the number of peripheral banks that
experience a liquidity surplus δ. The number x is a binomial random variable that takes

on values 0, 1, 2, ..., n − 1 with probability
(
n−1
x

)
0.5x0.5n−1−x =

(
n−1
x

)
0.5n−1. By the above

definition of liquidity shock, if x peripheral banks experience a liquidity surplus then n−1−
x peripheral banks face a liquidity deficit. Thus the variation of the customer deposits of the

peripheral banks as a whole is equal to xδ−(n−1−x)δ. Consequently, the variation of the

stock of customer deposits of the bank at the centre is∆hc = (n−1−x)δ−xδ = (n−1−2x)δ.

Let y be the difference between the number of peripheral banks in surplus and the

number of peripheral banks in deficit: y ≡ |(Ω\ωc)+| − |(Ω\ωc)−| = x − (n − 1 − x) =

2x− (n− 1). For 1 ≤ y ≤ (n− 1) the bank at the centre faces a decrease of its customer

deposits equal to yδ, while it experiences a liquidity surplus if y < 0. As the shock occurs,

all the (n − 1 − x) peripheral deficit banks withdraw cs from the bank at the centre,

while the latter withdraws its deposit cs from each of the x peripheral banks in surplus.

Thus, the amount of liquidity that ωc collects through the network, if y > 0, is equal to

xcs − (n − 1 − x)cs = ycs. If y > 0 then the overall shortage of liquidity of the bank

at the centre is equal to y(δ − cs). Note that, for all y ∈ (1, (n − 1)), the expected loss

due to early asset liquidation is 1
2

[
1−

√
1− 4λ (δ − cs) y

]
, while it is equal to zero for all

y ∈ (−(n− 1), 0), i.e. for all x ≤
[
n−1

2

]
. We can express the expected losses due to asset
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liquidation of the bank at the centre as:

πc(cs) =

[n−12 ]∑
x=0

(
n− 1

x

)
0.5n−1

{
1

2

[
1−

√
1− 4λ (δ − cs) [2x− (n− 1)]

]}

+
n−1∑

x=[n−12 ]+1

(
n− 1

x

)
0.5n−1

{
1

2

[
1−

√
1− 4λ (δ − cs) [2x− (n− 1)]

]}

=

n−1∑
x=[n−12 ]+1

(
n− 1

x

)
0.5n−1

{
1

2

[
1−

√
1− 4λ (δ − cs) y

]}
.

Proof of Proposition 8. The proof follows the same logic of Proposition 7. Notice

that for any cs ≥ δ, we have πp(cs) = πc(cs) = 0. Under the assumption that banks

choose the smallest bilateral interbank deposit that minimises their objective functions,

we have cds = δ for both the centre and the peripheral banks. The corresponding vector of

interbank deposits cd = [cds = δ|∀ωp, ωc ∈ Ω] forms a pairwise stable equilibrium since no

pair of banks, composed by the centre bank and by a peripheral bank, benefits by choosing

an amount of interbank deposit c̃s < cds = δ. Since deposits are symmetric, according to

Lemma 3 it suffi ces to consider the deviation of one bank. Assume the peripheral bank ω′p
deviates by lowering the amount of the bilateral interbank deposit with bank ωc. That is,

c̃′s = (c̃s, c
d
−s). If bank ω

′
p experiences the liquidity deficit δ, it expects to collect from the

centre bank the amount c̃s which is strictly less than δ. Therefore bank ω′p faces a strictly

positive expected liquidation loss π′p(c̃s, c
d
−s) > π′p(c

d
s) = 0. Then bank ω′p will not deviate

from cd. (a similar reasoning applies if we consider the centre bank as the deviating bank).

The vector of interbank deposits cd is also the unique pairwise stable equilibrium since any

vector different from cd would induce a deviation. Suppose banks hold a vector of interbank

deposits equal to c̃ =
{

0 ≤ c̃s < cds|∀j ∈ N (i)
}
. When each bilateral interbank deposit is

strictly less than δ all banks expect to collect an amount of liquidity less than δ. Banks,

therefore, face a strictly positive expected loss from the asset liquidation: π(c̃s) > 0.

Suppose now that the peripheral bank ω′p deviates by slightly increasing the bilateral

interbank deposit with the centre bank ωc. That is, c̃′s = (c̃s + ε, c̃−s). In this way, bank

ω′p increases the amount of liquidity that expects to collect from the centre bank. This

reduces the expected loss of asset liquidation, that is π′p (c̃′s) < π′p (c̃). (a similar reasoning

applies if we consider the centre bank as the deviating bank). It follows, from Lemma 3,

that any bank would deviate from the vector of interbank deposits c̃ by slightly increasing
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the bilateral exposure. By continuity, banks do not have incentives to deviate anymore

when the vector of interbank deposits reaches cd.

Proof of Proposition 9. The first order condition for the minimization of the function

ψi(ci) in (9) is
nγ

4
=

nλ

4
√

1− 4λ
(
δ − n

2
cij
) ,

and, after rearranging, we get the optimal solution

cdij =
2

n
δ − 1

2λn

[
1−

(
λ

γ

)2
]
.

Note that the strict convexity of the function ψi(ci) ensures that the solution admits at

most one minimum, which has to be the one characterised by the f.o.c. For this reason, the

vector of interbank deposits cdi =
{
cdij|∀j ∈ N (i)

}
represents a pairwise stable equilibrium.

That is, no pair of banks benefit by choosing a bilateral interbank deposit c̃ij 6= cdij. Given

Lemma 3, it suffi ces to consider the deviation of one bank. Assume bank ωi deviates by

choosing a bilateral interbank deposit c̃ij 6= cdij with bank ωj. That is, c̃i = (c̃ij, c
d
−ij).

The strict convexity of ψi(ci) ensures that ψi(c̃i) > ψi(c
d
i ) and bank ωi does not deviate

from cdi . The vector c
d
i =

{
cdij|∀j ∈ N (i)

}
is also the unique equilibrium since any vector

different from cdi would induce a Pareto-improving deviation. Suppose banks hold a vector

of interbank deposits equal to c̃i =
{
c̃ij 6= cdij|∀j ∈ N (i)

}
. Banks therefore face an expected

loss equal to ψi(c̃i) that, again, it is strictly larger than ψi(c
d
i ). If c̃ij < cdij bank ωi has a

profitable deviation by increasing the bilateral interbank deposit with its neighboring bank

ωj. This reduces the expected loss. It follows that any bank would deviate from the vector

of interbank deposits c̃i by increasing the bilateral exposure. A similar argument applies

if c̃ij < cdij. Banks do not have incentives to deviate anymore when the vector of interbank

deposits reaches cdi .

Proof of Lemma 5. The f.o.c. with respect csp of the function ψp in (10) is

γ

2
=

1

2

λ√
1− 4λ (δ − csp)

,

and, after rearranging, we get the optimal deposit

cdsp = δ − 1

4λ

[
1−

(
λ

γ

)2
]
.
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The f.o.c. with respect csc of the function ψc in (11) is

γ
(n− 1)

2
=

n−1∑
x=n−1

2
+1

(
n− 1

x

)
0.5n−1 yλ√

1− 4λ (δ − csc) y
. (29)

Let cdsc be the deposit that satisfies (29). Note that the r.h.s. of (29) - that is, the expected

marginal benefit of holding interbank deposits - is a non-linear function of the random

variable y = 2x− (n− 1). Therefore it is impossible to simplify (29) and to get an explicit

characterization of cdsc. To overcome this issue, we use Jensen’s inequality to obtain a lower

bound of the r.h.s. of (29).

Let

ỹ =

∑n−1
x=n−1

2
+1

(
n−1
x

)
0.5n−1 [2x− (n− 1)]∑n−1

x=n−1
2

+1

(
n−1
x

)
0.5n−1

be the expected value of y conditional on y > 0 (i.e., on x ≥ n−1
2

+1). Let us then compute

the expected value of the r.h.s. of (29) conditional on y > 0. We have∑n−1
x=n−1

2
+1

(
n−1
x

)
0.5n−1 yλ√

1−4λ(δ−csc)y∑n−1
x=n−1

2
+1

(
n−1
x

)
0.5n−1

= 2
n−1∑

x=n−1
2

+1

(
n− 1

x

)
0.5n−1 yλ√

1− 4λ (δ − csc) y

since
∑n−1

x=n−1
2

+1

(
n−1
x

)
0.5n−1 = 0.5 when n is even. Then, by applying the generalized

Jensen inequality, we have

2
n−1∑

x=n−1
2

+1

(
n− 1

x

)
0.5n−1 yλ√

1− 4λ (δ − csc) y
>

ỹλ√
1− 4λ (δ − csc) ỹ

because the marginal benefit of holding interbank deposits is increasing and convex in x.

The previous inequality implies

n−1∑
x=n−1

2
+1

(
n− 1

x

)
0.5n−1 yλ√

1− 4λ (δ − csc) y
>

ỹλ

2
√

1− 4λ (δ − csc) ỹ
.

Let us substitute ỹλ/2
√

1− 4λ (δ − csc) ỹ in the r.h.s. of the f.o.c. in (29) to obtain
the following

γ
(n− 1)

2
=

ỹλ

2
√

1− 4λ (δ − csc) ỹ
. (30)

Solving for csc equation (30), we obtain a deposit c̃sc strictly smaller than the optimal

deposit cdsc that would solve the f.o.c. in (29). This is because the r.h.s. of equation (30)
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is strictly smaller than the r.h.s. of the f.o.c. in (29), and both of them are monotonically

decreasing in csc. We have

c̃sc = δ − 1

4λỹ

[
1−

(
ỹλ

γ(n− 1)

)2
]
< cdsc.

To establish an order between cdsp and c
d
sc, and given that c

d
sc cannot be characterised,

we compare cdsp with c̃sc. We have that

cdsp = δ − 1

4λ

[
1−

(
λ

γ

)2
]
≤ δ − 1

4λỹ

[
1−

(
λỹ

γ(n− 1)

)2
]

= c̃sc

if

1−
(
λ

γ

)2

≥ 1

ỹ

[
1−

(
λỹ

γ(n− 1)

)2
]
,

which, after rearranging, implies

γ

λ
≥

√
ỹ

ỹ − 1
− ỹ2

(ỹ − 1) (n− 1)2
≡ η > 1

Proof of Proposition 10. If γ ≥ λη then cdsp ≤ c̃sc < cdsc and any interbank deposit

cs ∈ [cdsp, c
d
sc] is a pairwise-stable equilibrium. Notice that now there are no symmetric

interbank deposits (peripheral banks and the centre bank have different optimal values) so

Lemma 3 does not apply. We have to look for bilateral deviations and unilateral severance

from the equilibrium deposit. Let us assume banks exchange a deposit cs ∈ (cdsp, c
d
sc). In

this case, the peripheral bank would like to deviate and reduce the interbank deposit and

its loss function ψp. However, the centre bank does not find profitable such deviation since

it would increase its loss function ψc. The bank a the centre would actually increase the

deposit cs (so to reduce ψc). No Pareto-superior bilateral deviation is profitable. Consider

now the deposit cs = cdsp. The centre bank would like to increase the deposit but the

peripheral banks are not willing to do so. Again, no bilateral deviation is profitable for

both banks. A similar argument applies for cs = cdsc. We have to check now that both

types of bank do not unilaterally sever the interbank deposit. This is guaranteed by the

condition

γ <
λ√

1− 4λδ
.

The optimal deposit of the peripheral bank cdsp is strictly positive when γ < λ/
√

1− 4λδ.

Therefore, under such condition there is no incentive for the peripheral banks to unilaterally
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severe the deposit. For the bank at the centre, we need that the optimal cdsc is also strictly

positive. Recall that since γ ≥ λη, we have cdsp < cdsc. Therefore the condition that

guarantees cdsp > 0 it is also suffi cient to guarantee that cdsc > 0, and there is no incentive

for the bank at the centre to unilaterally severe the deposit.

To complete the proof, we need to show that any deposit cs /∈ [cdsp, c
d
sc] does not represent

an equilibrium. Take a deposit cs < cdsp. Both the peripheral bank and the bank at the

centre find profitable to increase the interbank deposit because they would reduce their

loss functions ψp and ψc. The bilateral deviation is for both banks profitable until cs = cdsp.

A similar argument applies if we assume a deposit cs > cdsc. The bilateral deviation is

profitable until cs = cdsc.
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