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17 Abstract

18 The paper investigates experimental error propagation and its effects on critical flutter speeds of 

19 pedestrian suspension bridges using three different experimental data sets: pressure coefficients, 

20 aerodynamic static forces and flutter derivatives.  The three data sets are obtained from section 

21 model measurements in three distinct laboratories.  Data sets are used to study three different 

22 geometries of pedestrian suspension bridges. Critical flutter speed is estimated using finite- element 

23 nonlinear analysis, numerical 2-DOF generalized deck model and 3-DOF full-bridge models.  

24 Flutter probability, contaminated by various experimental error sources, is examined. Experimental 

25 data sets are synthetically expanded to obtain two population sets of deck wind loads with 30 and 

26 5·105  realizations, respectively.  The first set is obtained using Monte-Carlo simulation approach, 

27 whereas the second one is determined using Polynomial chaos expansion theory and a basis of 

28 Hermite polynomials.  The numerically-determined probability density functions are compared 

29 against empirical probability histograms (pdfs) by Kolmogorov-Smirnov tests.

30

31 Keywords: pedestrian suspension bridge; flutter; aerodynamic and aeroelastic tests; pressure 

32 coefficients; experimental error analysis.

33 1. Introduction

34 Conurbations are more and more affected by traffic pollution, leading to a policy trend that 

35 promotes public transportation and pedestrian and bicycle pathways. Many governmental master 

36 plans contemplate new “green roads” around downtowns, across rivers or highways.  The goal is to 
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37 create a comfortable alternative way to get around town. Pedestrian bridges play a fundamental role 

38 as part of this trend because they are an efficient way to connect different neighborhoods of a large 

39 city.  

40 One of the critical aspects of pedestrian bridges is their impact on the natural environment due 

41 to the presence of either pillars, substructures or support structures.  River crossings are especially 

42 critical because, in order to reduce the bridge span, pillars are often located in the waterway. This 

43 aspect often causes controversies between designers and ecologists regarding preservation of the 

44 natural ecosystem.  Examples of pedestrian bridges with intermediate supports are: the London 

45 Millennium Footbridge (2000) that has a total length equal to 325 m and a central span length equal 

46 to 144 m, the Puente de La Mujer (2001), Buenos Aires, Argentina with a total length equal to 170 

47 m but with its longest span equal to 102.5 m and the Goodwill Bridge, crossing the Brisbane River 

48 in Brisbane, Queensland, Australia, which has a total length of 450 m with its longest span equal to 

49 102 m.  Another recent example is the Sea Bridge on the Pescara River in Pescara, Italy [1] .  This 

50 structure is the longest pedestrian-and-bicycle bridge in Italy and one of the longest in Europe.  Its 

51 total length is 466 m and the length of the longest central span is 172 m. 

52 Pedestrian bridges with increasing spans require larger sub-structures; this need leads to higher 

53 costs.  The deck section height and width are influenced by span length.  Suspension bridges could 

54 be used for pedestrian bridges to obtain long spans and minimize the risk of environmental 

55 interferences.  This solution, using a typical scheme such as the one illustrated in Fig.1a, permits 

56 structural construction with a single large span.  In this standard configuration, the pillars are used 

57 in conjunction with parabolic cables for the main span and “back” stay-cables for the lateral spans 

58 [2] , [3] . However, this geometrical configuration may be invasive near rivers since the use of 

59 multiple spans could negatively affect integration of the bridge with the urban context.  For this 

60 reason, the solution illustrated in Fig.1b may be more successful for pedestrian bridges.  This 

61 solution has inclined pillars to counteract large internal tension forces originating from main 

62 suspension cables through tower anchorages. 

63 The lightness and slenderness of pedestrian suspension bridge decks are the cause of two main 

64 structural problems: resonance in footbridges due to large lateral vibration, induced by walking 

65 pedestrians ([4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] ), and flutter instability induced by 

66 wind loads.  Both aspects are extensively investigated in the literature.  The latter aspect, in 

67 particular, has been has been comprehensively studied in wind engineering for large span vehicular 

68 suspended bridges; several studies have proposed models and methods for the reliability analysis of 

69 vehicular bridges sensitive to flutter instability.
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70 A general discussion on bridge flutter is presented, for example, in Zasso et al. [16]  who 

71 examine the state of the art in the field of bridge aerodynamics, describing a number of procedures 

72 for evaluating not only flutter stability but also turbulence-induced buffeting response, and in 

73 Pourzeynail and Datta [17] . Two important examples of systematic approach for flutter reliability 

74 analysis are: the model proposed by Ge et al. [18] , which is formulated as a limit state threshold-

75 crossing problem and a probability calculation approach to determine the probability of bridge 

76 failure due to flutter; and by Cheng et al. [19] , who propose a reliability analysis method by 

77 combining the advantages of the response surface method, finite element method (FEM), first-order 

78 reliability method and the importance sampling method.. 

79 Bridge flutter instability is primarily investigated by studying the aerodynamics and aeroelastic 

80 behavior of the deck section [20] [21] .  In the technical literature this aspect is examined using 

81 appropriately scaled deck section models, tested in wind tunnel to estimate aerodynamic forces 

82 (Lift, Drag and Moment) both directly (force measurements) and indirectly (pressure 

83 measurements), and to evaluate the flutter (or Scanlan) derivatives of the deck section [22] , [23] . 

84 Static and dynamic experiments are often conducted to study bridge instability phenomena. For 

85 example, Argentini et al. [24] describe experimental and numerical analysis of the dynamic 

86 response of a cable-stayed bridge with a focus on vortex induced vibrations and buffeting effects; 

87 Diana et al. [25] [26] present a comparison between wind tunnel tests conducted on a full-bridge 

88 aeroelastic model of the proposed suspension bridge over the Strait of Messina (Italy). Similarly, 

89 Argentini et al. [27]  compare wind tunnel tests carried out on a full aeroelastic model with 

90 numerical results for the Izmit Bay Bridge (Turkey).  Several other literature studies have 

91 considered issues related to flutter derivatives, mostly focused on the dependence between flutter 

92 derivatives and deck section geometry.  One representative example is the study by Scanlan et al. 

93 [28] that analytically derive the interrelations and approximate correspondences among flutter 

94 derivatives of a bridge deck, derived from theoretical low-speed airfoil aeroelasticity. Another 

95 significant example is the study by Matsumoto et al. [29] , which focuses on the influence of each 

96 flutter derivative on flutter instability, obtained by pressure measurements on the side surface of 2-

97 D rectangular cylinders with B/D side ratios (B is the chord length, D the deck height) between 5 

98 and 20 and examining 1DOF coupled heaving/torsional forced vibration.

99 Frequently, flutter instability studies are specifically applied to case studies.  For example, Lau 

100 and Wong [30] studied the aerodynamic stability of the Tsing Ma Bridge; Zdravkovich and Carelas 

101 [31] investigated the aerodynamics of a covered pedestrian bridge with a trapezoidal section.  

102 Parametric studies are particularly interesting because they examine the same phenomenon using 

103 different case studies or structures.  This methodology was used, for example, by Zhang and Sun 
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104 [32] who proposed parametric analyses of the aerodynamic stability of the Runyang Bridge over the 

105 Yangtze River, including the structural system.  This paper adopts a similar study methodology and 

106 examines the design parameters that influence wind-induced aerodynamic stability of a pedestrian 

107 bridge by identifying the “most favorable” structural system.

108 Despite all the advances in the theory of flutter and buffeting of long span bridges [33] several 

109 unresolved issues are still present and often overlooked in the case of pedestrian suspension bridges. 

110 The present paper, following a parametric approach, investigates flutter instability of three closed-

111 box deck sections [34] applied to the design of pedestrian suspension bridges.  This paper focuses 

112 on the flutter instability and studies the influence of experimental measurement error on critical 

113 flutter speed.  In wind engineering the issue of uncertainties in the experimental details and their 

114 effects on structural reliability have been extensively investigated (e.g. [21] [35] ).  This aspect is 

115 particularly important when the goal of the experiments is to predict the critical flutter speed for 

116 suspension bridges (e.g. [36] , [37] ).

117 The present study considers three different types of wind tunnel experiments, conducted in three 

118 different laboratories: static pressure measurements and flutter derivative measurements on various 

119 deck section models,  [38] [39] [25] [40] [32] . Experimental results are also compared against 

120 literature data with similar bridge deck shape and geometry.

121 Wind tunnel experiments of three deck section models were carried out, estimating drag, lift and 

122 moment both directly (force measurements) and indirectly (pressure measurements).  Aeroelastic 

123 wind tunnel tests were conducted to estimate the flutter derivatives of one of the three models [23] . 

124 Critical flutter speed was subsequently predicted, using the three experimental data sets, by two 

125 methods:  three-dimensional finite element analyses and 2-DOF numerical analyses [40] . Quasi-

126 static simplified analysis (e.g. [28] ) was employed to derive the flutter derivatives from the 

127 experimental sectional aerodynamic loads (drag, lift and moment).  Verification of the quasi-static 

128 analysis was investigated using results from one of the aeroelastic tests on a 2-DOF model [41] , 

129 [28] .

130 The dependence of critical flutter speed on the geometries of the deck section was investigated 

131 using the experimental data sets and both analysis methods.  Experimental errors induced by 

132 laboratory experimental conditions were integrated to enable flutter reliability analysis. For 

133 reliability analysis purposes, a large sample of random aerodynamic input data was needed.  Two 

134 sample sizes were used: 30 realizations and 5·105 realizations, respectively.  Expansion with 30 

135 realizations from the original experimental data sets was obtained by Monte-Carlo simulation [42] , 

136 [43] , whereas expansion with 5·105 realizations was carried out by Polynomial chaos (PC) 
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137 expansion (e.g. [44] , [45] ). Results were critically examined by studying the probability density 

138 function (pdf) of the critical flutter speed [46] .

139 2. Wind tunnel experiments

140 Static and dynamic tests were carried out to estimate the deck loads of a benchmark pedestrian 

141 bridge with closed-box bridge deck (structural properties are described later in a subsequent 

142 section).  Static tests conducted on a rigid model of the deck section included two sets of 

143 measurements.  The first one evaluated the aerodynamic forces (drag, lift and moment per unit 

144 length) (S-tests in the following) [11] , [12] .  The second set measured the pressure coefficients 

145 along the surface of the closed-box section (P-tests in the following).  Dynamic tests (D-tests in the 

146 following) were conducted to estimate the flutter derivatives.  Quasi-static flutter derivatives, 

147 approximately estimated from the static forces found by the S-test, were also considered in the 

148 subsequent comparisons (e.g. [28] , [34] ). It is important to note that, in this study, the deck 

149 guardrail was neglected because it was assumed that it was made of cables and, therefore, would not 

150 affect the aerodynamics and the aeroelastic response [47] .

151 2.1 Cross-sectional geometry and properties of the examined deck models

152 Three deck section configurations were chosen to study the influence of aerodynamic effects on 

153 the flutter speed of a pedestrian bridge. They are illustrated in Fig. 2.  The main dimensions of the 

154 bridge structure in Fig. 2 are selected as follows: H1 = 45 m, H2 = 15 m, L1 = 494 m, L2 = 584 m, L3 

155 = 45 m and f =3 m.  Detailed geometric properties of the deck sections are listed in Table 1.  The 

156 three deck section configurations are: MOD1 (Fig. 2a), MOD2 (Fig. 2b) and MOD3 (Fig. 2c).  All 

157 the sections have the same height (h1+h2), total width (b1+b2+b1) but a variable d2 dimension.. 

158 Values of d2 are (in relative terms) small (MOD3), medium (MOD2) and large (MOD1). The reason 

159 for this choice is to examine a wide range of configurations [34] .

160 2.2 Aerodynamic wind tunnel tests

161 S-tests and P-tests were carried out using rigid wind tunnel models with the same dimensions. 

162 The tests were designed to minimize any potential discrepancies induced by geometric scaling 

163 differences. The models were made of wood. Appropriate flexural rigidity of the models was 

164 carefully assessed before the tests. The geometry of the experimental models is described in Table 1 

165 for each section (Fig. 2).  Dimensions in the figures and for both test cases are in millimeters (mm).  

166 Section model dimensions are: 1000 (ℓ, spanwise length) by 40 (H, height) by 292 (B, chord or 

167 width), with a geometrical aspect ratio ℓ/B equal to 3.43. In both experiments, mean flow speed was 

168 approximately the same (about 14.5 m/s) and the turbulence intensity was very low.
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169 2.2.1  Aerodynamic forces (S-tests).

170 S-tests were carried out in the wind tunnel of the Marche Polytechnic University (Ancona, 

171 Italy). The wind tunnel is a closed-circuit facility as shown in Fig. 3. The cross-sectional 

172 dimensions of the main test chamber are about 1.8 m by 1.8 m. The main test section has three main 

173 test subsections: the first one is used for aerodynamic tests requiring uniform velocity distribution 

174 and low turbulence level.  The second one is used to test aerodynamic interference between slender 

175 bodies. The last one is the environmental section where atmospheric boundary layer flows can be 

176 reproduced for general studies on buildings and structures.  The wind tunnel is equipped with a 

177 motor/fan having a constant rotational speed (975 rpm) and 16 blades with adjustable pitch. The 

178 mean wind speeds range between 6 m/s and 40 m/s. Preliminary flow measurements, using a 

179 Constant Temperature Hot Wire Anemometer, showed a deviation less than 2.5% from the 

180 reference value of the mean flow speed and longitudinal turbulence intensity less than 0.3% across 

181 more than 90% of the test cross section. A compact heat exchanger was used to control temperature 

182 fluctuations within the range of ±1 [°C].  Fig. 3c presents a picture of a typical setup of the chamber 

183 with the experimental model. The same was done for the P-tests with a sampling frequency equal to 

184 500 Hz and an acquisition time of 60 s.

185 The purpose of these tests was to measure the Drag ( , Lift (  and Torsional Moment (  of 𝐷) 𝐿) 𝑀)

186 the deck per unit span for the three geometries, illustrated in Fig.2.  The average values of drag, lift 

187 and torsional moment coefficients per unit span, respectively ,  and , were evaluated  𝐶𝐷 𝐶𝐿  𝐶𝑀

188 according to Eq. 1 below. The corresponding graphs are illustrated in Figs. 4a, b and c as a function 

189 of the angle of attack. In Eq. 1  is equal to 14.5 m/s, � is equal to 1.18 kg/m3 and, referring to 𝑈

190 Table 1, B is the reference width equal to 2d1+b1 = 298 mm. The model was placed vertically, as 

191 visible from Fig. 3b, and the reference system for the calculation of the aerodynamic forces is given 

192 in Fig. 3d. Twenty-one values of attack angle (α) were considered in the interval between -10° and 

193 +10°. Positive angles are “nose up” in relation to the approaching flow. 

 𝐶𝐷 =
𝐷

1
2𝜌𝑈2𝐵

  ,         𝐶𝐿 =
𝐿

1
2𝜌𝑈2𝐵

,          𝐶𝑀 =
𝑀

1
2𝜌𝑈2𝐵2

(1)

194

195 Preliminary load balance measurements were carried out at different flow speeds (i.e. 6.3, 

196 8.3 and 14.8 [m/s]) and the results collapsed on the same curves once the experimental values were 

197 rearranged in the form of dimensionless parameters (i.e. CD, CL and CM). This behaviour confirmed 

198 the absence of Reynolds number dependence for the tested range of flow speeds and, consequently, 

199 subsequent measurements (i.e. the ones reported in this paper) were conducted at the higher velocity 
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200 in order to obtain an output signal with larger magnitude and increase accuracy.  Examination of 

201 experimental results and a comparison of the aerodynamic coefficients CD, CL and CM in Figs. 4 a, b 

202 and c suggests that MOD2 and MOD3 have a similar aerodynamic behavior, quite distinct from the 

203 one exhibited by MOD1. On average, for positive angles the CD of MOD1 is smaller than the one of 

204 MOD2 and MOD3 in the interval -6°≤α≤10°, whereas in the interval -10°≤α≤-6° MOD2 has the 

205 smallest CD values. With regard to CL, MOD1 has the smallest values whereas MOD3 has the 

206 biggest ones. All models exhibit a similar trend and values of CM. For negative angles MOD3 has 

207 CM values slightly larger than those of the other two models, whereas for positive angles this goes 

208 for MOD2. 

209 To summarize, MOD1 globally has the smallest value of aerodynamic coefficient (i.e. 

210 except for few negative angles of CD). The aerodynamic coefficients of MOD3 are larger than the 

211 ones of other models (i.e. except for few negative angles of CD).

212 For negative attack angles, the absolute values of CL and CM of MOD1 are larger than those of 

213 the other two models.  This observation suggests that that both L and M tend to increase (absolute 

214 value) when the dimension b2 decreases (Table1 and Fig. 2).  The trend is opposite for positive 

215 angles α: a decrement of b2 induces a decrement of L and M.  In Fig. 4 the aerodynamic 

216 coefficients, evaluated by integrating the pressure coefficients (as described in the subsequent 

217 section), are also presented.  The two sets of measurements are overlapping.  The trend is confirmed 

218 and the values are very similar.

219 Figure 4 also illustrates the comparison between data sets MOD1, MOD2, MOD3 and the Great 

220 Belt deck static aerodynamic coefficients reproduced from Reinhold et al. [51] and Scotta et al. [50] 

221 α=0° (Figs. 4c and d). The Great Belt Bridge was selected as the benchmark deck structure for 

222 comparison of the test results; this is also a single closed-box girder, with geometry approximately 

223 similar to the one of the models experimentally examined in this study. The overlap among the 

224 various data sets shows a satisfactory agreement between the Great Belt data and MOD2 values for 

225 CD (Fig.4a), MOD3 values for CL (Fig.4b), and MOD3 values in the range of -2≤�≤2 for CM. Larger 

226 differences are noted in other cases.

227 2.2.2 Pressure coefficients (P-tests)

228 The P-tests were carried out in the CRIACIV (Inter-University Research Centre for Wind 

229 Engineering and Building Aerodynamics) boundary layer wind tunnel in Prato (Italy), Fig. 5a and 

230 5b. This is an open-circuit wind tunnel with a reference test section, which is 2.42 m wide and 1.60 

231 m high. The total length of the wind tunnel is about 22 m. Wind speed is regulated both by 

232 adjusting the pitch of the ten-fan blades and by controlling its angular speed of the motor [49] . The 
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233 maximum wind speed is about 30 m/s. The models were horizontally placed in the wind tunnel; 

234 they were rigidly connected to a support system, composed of rigid arms, as illustrated in Fig. 5e. 

235 The sampling frequency during the tests was about 500 Hz and the acquisition time was 60 s. Tests 

236 were carried out at three mean flow speeds U (3.5, 8.5 and 14.5 m/s) also to investigate the 

237 Reynolds number dependence. The turbulence intensity was on average less than 1% (i.e. slightly 

238 larger than the one used for S-tests). The standard deviation of speed and turbulence was between 

239 about 0.1 m/s and 0.2%, respectively. 

240 Static pressures were evaluated and normalized in accordance with the reference dynamic 

241 pressure, as in Eq. 2.  The dimensionless pressure coefficient (Cp) was estimated from the difference 

242 between the static pressure measured at each pressure tap (pi) and the reference flow static pressure 

243 p0 [24] . 

𝐶𝑝 =
𝑝𝑖 ‒  𝑝0

1
2𝜌𝑈2

(2)

244 The experiments had confirmed that the dependence can be neglected in this case. 

245 Figs. 5c and 5d illustrate the location of the pressure scanner, inside the model. Figure 5c shows 

246 the system of pneumatic connections; Fig. 5d presents a three-dimensional view of the pressure tap 

247 positions. Three strips of 40 pressure taps were simultaneously used for each model. The external 

248 pressure coefficient distributions for all the three models were evaluated at fifteen angles of attack 

249 (α): 0°; ±1°; ±2°; ±3°; ±4°; ±6°; ±8°; ±10°.  The photograph in Fig. 5e is an example of a typical 

250 pressure test; Fig. 5f illustrates the reference coordinate system used in the wind tunnel.  The mean 

251 pressure coefficient values (Cp,m) are plotted and illustrated in Figs. 6-8 for each angle of attack. 

252 The plotted values refer to the cross section located at the center of the model.  A negative pressure 

253 coefficient represents suction while a positive value represents overpressure.  Experimental results 

254 were approximately the same independently of mean flow speed. 

255 The wind tunnel blockage was estimated considering the model, end plates, anchorages and 

256 support structures of the test rig and; it is variable between 2% (α=0°) and 15% (α=±10°). For this 

257 reason, a correction was applied to each value of mean wind speed used in Eq. (2) [4] . Despite the 

258 corrections, the Cp,m positive values are close to the stagnation pressure 1 but, on occasion, possibly 

259 exceed 1.0, as for example for α=±10°. A small discrepancy is reasonable in these extreme cases as 

260 it may be influenced by the fidelity of the pressure measurement system and the accuracy of the test 

261 setup. 

262 Figures from 6 to 8 illustrate the pressure coefficients of all bridge section decks (i.e. MOD1, 

263 MOD2 and MOD3) and for all angles (i.e. -10°≤α≤10°).  Experimental results show many 
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264 differences between lower and upper surfaces of the deck and between negative and positive angles.  

265 Local values of mean pressure coefficients are compared in the following.

266 On the lower surface the largest negative pressure value (negative mean pressure coefficients), 

267 for negative angles of attack, is -2.54 for MOD3, -2.05 for MOD2 and -1.56 for MOD1. For 

268 positive angles of attack, it is -1.19 for MOD3, -1.07 for MOD2 and -1.05 for MOD1.  MOD1 has 

269 the smallest suction values for both negative and positive angles.

270 On the upper surface the largest negative pressures (suctions) is, for negative angles, -0.99 for 

271 MOD2, -0.96 for MOD3 and -0.74 for MOD1.  For positive angles the largest negative pressures 

272 are -2.50 for MOD3, -2.43 for MOD2 and -2.09 for MOD1. Overall, MOD1 has the smallest 

273 suction values for both negative and positive angles.

274 In summary, analyzing both upper and lower surfaces of the bridge deck section, MOD1 has the 

275 smallest local pressure coefficients for negative and positive angles, whereas MOD3 has the biggest 

276 local pressure coefficients for positive angles α except for negative angles on upper surface for 

277 which MOD2 has a slightly bigger value than MOD3.  

278 Figs. 9a and 9b present a comparison between mean pressure coefficients for angles of attack 

279 �={-10°, 0°, 10°} by examining both upper and lower surfaces of the deck, respectively.  The 

280 graphs show on the horizontal axis the normalized abscissa x/B, measured from left to right across 

281 the sections portrayed in Fig.2; the mean pressure coefficients are displayed on the vertical axis. 

282 On the upper surface (Fig.9a, 9c and 9e) all models exhibit similar trend and values, even 

283 though MOD2 has slightly bigger positive value for �=-10° in the range 0≤x/B≤0.1 (Fig. 9a). 

284 Overall, the largest differences between the geometries on the upper deck surface, for �=-10° and 

285 �=10° (Fig. 9e), are located inside the flow recirculation zone (0≤x/B≤0.1), whereas for �=0° the 

286 values are very close with a slight difference in the range 0.8≤x/B≤1.0. 

287 On the lower surface of the deck (Figs. 9b, 9d and 9e) the trend of the mean pressure 

288 coefficients is different among the various cases (MOD1, MOD2 and MOD3).  In particular, 

289 differences are evident for �=-10° (Fig.9a) in the 0≤x/B≤0.6 range; it is observed that MOD3 has 

290 the largest negative pressure peak but the overall magnitude of the negative pressures is smaller 

291 than the one of other cases for a large region of the deck.  All the models have very similar values in 

292 the range 0.6≤x/B≤0.9.  For �=0° (Fig.9d), the pressure coefficients of MOD2 and MOD3 are very 

293 similar and quite different from MOD1.  Finally, for �=10°, values are close for all geometries in 

294 the ranges 0≤x/B≤0.3 and 0.7≤x/B≤0.1.  Based on the experimental results and observing the mean 

295 pressure coefficient trends for the three representative angles considered � ={-10°, 0°, 10°}, there is 

296 partial correspondence between the model that has the largest or smallest local pressure coefficients 

297 and the model with consistently smaller or larger pressure coefficients. This observation is in line 



10

298 with the previously described trend, estimated with the S-tests. However, the pressure coefficient 

299 results, obtained with the S-tests on the lower deck surfaces, suggest that the aerodynamic behavior 

300 of MOD1 is fairly different from the other models.

301 Figure 9c and d (i.e. � =0°) also show the values of mean pressure coefficients for the Great 

302 Belt Bridge deck, reproduced from [50] [51]  and used for comparison purpose as in the previous 

303 sub-section. On the upper surface of the deck, the overlap shows a satisfactory agreement with 

304 MOD3. In contrast, on the lower surface of the deck in the range 0≤x/B≤0.2 the Great Belt Bridge 

305 pressure coefficients are close to MOD1; in the range 0.2≤x/B≤0.4 values are intermediate between 

306 MOD1 and MOD3; finally, in the range 0.4≤x/B≤1.0 the Cp,m distribution is very close to MOD3.

307 2.3 Aeroelastic wind tunnel tests

308 The main aeroelastic forces induced by the motion of the deck were based on the formulation by 

309 Scanlan and Tomko [23] . These are the lift force Lh and the overturning moment Mα, measured as 

310 quantities per unit deck length on a section model of span length ℓ. The expressions are found in 

311 Eqs. (3) and (4) below (noting that the sign of the lift force Lh is usually opposite compared to L 

312 previously defined). The quantities Hi
* and Ai

* (with i=1,…,4) are the Scanlan (or flutter) 

313 derivatives [23] that depend on reduced frequency K=ωB/U or, equivalently, reduced wind speed 

314 Ur=U/(nB)=2π/K, with ω=2πn being the angular frequency of the deck vibration (rad/s) and n the 

315 frequency in Hz.

,𝐿ℎ =
1
2𝜌𝑈

2𝐵[𝐾𝐻 ∗
1 (𝐾)

ℎ
𝑈 + 𝐾𝐻 ∗

2 (𝐾)
𝐵𝛼
𝑈 + 𝐾2𝐻 ∗

3 (𝐾)𝛼 + 𝐾2𝐻 ∗
4 (𝐾)

h
𝐵] (3)

.𝑀𝛼 =
1
2𝜌𝑈

2𝐵2[𝐾𝐴 ∗
1 (𝐾)

ℎ
𝑈 + 𝐾𝐴 ∗

2 (𝐾)
𝐵𝛼
𝑈 + 𝐾2𝐴 ∗

3 (𝐾)𝛼 + 𝐾2𝐴 ∗
4 (𝐾)

h
𝐵] (4)

316 In Eqs. (3) and (4), valid for simple harmonic motion of the deck [23] , ρ is the air density, U 

317 the mean wind speed perpendicular to the bridge model’s axis, B is the deck width; the over-dot 

318 symbol denotes derivation with respect to time t. The quantities h and α are the instantaneous 

319 heaving motion and torsional angle of the deck section; lateral sway motion component and drag 

320 force are not considered in this study as their contribution to flutter is usually less important apart 

321 from special bridge cases [52] .

322 Aeroelastic tests (D-tests in the following) were used to estimate the flutter derivatives of one of 

323 the three geometries and to compare the estimated critical flutter speed with the results obtained 

324 using S- and P-test data.  The tests were carried out using section model MOD2.

325 A 2-DOF aeroelastic force balance was employed to determine  and  [4] . The balance 𝐿ℎ 𝑀𝛼

326 reproduces the vertical (h) and torsional (α) vibration of a representative section model of a bridge 
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327 deck in the wind tunnel. The free-vibration experimental method was employed to estimate the 

328 derivatives (e.g. [22] and [23] ).

329 Tests were conducted in the small-scale wind tunnel of Northeastern University (Boston, 

330 Massachusetts, USA) [53] . The tunnel has a test section of 0.56 m by 0.56 m. It is capable of 

331 producing wind speeds up to about 20 m/s with low turbulence. The main model dimensions, in 

332 mm, are equal to 530 (ℓ , spanwise length) by 20 (H, height) by 148 (B, chord), with a geometrical 

333 aspect ratio ℓ/B equal to 3.57. The blockage effect was less than 1% and was therefore negligible. 

334 Preliminary experiments were carried out to calibrate the apparatus. The wind tunnel chamber is 

335 presented in Fig. 10a; the test rig is illustrated in Fig. 10b and c.  The photograph in Fig. 10d depicts 

336 a typical experimental setup; Fig. 10e gives the reference coordinate system used to determine the 

337 flutter derivatives.

338 The mean flow speed in the wind tunnel was varied between 2 m/s and 9 m/s, i.e. U={1.90, 

339 2.64, 3.38, 4.25, 5.30, 6.26, 7.43, 8.40} m/s. Both 1-DOF (h vertical motion only) and 2-DOF (both 

340 h vertical and torsional α motions) experiments were performed. The model mass per unit length 

341 (m) was equal to 2.743 kg m−1; the polar moment of inertia per unit length (I) was equal to 0.010 kg 

342 m2 m−1.  The vertical- and torsional-DOF vibration frequencies (�h/2π and �a/2π) were respectively 

343 3.89 Hz and 6.74 Hz. The frequency ratio was designated as ε=��/�h. Finally, the reduced wind 

344 speed (Ur) was used to plot the test results after extraction of the flutter derivatives Hi
* and Ai

*.

345

346 Prior to identification of the flutter derivatives, the Power Spectral Density (PSD) was used to 

347 identify the main frequency components in each experiment. Examples of PSD graphs are reported 

348 in Fig. 11a and Fig. 11b, respectively for 1-DOF and 2-DOF tests. The ratio between torsional and 

349 vertical frequency is ε≈1.7. Structural damping ratios of the 2-DOF moving setup (ζh and ζα) were 

350 evaluated in absence of wind flow.  These quantities were later used for identification of Hi
* and 

351 Ai
*. Mean values of ζh and ζα were, respectively, 0.36% and 0.85%. Flutter derivatives (mean 

352 curves) are presented in Figs. 11c and 11d.  The quantities Hi
* and Ai

* with i=1,…,4 are illustrated.  

353 The flutter derivatives were determined using the Iterative Least Squares method [55] at each flow 

354 speed, or reduced wind speed. Thirty repeated acquisitions were considered to examine the 

355 experimental uncertainty [56] .  Data acquisitions were subsequently averaged (sample mean) at 

356 each reduced wind speed to obtain the data points summarized in Fig. 11c and 11d. Extremely small 

357 positive values were experimentally found for A2
* at low reduced wind speed in the range between 3 

358 to 5.  Figures 11 e and f illustrate the comparison between MOD2 and the Great Belt Bridge flutter 
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359 derivatives, reproduced from the literature [13] [17] [51] [57] .  The figures show a satisfactory 

360 agreement, especially for A2
* and H3

*. 

361 Test results were subsequently used to evaluate the critical flutter speed of a full-scale 

362 pedestrian bridge in accordance with a 2-DOF numerical model (Section 4.2). The characteristics of 

363 the full-scale structure were based on the results of a preliminary nonlinear structural analysis 

364 (Section 3). 

365 3. Structural design of the pedestrian bridge deck and suspension cables

366 Three designs of suspension pedestrian bridges were considered, as described in Section 1 and 

367 Table 1. Each structural model was constructed by considering one of the deck cross-sectional 

368 shapes at a time; the geometry of the deck cross-section leads to a variation in the physical and 

369 structural properties of the structure. The selected design simulates a deck structure built by hollow-

370 structural steel pipes (Fig. 12). A wood deck surface and a thin -layer metal deck were used to 

371 simulate the superstructure.  Static and dynamic analyses were carried out to design the three 

372 pedestrian bridge structures. Various load combinations were considered in the design. Dead loads 

373 were estimated as equal to 0.3kN/m2. The live load was assumed to be equal to 5 kN/m2 and snow 

374 load equal to 2 kN/m2.  Static wind pressure was used in the preliminary design of the structure. It 

375 was evaluated using a 30 m/s reference wind speed and the pressure coefficients illustrated in Figs. 

376 6-8.  

377 Deck flexural  and torsional  equivalent inertias are listed in Table 2.  The typical pipe size  ! "#

378 (diameter, � and wall thickness, s) and moments of inertia are listed in Table 2 for each model.  The 

379 yield stress of the steel is assumed equal to 325 MPa.  Figs. 12a to c present a schematic view of the 

380 deck section structural model for each geometry.

381 The center-to-center distance between the two main suspension cables is about 10 m for all 

382 geometries.  For the hangers, initial strain 	h,0 and section area Ah are listed in Table 2. Values were 

383 preliminarily fixed using a simplified 2D model under gravitational static loads.  The main cable 

384 areas Ac and strain 	c,0 were calculated and updated using the catenary method; the values are 

385 summarized in Table 2.  The Young’s modulus of the cables is equal to 1.65·108 kN/m2.  Cable 

386 areas and strains were calibrated to obtain vertical displacements smaller than 1/1000L1 (Fig.2, 

387 Section 2.1) under live loads.  Finally, F is the structural dead load per unit span length. Fig. 12d 

388 illustrates the local structural model of the tower and Fig. 12e shows the finite element model of the 

389 full bridge.  The comparison of the values in Table 2 suggests that the structural mass of MOD1 is 

390 the lowest, because of a smaller girder dimension and smaller design wind loads, evaluated from the 

391 pressure coefficients given in Figs. 6 and 7. 
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392 Tower height (Fig.12d) is approximately 60 m and tower weight is approximately 5000 kN 

393 (approximately 85 kN/m).  In this preliminary design phase, one type of steel pipe section was 

394 exclusively used with a diameter of 450 mm and a wall thickness equal to 8 mm. Fig. 12d presents 

395 the schematics of the finite element model of the tower.  Four vertical stabilizing cables of 250 mm 

396 diameter and pre-tensioned at a 0.28% strain can be noted.  The tower design accounts for the 

397 horizontal component of the internal axial force of the main cables. All the calculations are carried 

398 out according to Eurocode 1 [58] .

399 Geometric non-linear analyses were carried out using a research and design software program 

400 (TENSO), which enables non-linear dynamic analysis of wind-structure interaction at flutter.  The 

401 bridge deck model was simplified by a beam model located in the deck section’s center of gravity 

402 and two massless rigid links to simulate the connection of the deck to the hangers and cables. Modal 

403 analysis was carried out to estimate natural frequencies. The frequencies of the first symmetric and 

404 asymmetric vertical and torsional modes are listed in Table 3 for each of the three bridge 

405 configurations. The frequency ratio between the symmetrical modes is about 1.42 to 1.64.  Fig. 13 

406 illustrates, for MOD1, one example of mode shapes for the fundamental bridge modes listed in 

407 Table 3.  The mode shapes of other configurations are similar and are not reported for the sake of 

408 conciseness.  Figure 14 presents, for each structural configuration, deck vertical displacements and 

409 rotations of the fundamental modes listed in Table 3.  In each panel, vertical displacements (
) and 

410 rotations of the deck about the longitudinal bridge axis (�x) are plotted in normalized format (i.e. 

411 upward deck displacements are positive and counterclockwise rotations are positive); the mode 

412 shape functions are normalized so that the norm of the discrete eigenvector is equal to one. 

413 Structural damping coefficient for this kind of structure is usually low. In the numerical 

414 investigations, damping ratios between 0.1% and 0.5% [2] were used to study how damping 

415 influences the critical flutter speed of each structural configuration. The main results of the 

416 numerical simulations are summarized in the next section.

417 4. Deterministic Flutter Analysis

418 The critical flutter speed was estimated using two different approaches: first, nonlinear dynamic 

419 analysis by three-dimensional finite element models and quasi-static approximation of the unsteady 

420 wind loads (i.e. lift, drag and moment derived from the wind tunnel tests) were employed; second; a 

421 two-mode (2-DOF) generalized numerical model of the deck motion in the frequency domain and 

422 flutter derivatives were considered to more correctly examine bridge aeroelasticity.
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423 4.1 FEM analysis

424 Nonlinear dynamic flutter analysis (in the following NM), [59] , [60] , was carried out using the 

425 aerodynamic coefficients reported in Fig. 4 in accordance with the reference force system reported 

426 in Fig. 3d, [61] .  The analyses were performed using the TENSO nonlinear geometrical analysis 

427 program, which can execute dynamic step-by-step integration of the nonlinear three-dimensional 

428 structure with geometric nonlinearities.  

429 The TENSO software includes modules for simulating cable and beam finite element models 

430 and for the study of wind-structure interaction phenomena with generation of wind speed time 

431 histories and simulation of various aeroelastic loads.  The main cables are discretized as rectilinear 

432 cable segments.  The global stiffness matrix is updated at each load step by assembly of the stiffness 

433 sub-matrices of the elements, updated to account for the strain found at the previous time step.  In 

434 this way the software considers the geometric nonlinearity of the structure. 

435 The TENSO software first solves for the static equilibrium of the structure under dead, gravity 

436 and construction loads (prior to the application of the wind loads) by nonlinear static analysis; two 

437 methods are simultaneously used: step-by-step incremental method and a “subsequent interaction” 

438 method with variable stiffness matrix (secant method).  The secant method is a finite-difference 

439 approximation of the Newton-Raphson’s modified method for systems of nonlinear algebraic 

440 equations [20] [21] [20] .  The solution under gravity loads is subsequently used as the initial step of 

441 the dynamic wind load analysis.  The Newmark-Beta method with Rayleigh damping is used for 

442 numerical integration of the dynamic equations.  Wind loads on the bridge deck are time dependent; 

443 they are simulated by applying the aerodynamic coefficients (CD, CL and CM) as a function of the 

444 time-dependent angle of attack and by setting the appropriate values of dynamic wind pressure at a 

445 given mean wind speed U (at deck level). The program evaluates displacements and rotations of the 

446 bridge deck at progressively increasing values of U, and records the velocity at incipient flutter 

447 when the reference deck vibration amplitude exceeds ±5°. Fig. 15 illustrates three examples of NM 

448 time histories exhibiting flutter instability in terms of vertical deck displacement (
) and rotation 

449 (�), for the middle-span section (i.e. upward displacements are positive and counterclockwise 

450 rotation are positive).

451 4.2 Equivalent 2-DOF Scanlan’s numerical model

452 Equations (3) and (4), presented in a previous section, must be modified to enable estimation of 

453 critical flutter speed in the frequency domain. Incipient flutter is determined from a condition 

454 coincident with the simple harmonic motion of the deck accounting for coupled vertical and 

455 torsional motion (DOFs). This condition is determined by the vanishing of the total damping (i.e. 
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456 including structural damping and the contribution of aeroelastic load interaction) of a 2-DOF 

457 generalized model, which simulates the two fundamental, vertical and torsional modes of the deck. 

458 Even though more sophisticated approaches are currently employed for flutter examination on long-

459 span bridges (e.g. multi-mode approach [52]  ), the equivalent 2-DOF model, described in this 

460 section, was considered appropriate for the present investigation, mainly focusing on experimental 

461 error and modeling uncertainties. Additional studies will possibly be considered in the future.

462 The procedure for finding flutter is recursive. The method (designated as SM in the following), 

463 described in Simiu and Scanlan [40] , was used. In the flutter calculations, the derivatives  and 𝐻 ∗
𝑖  

464 , with  and as a function of K=2�nB/U, were employed. Flutter calculations were 𝐴 ∗
𝑖 𝑖 = 1,2,3

465 conducted by neglecting the contribution of and . Solution to the flutter problem using the 𝐻 ∗
4   𝐴 ∗

4

466 2-DOF generalized model can be obtained by transforming the differential system into a system of 

467 two complex-valued algebraic equations. After imposing the flutter condition, the roots of these two 

468 algebraic equations (available in Simiu and Scanlan [40] and not reported herein for the sake of 

469 brevity) can be found numerically. A recursive method was used, setting the value of the reduced 

470 frequency K first and finding the root of each equation in terms of the unknown variable $ = %& %ℎ

471 ; the quantity ωc is the critical angular flutter frequency and ωh is the angular frequency of the 

472 vertical DOF or deck mode (or generalized model). The iterative procedure was repeated until the 

473 same real root X was found in both equations. 

474 4.3 Critical flutter speed

475 The flutter critical speed (in the following designated as Uc) was evaluated by both methods (i.e. 

476 NM and SM) described in Section 4.1 and 4.2, using all experimental data described in section 2 

477 (i.e. S-tests, P-tests and D-tests). Results are summarized in Table 4. Critical flutter speed 

478 determined by NM were evaluated using aerodynamic forces directly acquired by S-tests and 

479 indirectly calculated by P-tests.  In contrast, critical velocities were determined by SM using flutter 

480 derivatives either experimentally measured (MOD2 only) or estimated using quasi-static equivalent 

481 method [28] [41] , after processing the P-test and S-test data. Numerical calculations were repeated 

482 by varying the modal damping ratio (�) between 0.1% and 0.5% (Section 4.1). It is important to 

483 note the damping is constant for SM analyses, whereas it is approximately constant in the NM 

484 analyses (calibrated using Rayleigh damping); this small difference partially explains the 

485 differences in the results.

486 Examination of Table 4 confirms that the critical flutter value increases when damping 

487 increases. Structural damping influences the results with all experimental data (P, S and D-tests) 



16

488 and using both flutter calculation procedures (NM and SM). This remark suggests that damping 

489 must be adequately estimated to determine the flutter instability threshold. Since the objectives of 

490 this study are the investigation of variability in the measurement of aerodynamic/aeroelastic loads, 

491 experimental error propagation and its effects on flutter speed, a conservative value (0.3%) was 

492 cautiously considered to study stochastic flutter in Section 5.

493 If structural modal damping ratio equal to 0.3% is used, referring to Table 4, we observe that the 

494 SM method gives larger values of Uc in comparison with NM for all geometries and using both P 

495 and S-test data.

496 Using P-test data the ratio between Uc estimated with SM and NM is equal to 1.38 for MOD1, 

497 1.11 for MOD2 and 1.28 for MOD3.  The ratios are similar using S-test data.  The ratio between Uc 

498 estimated with SM and NM is equal to 1.37 for MOD1, 1.20 for MOD2 and 1.27 for MOD3.

499 The comparison of the results for MOD2, estimated with SM and using P, S and D-test data, 

500 respectively suggests Uc ranging from 67.8 m/s (P-tests) to 104.5 m/s (D-tests).  The value obtained 

501 using SM with aeroelastic data set is the highest one.

502 Overall, MOD3 has the highest Uc with both flutter calculation methods (NM and SM) and all 

503 experimental data (P and S).  These results confirm the trend reported in Fig. 4, in which it was 

504 noted that MOD3 has smaller CL and CM coefficients, and consequently aerodynamic loads, in 

505 comparison with other deck sections.  MOD3 often exhibits the largest absolute values of the local 

506 pressure coefficients even though this aspect does not seem to affect the Uc values.

507 MOD1 and MOD2 exhibit flutter results close to each other, contrary to MOD3. MOD1 leads to 

508 the smallest values of Uc using S-test data with both calculation methods (NM and SM).  MOD2, on 

509 the contrary, leads to the smallest values of Uc using P-test data with both NM and SM. 

510 5. Stochastic flutter analysis: critical speed variability and dependency on laboratory 

511 conditions

512 The variability of Uc values obtained with different calculation methods and different 

513 experimental data sets suggests the need to study error propagation and its effects on the Uc 

514 predictions.  This aspect can be investigated by performing a comprehensive error analysis of the Uc 

515 [62] [63] [64] .

516 Two sample sizes of the input random variables (aerodynamic coefficients) were considered in 

517 this study, 30 and 5·105 realizations, respectively. The 30 P and S-test data sets were generated 

518 using Monte-Carlo sampling and based on the experimental results. In contrast, the 30 D-test data 

519 sets were directly deduced from the aeroelastic experiments, which were repeated 30 times (Section 

520 2.3).  Results obtained using the 30 data sets are discussed in Section 5.1.The PC expansion (e.g. 

521 [44] , [45] ) using Hermite polynomials to model stochastic processes, was used to extend the size 
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522 of the P, S and D-test data sets to 5·105 realizations.  Results obtained using 5·105 realizations data 

523 sets are described in Section 5.2.Both flutter calculation methods (NM and SM) were used to 

524 estimate Uc with 30 samples; analyses were carried out for all geometries.  The SM method and the 

525 MOD2 geometry were exclusively used for investigating Uc variability with 5·105 realizations of 

526 aerodynamic coefficients derived from P, S and D-test data sets. The probability density function 

527 (pdf) of the flutter speed was empirically derived from the simulations and compared against several 

528 theoretical models (Normal/Gaussian, Log-Normal, Gamma, Rayleigh and Weibull). 

529 5.1 Critical flutter variability with 30 samples

530 Figs. 16, 17 and 18 illustrate the empirical probability distributions (pdfs) of the Uc values 

531 obtained for MOD1, MOD2 and MOD3, respectively. In particular, panel “a” of Figs. 16, 17 and 18 

532 presents the pdf of Uc, evaluated by NM after processing the P-tests; panel “b” shows the pdf of Uc 

533 by NM after processing the S-tests; panel “c” illustrates the pdf of Uc calculated by SM after 

534 processing the P-tests; panel “d” shows the pdf of Uc calculated by SM after processing the S-tests.  

535 In addition, Figure 17e examines the empirical pdf graphs of Uc obtained by processing the D-test 

536 data for MOD2. 

537 All the results indicate that the sample population (30 realizations) is rather small to obtain a 

538 continuous distribution with sufficient resolution from the corresponding empirical histograms. 

539 Consequently, the theoretical models of the pdfs were fitted to the experimental data and the 

540 Kolmogorov-Smirnov test was used [65] to evaluate the statistics of the results.  It was found that 

541 all the models could not be rejected, at the 5% significance level, for all geometries. Thus, any of 

542 the models could not be excluded.  However, the empirical fitting provides some useful 

543 information: Figs. 16, 17 and 18 suggest that the Log-Normal and Normal distributions are closer to 

544 the empirical pdf, with a slight preference for the Log-Normal distribution, for example for MOD1 

545 using NM with S-test data (Fig. 16b), for MOD2 using NM with P-test (Fig. 17a) and for MOD3 

546 using NM with S-tests (Fig. 18b). The parameters, determined through fitting of the Gamma model 

547 for all cases studied, result in a Gamma distribution very similar to the Normal and Log-Normal 

548 distribution. The Rayleigh distribution is not suitable to describe any of the cases, in particular for 

549 MOD1 using both flutter calculation methods (NM and SM) with P-tests (Figs. 16a and c), for 

550 MOD2 using SM with all experimental data sets (P, S and D-tests) (Fig. 17b, d and e) and for 

551 MOD3 using SM with the S-tests (Fig. 18d).

552 In conclusion, the random analyses suggest large standard deviation values.  They range from 

553 3.02 m/s to 19.78 m/s for MOD1, 6.92 m/s to 25.23 m/s for MOD2 and 2.87 m/s to 35.13 m/s for 

554 MOD3. 
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555 5.2 Critical flutter variability with 5+105 samples

556 This section discusses the results of the numerical analyses carried out using MOD2, SM flutter 

557 calculation method with P, S and D-test data sets synthetically expanded to obtain 5·105 realizations 

558 by PC expansions. Discussion on the PC is omitted for the sake of brevity but may be found in the 

559 literature [44] [66] [45] .

560 Table 5 summarizes the Hermite expansion polynomial coefficients for all U values discussed in 

561 section 2.3.  Table 5 presents the results using Hermite polynomials with order varying from 1st  to 

562 4th . Data sets expanded using only the 3rdand 4th orders of the polynomials were used to carry out 

563 SM analyses.  The P and S-test data sets were synthetically expanded using the 4th order 

564 polynomial, whereas the D-test data sets were expanded using both 3rd and 4th order polynomials. 

565 The D-test data set analyses were repeated using both correlated (i.e. with fully correlated samples 

566 of flutter derivatives) and non-correlated (i.e. independent samples of flutter derivatives) random 

567 realizations of the flutter derivatives.

568 Figure 19 presents the pdfs of the Uc with 5·105 realizations. Panel “a”, shows the pdf of Uc 

569 evaluated with the P-test data set; panel “b” displays the pdf of Uc evaluated with the S-test data set; 

570 panel “c” illustrates the pdf of Uc calculated with non-correlated D-test data set and, finally, panel 

571 “d” shows the pdf of Uc calculated with correlated D-test data sets.  All the probability models were 

572 fitted either to the experimental or simulated data. A Kolmogorov-Smirnov test was again 

573 performed. As previously observed with the smaller sample size, several distribution models could 

574 not be rejected at the 5% significance level.

575 Some information can be derived from this second investigation: the empirical or synthetic 

576 results, obtained with the P-test data sets (Fig. 19a), have an empirical probability histogram that 

577 can be adequately replicated by a Normal distribution; the graph is clearly distinct from the 

578 Rayleigh distribution. The pdf of Uc with the S-test data set (Fig. 19b) appears to have an empirical 

579 tri-modal distribution that is incompatible with all the pdf models considered.  The Gamma 

580 distribution provides an acceptable approximation in terms of the mode, mean and median of the 

581 distribution (more discussion in the next section). The empirical pdf histograms of Uc with 

582 correlated and non-correlated D-test data sets in Figs. 19c and 19d, respectively, also exhibit a tri-

583 modal trend that is unsuitable to any of the pdf models considered.

584 6. Additional remarks about the experimental flutter derivatives and experimental error 

585 quantification

586 Supplementary statistical analysis of the flutter derivatives, estimated by experimental data sets, 

587 (Section 2.3) are illustrated in Table 6. The reduced wind speed Ur equal to 7.36 is used as an 

588 example. Table 7 reports the maximum, minimum, mean  (with x denoting any of the !'
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589 derivatives), standard deviation (
) skewness (�3) and kurtosis (�4) coefficients for 30 experimental 

590 values. Table 6 also provides, in the case of the experimental data only, the standard error of the 

591 mean (Sm) defined as the ratio , where  is the sample size (i.e. 30) and the relative standard ' (p (p

592 deviation, i.e. the coefficient of variation (%RSD) defined as the ratio . The quantity Sm  100 *
'
!'

593 ranges from 0.005 to 0.2 for the experimental data; %RSD is between -56.5% (H2
*) and +39.2% 

594 (A1
*) for the experimental data. To provide a measure of the data set variability and examine 

595 experimental and simulation errors, the confidence (  and tolerance (  intervals were also 𝐶 ) + )

596 estimated. 

597 The confidence interval, evaluated for the experimental data sets only, measure the deviation 

598 from the true value of the mean of a random variable (unknown) and the sample mean estimator. In 

599 the present study, it was approximately estimated as , where  is the 𝐶 (95%) / !' ± 1.96' (p 1.96

600 extent of the Normal/Gaussian distribution for a degree of confidence equal to 95%. This definition 

601 of  is exact if the error is normally distributed. Notoriously, the standard confidence interval 𝐶 (95%)

602 equation relies on the population standard deviation ). However, since the latter is generally ('

603 unknown, it is replaced in with the sample standard deviation. This assumption means that  𝐶 (95%)

604 is an approximation of the confidence interval, even though it is a fairly accurate approximation for 

605 large samples (i.e.,  30) [67] . (p 2

606 The tolerance interval  for each set of data, including both experimental sets and (+ )

607 numerically-generated ones, was estimated by the algebraic sum  (for data sets symmetric  !' ± 3'

608 about ). The quantity k is the tolerance factor. In this study, k is defined such that there is a 99% !'

609 confidence that the calculated tolerance limits will contain at least 95% of the measurements. If the 

610 normal/Gaussian distribution is employed to approximate the data variability, k=2.36 can be used. 

611 Figures 20 and 21 present examples of tolerance and confidence intervals of the experimental 

612 flutter derivatives, estimated by repeating experiments 30 times at each Ur. At Ur = 7.36, the 

613 number of experimental data points located outside  is equal to one only for H1
*, A2

* and A3
*. The + 

614 percentage of numerically-generated values, outside the  interval, ranges from 0% (H2
*, H3

* and + 

615 A1
*) to 6.6% (A2

*) (i.e. 2 points outside the interval). At Ur=14.56, the percentage of data points 

616 outside  is equal to 3.3% for all flutter derivatives (i.e. one point outside the interval). + 

617 Finally, Table 6 provides estimation of the absolute and relative experimental errors (in 

618 percentage), referred to  and based on the sample estimation of the . The two errors were !' + 

619 defined as  and , respectively, and depend on Ur. For example,  4+ ,𝐴 / 23' 4+ ,5 / 23' |!'| 4+ ,5

620 varies from 51.2% (A3
*) and 268.7% (H2

*) at Ur=7.36. This supplementary analysis confirms the 

621 variability of the flutter derivatives that is reflected in the critical flutter speed estimation. 
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622 7. Further discussion of the stochastic flutter results

623 Numerical simulation results (Table 7) indicate that the variability of critical flutter speed, 

624 obtained using the various calculation methods and the experimental data sets, is large. For 

625 example, in the case of the MOD2 deck section, the critical flutter speed shown was calculated 

626 using both NM and SM and the three different experimental data sets (P, S and D-tests). 

627 The mean and standard deviation of the flutter speed Uc are presented. The lowest and the 

628 highest values of Uc were obtained by evaluating flutter speed using one sample of experimental 

629 data: they are equal to 60.75 m/s (NM combined with P-test data sets) and 104.50 m/s (SM with D-

630 test data sets). When 30 repeated realizations of the experimental data were employed, the smallest 

631 mean value of Uc, equal to 66.76 m/s, was found by NM with S-test data sets; the standard deviation 

632 was determined as 6.92 m/s.  The largest mean value of Uc, equal to 91.10 m/s, was obtained using 

633 SM with D-test data sets; the standard deviation was 29.21 m/s. Finally, when the 5·105 synthetic 

634 realizations were processed, the lowest mean value of Uc, 71.48 m/s, was estimated using SM with 

635 the P-test data set synthetically expanded with a 4th order Hermite-polynomial PC; the standard 

636 deviation was equal to 13.28. In contrast, the largest mean value, 96.70 m/s, was obtained using SM 

637 with an S-test data set expanded with a 4th order PC.  The maximum value of standard deviation 

638 was observed when SM was utilized with a D-test data set expanded with a 4th order Hermite-

639 polynomial PC and non-correlated flutter derivatives. In conclusion, the ratio between the lowest 

640 and the highest value of evaluated can be large, equal to about 1.72. 

641 8. Conclusions

642 Experimental error propagation, associated with variability in the aerodynamic loads of bridge 

643 decks, has considerable impact on the critical flutter speed of pedestrian suspension bridges. In this 

644 paper a comprehensive investigation was carried out to examine the implications of this kind of 

645 variability on the structural reliability of such bridges. Three different experimental data sets were 

646 considered: pressure coefficients (P-test data set), aerodynamic static forces (S-test data set) and 

647 flutter derivatives (d-test data set).  The data sets were measured in three different laboratories, 

648 CRIACIV Boundary Layer Wind Tunnel (Prato, Italy), Marche Polytechnic University’s wind 

649 tunnel (Ancona, Italy) and Northeastern University’s wind tunnel (Boston, Massachusetts, USA). 

650 The study was applied to three different pedestrian suspension bridges with closed-box deck 

651 sections of various geometries (MOD1, MOD2 and MOD3).

652 The critical flutter speed was estimated by three-dimensional finite-element nonlinear dynamic 

653 analysis (NM) and frequency-domain equivalent 2-DOF analysis (SM).  Due to the small number of 

654 experimental samples, synthetic generation of a larger data sample was needed to conduct the 

655 stochastic flutter analysis.  Monte-Carlo simulation methods and spectral methods, based on 
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656 Polynomial Chaos expansion of random variables using Hermite polynomials, were considered. 

657 Table 6 presents the analysis of experimental and numerical flutter derivative data sets along with 

658 empirical tolerance and confidence intervals. Table 7 summarizes the main results. Results suggest 

659 that different calculation methods and different experimental data sets influence estimations of 

660 critical flutter speed. Careful attention should be paid to these aspects especially in the case of 

661 pedestrian footbridges, for the design of which comprehensive aerodynamic and aeroelastic 

662 investigations are not always prescribed and may not be carried out. 
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Table 1

h1 h2 d1 b1 d2 b2

MOD1 0.53·103 1.11·103 0.86·103 10.25·103 4.10·103 3.94·103

MOD2 0.53·103 1.11·103 0.86·103 10.25·103 2.62·103 6.77·103Full scale 
MOD3 0.53·103 1.11·103 0.86·103 10.25·103 1.89·103 8.36·103

Wind tunnel 
model

MOD1 13 27 21 250 100 96
MOD2 13 27 21 250 64 165S and P-tests
MOD3 13 27 21 250 46 204
MOD1 - - - - - -
MOD2 7 14 11 127 32 84D-tests
MOD3 - - - - - -

Notes: all values are in mm; the definition of the quantities refers to Fig. 2.



Table 2

� s 𝐼𝑥 𝐽𝑔 F Ah �h,0 Ac �c,0
Models

m m m4 m4 kN/m m2 % m2 %

MOD1 1.·10-2 4·10-3 2.7·10-3 1.2·10-2 4.96 7.07·10-4 0.70 1.54·10-2 0.51

MOD2 1.·10-2 5·10-3 3.7·10-3 1.7·10-2 6.26 7.07·10-4 0.70 1.54·10-2 0.52

MOD3 1.·10-2 6·10-3 5.6·10-3 2.3·10-2 7.45 7.07·10-4 0.70 1.54·10-2 0.53



Table 3 

Natural frequencies

Models 1th symmetric
vertical ( )𝜔ℎ,1 2𝜋

(Hz)

1th symmetric 
torsional( )𝜔𝛼,1 2𝜋

(Hz)

1th  asymmetric 
vertical ( )𝜔ℎ,2 2𝜋

(Hz)

1th asymmetric 
torsional ( )𝜔𝛼,2 2𝜋

(Hz)

𝜔𝛼,1
𝜔ℎ,1

𝜔𝛼,2
𝜔ℎ,2

MOD1 0.40
mode 12th

0.57
mode 14th

0.26
mode 5th

0.58
mode 15th 1.42 2.23

MOD2 0.35
mode 8th

0.57
mode 15th

0.25
mode 5th

0.56
mode 14th 1.62 2.24

MOD3 0.34
mode 8th

0.56
mode 14th

0.33
mode 7th

0.55
mode 13th 1.64 1.66



Table 4

Damping ratio, � (%)
0.1 0.2 0.3 0.4 0.5Data set Model Calculation 

method Uc (m/s)
NM 24.3 37.0 61.6 90.5 90.7MOD1 SM 37.7 39.6 85.1 91.2 92.9
NM 22.1 41.5 60.9 101.4 103.5MOD2 SM 23.7 42.4 67.8 113.1 113.2
NM 25.8 86.8 107.4 110.2 112.9

P-tests

MOD3 SM 31.8 88.0 138.3 187.2 186.9
NM 25.2 33.8 52.4 90.5 91.4MOD1 SM 27.0 34.0 72.0 114.0 118.0
NM 25.8 36.6 65.8 82.30 83.1MOD2 SM 32.8 46.9 79.8 113.9 115.1
NM 29.0 73.0 129.0 131.0 132.0

S-tests

MOD3 SM 36.0 98.4 164.2 190.6 192.0
NM - - - - - MOD1 SM - - - - - 
NM - - - - - MOD2 SM 43.0 61.5 104.5 130.6 131.9
NM - - - - - 

D-tests

MOD3 SM - - - - - 



Table 5

Reduced wind speed, Ur (m/s)
3.27 4.57 5.86 7.36 9.18 10.85 12.88 14.56Hermite 

expansion 
polynomial 

order
1st Ord. 0.45 0.39 0.57 0.73 0.74 1.36 2.53 2.67
2nd Ord. 0.45 0.39 0.57 0.73 0.74 1.36 2.53 2.67
3rd Ord. 0.45 0.39 0.57 0.74 0.74 1.36 2.53 2.67H1*

4th Ord. 0.45 0.39 0.57 0.72 0.74 1.36 2.54 2.67
1st Ord. 0.55 0.53 0.53 0.53 0.56 0.63 0.73 1.15
2nd Ord. 0.55 0.53 0.53 0.53 0.56 0.63 0.73 1.15
3rd Ord. 0.55 0.53 0.53 0.53 0.56 0.63 0.73 1.15H2*

4th Ord. 0.55 0.53 0.53 0.53 0.56 0.63 0.73 1.15
1st Ord. 0.37 0.28 0.27 0.29 0.33 0.36 0.43 0.95
2nd Ord. 0.37 0.27 0.27 0.29 0.33 0.36 0.43 0.95
3rd Ord. 0.37 0.27 0.27 0.29 0.32 0.36 0.43 0.95H3*

4th Ord. 0.37 0.27 0.27 0.29 0.33 0.36 0.43 0.96
1st Ord. 0.89 0.56 0.56 1.10 1.89 2.60 2.59 2.84
2nd Ord. 0.89 0.56 0.56 1.10 1.89 2.60 2.59 2.84
3rd Ord. 0.89 0.56 0.56 1.10 1.89 2.59 2.59 2.84A1*

4th Ord. 0.89 0.56 0.56 1.10 1.90 2.59 2.59 2.84
1st Ord. 0.04 0.01 0.01 0.03 0.09 0.11 0.15 0.31
2nd Ord. 0.04 0.01 0.01 0.03 0.09 0.11 0.15 0.31
3rd Ord. 0.04 0.01 0.01 0.03 0.09 0.11 0.15 0.31A2*

4th Ord. 0.04 0.01 0.01 0.03 0.09 0.11 0.15 0.31
1st Ord. 0.15 0.10 0.10 0.10 0.12 0.13 0.17 0.34
2nd Ord. 0.15 0.10 0.10 0.10 0.12 0.13 0.17 0.34
3rd Ord. 0.15 0.10 0.10 0.10 0.12 0.13 0.17 0.34A3*

4th Ord. 0.15 0.10 0.10 0.10 0.12 0.13 0.17 0.34



Table 6

Data 
source max min 𝑥𝜎 s �3 �4 Sm %RSD TI CI(95%) 𝜀�𝐼 𝜀�𝐼(95%) 

Exp. -3.24 -6.49 -5.04 0.73 0.17 3.02 0.134 -14.5 -3.31 -6.77 -4.78 -5.30 68.6 10.4
3rd HP 12.28 -18.50 -5.04 0.73 0.08 1.85 0.001 -14.5� �

1
4th HP 52.72 -5.89 -5.04 0.74 0.08 1.54 0.001 -14.7
Exp. 0.16 -2.02 -0.94 0.53 0.14 2.76 0.097 -56.5 0.31 -2.19 -0.75 -1.13 266.5 40.4

3rd HP 9.20 -16.77 -0.94 0.53 -0.92 2.93 0.001 -56.5� �
2

4th HP 53.80 -2.20 -0.94 0.53 1.17 3.70 0.001 -56.9
Exp. 2.20 1.06 1.57 0.29 0.08 2.61 0.053 18.5 2.26 0.89 1.67 1.47 87.2 13.2

3rd HP 4.75 -0.35 1.57 0.29 1.03 2.80 0.001 18.5� �
3

4th HP 4.29 -36.80 2.81 1.10 0.48 1.59 0.001 39.3
Exp. 4.43 0.74 2.81 1.10 -0.32 2.01 0.201 39.2 5.41 0.21 3.21 2.42 185.2 28.1

3rd HP 4.20 -5.55 2.81 1.10 1.53 4.35 0.001 39.3� �
1

4th HP 10.92 0.86 1.57 0.29 0.23 1.66 0.001 18.5
Exp. -0.01 -0.13 -0.06 3.E-02 -0.55 3.25 0.005 -51.9 0.01 -0.13 -0.05 -0.07 245.3 37.2

3rd HP 0.64 -0.54 -0.06 3.E-02 -1.32 3.21 0.001 -52.2� �
2

4th HP -0.01 -2.87 -0.06 3.E-02 -1.36 3.17 0.001 -52.8
Exp. 1.13 0.67 0.91 1.E-01 0.11 3.18 0.018 10.9 1.14 0.68 0.94 0.87 51.2 7.8

3rd HP 3.57 -1.52 0.91 1.E-01 0.82 2.45 0.001 10.9� �
3

4th HP 1.09 -4.54 0.91 1.E-01 0.91 2.70 0.001 10.9
Note: 3rd HP and 4th HP refer to 3rd and 4th order of Hermite polynomials.



Table 7

MOD2
(�=0.3%) Uc (m/s)

30 realizations 510e5 realizations
Data set Calculation 

method
Single 

realization �� 𝜎�� �� 𝜎��
NM 60.75 68.23 23.72 - -

P-tests SM 67.84(#) 70.63 14.84(#) 4th order 
71.48

4th order 
13.28(#)

NM 65.80 66.76 6.92 - -
S-tests SM 79.76(#) 89.22 20.88(#) 4th order 

96.70
4th order 
35.49(#)

NM - - - - -
Non-correlated

3rd order 
83.57

4th order 
87.37

3rd order 
36.66

4th order 
37.56

Correlated

D-tests SM 104.5 91.12 29.21

4th order 
95.25

4th order 
26.85

(�=0.3%) �c (rad/s)

30 realizations 5%105 realizations
Data set Calculation 

Method
Single 

realization �� ��

NM 0.217 0.193 -
P-tests SM 0.194(#) 0.186 4th order 

0.184
NM 0.200 0.197 -

S-tests SM 0.165(#) 0.147 4th order 
0.136

NM - - -
Non-correlated

3rd order 
0.157

4th order 
0.150

Correlated

D-tests SM 0.126 0.144

4th order 
0.138

Note (#): quasi-static approximation of flutter derivatives (Scanlan et al. 1997)
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view (measurements in millimeters) (c), test model (d), reference coordinate system (e).

Figure 11: MOD2, Power Spectral Density (PSD), 1DOF (a) and 2DOF (b) experiments, flutter 
derivatives H1

*, H2
*, H3

* and H4
*(c), A1

*, A2
*, A3

* and A4
* (d), comparison of H1

*, H3
* 

between MOD2 and Great Belt bridge deck from Reinhold et al [51] (e), comparison of 
A1

*, A2
* between MOD2 and Great Belt bridge deck from Reinhold et al [51] (f).

Figure 12: Finite element model details of the pedestrian bridges structure: deck structure: MOD1 
(a), MOD2 (b), MOD3 (c), tower (d) and bridge (e).

Figure 13: MOD2 mode shapes: asymmetric vertical (a), asymmetric torsional (b), symmetric 
vertical (c), symmetric torsional (d).

Figure 14: Deck mode shapes: vertical displacements (a) and rotations (b) MOD1, vertical 
displacements (c) and rotations (d) MOD2, vertical displacements (e) and rotations (f) 
MOD3.

Figure 15: Deck response time histories during flutter oscillation: vertical displacements (a) and 
rotations (b) MOD1, displacements (c) and rotations (d) MOD2, displacements (e) and 
rotations (f) MOD3.

Figure 16: MOD1, empirical pdf graphs with 30 realizations: NM/P-tests (a), NM/S-tests (b), 
SM/P-tests (c), SM-S-tests (d).



Figure 17: MOD2, empirical pdf graphs with 30 realizations: NM/P-tests (a), NM/S-tests (b), 
SM/P-tests (c), SM-S-tests (d) and (e) SM-D-tests

Figure 18: MOD3, empirical pdf graphs with 30 realizations: NM/P-tests (a), NM/S-tests (b), 
SM/P-tests (c), SM-S-tests (d).

Figure 19: MOD2, empirical pdf graphs with 5·105 realizations, SM/P-tests (a), SM/S-tests (b), 
SM/D-tests (uncorrelated flutter derivatives) (c), SM/D-tests (correlated flutter derivatives) 
(d).

Figure 20: MOD2, analysis of experimental datasets, tolerance (TI) and confidence intervals (CI) 
of H1

* at reduced wind speeds Ur=7.36 (a) and Ur=14.56 (b); H2
* at Ur=7.36 (c) and 

Ur=14.56 (d); H3
* at Ur=7.36 (e) and Ur=14.56 (f). 

Figure 21: MOD2, analysis of experimental datasets, tolerance (TI) and confidence intervals (CI) 
of A1

* at reduced wind speeds Ur=7.36 (a) and Ur=14.56 (b); A2
* at Ur=7.36 (c) and 

Ur=14.56 (d); A3
* at Ur=7.36 (e) and Ur=14.56 (f).
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