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Abstract— Objective: Correct interpretation of the 

Electroencephalographic (EEG) and Magnetoencephalographic 

(MEG) signals requires off-line artefacts removal. Since artefacts 

share frequencies with brain activity, standalone filtering 

procedures are insufficient. Blind source separation, mainly 

through Independent Component Analysis (ICA), is the gold-

standard procedure for the identification of artifact in multi-

dimensional recordings. However, ICA requires classification of 

brain and artefactual Independent Components (ICs). Since ICs 

exhibit recognizable patterns, classification is performed by 

experts’ visual inspection. However, this procedure is time-

consuming and prone to errors. Thus, automatic ICs 

classification performance has been explored, often through 

complex ICs features extraction prior to classification.  Relying 

on Deep Learning ability of self-extracting the features of 

interest, we investigated the capabilities of Deep Convolutional 

Neural Networks (CNNs) for off-line, automatic, feature-less, 

artifact identification through ICs. Methods: A CNN was applied 

to spectrum and topography of ICs of a large data-set of multi-

channel EEG (1067 ICs) and MEG (4749 ICs) recordings. CNN 

performances, when applied to standalone EEG, standalone 

MEG, and combined EEG and MEG ICs, were explored. Results: 

State-of-the-art classification accuracies were demonstrated 

through cross-validation (92.2% EEG, 95.7% MEG, 94.3% 

EEG+MEG). Conclusion: High CNN classification performances 

were achieved through heuristically selection of machinery 

hyperparameters and no a priori complex feature extraction, 

thus relying on data-driven CNN self-selection of the features of 

interest. Significance: CNNs may be highly suited for feature-less 

classification of ICs of multi-channel brain electrophysiological 

recordings. Considering the large data availability of multi-

channel EEG and MEG recordings, CNN classification can 

become the gold-standard procedure for this application. 

 
Index Terms— Deep Learning, Convolutional Neural Network, 

Electroencephalography, Magnetoencephalography, Independent 

Component Analysis, Artifact Identification 

I. INTRODUCTION 

In an active postsynaptic neuron, a negative voltage 
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between neural dendrites and other locations along the neuron 

is generated.  Within a small brain compartment in which 

dendridic arborization are parallel and follow a main direction, 

such situation can be modelled as a current dipole generating 

an electromagnetic field [1]. Both electrical potentials and 

magnetic fields, generated from the dipole in this 

compartment, can be measured non-invasively by sensors 

located on or close to the scalp. The technology that measures 

electrical potentials is called Electroencephalography (EEG), 

whether the technology that measures magnetic fields is called 

Magnetoencephalography (MEG). EEG and MEG provide 

sub-milliseconds temporal resolution of brain electrical 

activity and, despite providing a spatial resolution of few 

centimeters, they are non-invasive tools widely employed in 

the interpretations of neuronal communication, computation 

and brain spatiotemporal networks organization [1]. Electrical 

potentials and related magnetic fields are particularly small in 

amplitude and are attenuated by volume conduction effect [2], 

thus, both EEG electrodes and MEG sensors need to be 

particularly sensitive. Such elevated sensitivity implies 

sensors’ susceptibility to extracerebral electrical signals. 

Recorded electrical activity that is not of cerebral origin is 

termed ‘artefact’ and can be divided into of physiological and 

non-physiological origin. Common physiological artefacts are 

generated by muscle activity, eye movements, cardiac 

pulsation and respiration [3]. Common non-physiological 

artefacts are generated by sensors’ malfunction, alternating 

current supply, subjects’ movements and electric and magnetic 

field generated by other instrumentations close to the 

recording environment.  

 For a correct interpretation of the EEG and MEG signals, 

artefacts removal algorithms need to be performed off-line. 

Filtering techniques (low, high and band-pass filtering) are the 

simplest procedures for artefacts suppression. However, since 

artefacts often share common frequencies with brain activity, 

standalone filtering procedures are insufficient and more 

sophisticated algorithms are generally required. Indeed, many 

off-line approaches for the identification and removal of 

artefact were explored and validated. We here name adaptive 

filtering, Wiener filtering, Bayes filtering [4], regression [5], 

electrooculogram correction [6], wavelet transform (WT) [7], 
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empirical mode decomposition (EMD) [8], nonlinear mode 

decomposition (NMD) [9] and blind source separation [10]. 

Among the different algorithms developed, the blind source 

separation procedures rely on multi-dimensional (multi-

channel) data and they do not use any training data and do not 

assume a priori knowledge about parameters of mixing 

convolutive and filtering systems, thus being the favorite 

procedures when multiple channels information are provided 

[11]. Within blind source separation, Independent Component 

Analysis (ICA) is the most common procedure. ICA is a full 

data-driven statistical approach which exploits multi-channel 

EEG or MEG information, allowing to decompose the signal 

into independent (both in space and time) components (IC) 

[12].  After ICA is performed, it is possible to classify the ICs 

as sources related to brain activity or of artefact origin. After 

classification, brain signals are recombined allowing to obtain 

an estimate of artifact-free electrical brain activity. Since brain 

and artefactual ICs exhibit recognizable time, frequency and 

topographic patterns, classification is generally performed by 

experts’ visual inspection. However, this procedure is time-

consuming and prone to human error. In fact, semiautomatic 

and automatic procedures have been developed over time [3], 

[13], [14].  

 Automatic procedures currently rely on extracting ICs’ 

features by means of operators applied to ICs time series (e.g., 

Variance, Skewness, Kurtosis, Maximum Amplitude, Range, 

Max First Derivative, , Shannon and Deterministic Entropy), 

to topographic patterns (e.g. Horizontal Sobel, Large 

Horizontal Gradient, Range Filter, Three Dimensional Local 

Binary Pattern, Range Within Pattern, Spatial Distance of 

Extrema, Spatial Mean Activation, Border activation) and to 

spectra (e.g., 1/f Fit, Power within Frequency Bands) before 

feeding those features to classifiers (e.g., Support Vector 

Machine, Linear Discriminant Analysis) [15], [16]. 

 With respect to the automatic classification problem, 

Artificial Neural Networks (ANNs) are particularly suitable 

for classification of ICs. In a nutshell, ANNs can be 

considered as nonlinear statistical data modelling tools where 

complex relationships between inputs and outputs are 

modelled and patterns are found in the data in a supervised 

learning approach [17]. Among other methods, ANNs have 

been employed for ICs classification. In [18], the authors 

suggest that advanced machine learning tools such as ANN 

can be effective in classification of ICs. An ANN perceptron 

was proposed by [19] to classify eye blink in EEG signal. [20] 

proposed a wavelet neural network for removal of eyes ocular 

artifacts from EEG. [16] proposed an ANN for recognition of 

brain and artefactual components based on features of interest 

extracted from ICs.  The natural evolution of ANNs are Deep 

Neural Networks (DNNs, also referred to as Deep Learning 

algorithms) that, thanks to the current high computational 

power, architectures and supervised learning algorithms 

development, are increasing their popularity. DNNs are ANNs 

[17], [21] composed of many layers of nonlinear processing 

neurons. Each of these layer uses the output from the previous 

layer as input and all, or part of the neurons from consecutive 

layers are connected. Algorithm development allowed for 

Deep Learning evolution, beyond the increasing 

computational power of nowadays calculators. Efficient 

learning algorithms were implemented to avoid local minima 

in the objective function and poor generalization (over-fitting) 

[22] as well as new neuron’s activation functions (such as 

Rectified Linear Unit Function, ReLU function [23], [24]) that 

dampened the vanishing gradient problem [25] of multilayers 

ANN; DNNs can perform very complex, non-linear, 

transformations- classifications, greatly increasing shallow 

ANN [26] and other classifiers performances (Linear 

Discriminant Analysis, Support Vector Machine, etc.) [27]. 

DNNs can reach unprecedented classification outcomes when 

applied to signals (e.g. speech and language processing) 

and/or to images [28]–[31]. Because of their performances, 

these algorithms are also receiving attention within the 

biomedical field [32], [33]. When dealing with mono-

dimensional signals or multi-dimensional images, a further 

improvement to DNNs was the implementation of 

Convolutional Neural Networks (CNNs). CNNs are Neural 

Networks where neurons are connected to sliding portions of 

signals and/or images that are close in time and/or space [30], 

[34]. They allow to encode temporal and/or spatial 

information and to decrease the number of free parameters 

with respect to standard, fully connected DNN that do not 

encode any spatio-temporal information. Since neurons of 

CNNs are combined in groups and connected to sliding 

portions of the signals or images, the free parameters of the 

neurons, thanks to the learning procedure, generate peculiar 

filters, allowing for automatic pattern identifications and 

avoidance of a-priori feature selection.  CNNs have recently 

enjoyed great success in image and video recognition as well 

as in biomedical signal/imaging applications [35].  

CNNs were also employed on EEG and MEG recordings 

for task classification (see [36] for a review).   

 In this paper we report investigation of the capabilities of 

CNNs for off-line, fully automatic, feature-less, artifact 

identification applied to ICs extracted by means of ICA of a 

large data-set of multichannel electrophysiological recordings 

(EEG and MEG). 

II. METHODS 

A. Independent Component Analysis 

ICs for both EEG and MEG data were extracted with 

FASTICA algorithm [12].  FASTICA allows the computation 

of an optimal number of independent component along with 

separating and mixing matrices. FASTICA relies on the 

maximization of non-Gaussianity using the fourth-order 

cumulant of the signal (kurtosis). Maximizing the norm of the 

kurtosis leads to the identification of non-Gaussian sources. 

The hyperparameters employed in the FASTICA ICs 

extraction applied to brain electrophysiological recordings are 

already validated and described elsewhere [37].  
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B. EEG and MEG dataset 

EEG ICs were extracted from different datasets collected in 

our facilities with a full-head, 128 channels EEG system 

(Electrical Geodesic Inc, EEG System Net 300). EEG 

recording length varied from a minimum of 5 minutes to a 

maximum of 22 minutes (mean=11 minutes, standard 

deviation=3 minutes). Sampling frequency was set to 500 Hz 

for all the experiments that consisted of various tasks 

exploring rest, attention and movement. Raw signals were 

filtered between 1 Hz and 80 Hz and notch-filtered at 50 Hz 

(2nd order Chebyshev digital filters) prior to FASTICA 

evaluation.  A total of number of 1067 ICs for the EEG dataset 

were obtained. The EEG ICs were classified by trained 

experts. The trained expert classification relied on time course, 

spectral and topographic characteristics of the ICs.  503 brain 

ICs and 564 artefact ICs were classified. 

 MEG ICs were extracted from two different datasets 

acquired with different instrumentation. The first ICs dataset 

were extracted from recordings collected in our facilities with 

a MEG system constituted of 153 DC superconducting 

quantum interference devices (SQUIDs) magnetometers 

placed on a helmet- shaped surface covering the whole scalp 

at a pace of around 3.2 cm [38]. The second dataset consisted 

of ICs extracted from resting state recordings performed 

within the Human Connectome Project whose data are freely 

available online [39].  MEG recordings length varied from a 

minimum of 5 minutes to a maximum of 15 minutes 

(mean=11 minutes, standard deviation=3). Sampling 

frequency was set at either 341.6 Hz, 512.5 Hz and 1025 Hz 

for the in-house system whereas it was set at 2034 Hz for the 

connectome data. Data were acquired during various tasks 

exploring rest, attention and movement. Raw signals were 

filtered between 1 Hz and 130 Hz and notch-filtered at 50 Hz 

Fig. 1. Example of normalized ICs time courses (10 second window zoom, left column) and related normalized spectra (250 Hz sampling frequency, 0.12 Hz 

resolution, center-left column), normalized topographic map (51x51 pixels, center-right column), and fast Fourier transforms of the maps (51x51 pixels, right 

column). (a) ICs classified by experts as artefact related to heart activity (top row), ocular movements (middle row) and sensor malfunction (bottom row). The 
artefacts are identified by typical temporal, spectral and topographic features (periodic signal with heart frequencies components, sudden temporal spikes, 1/f 

decay in the spectrum) (b) ICs classified by experts as brain activity. 10 Hz activity is clear in the spectrum together with topographic maps likely generated by 

a dipole. 
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or 60 Hz (2nd order Chebyshev digital filter) prior to 

FASTICA application. A total number of 2572 ICs were 

extracted from the first dataset. A total number of 2177 ICs 

were extracted from the second dataset. A total of 4749 ICs 

for the MEG dataset were obtained. The MEG ICs were 

classified by trained experts. The trained experts’ 

classification relied on time course, spectral and topographic 

characteristics of the ICs.  2019 brain ICs and 2730 artefact 

ICs were classified. 

 Figure 1 report examples of normalized ICs time courses 

and related spectra, topographic maps, and fast Fourier 

transforms of the maps. Figure 1a report ICs classified by 

experts as artefact related to heart activity (top row), eye 

movement (middle row) and sensor malfunction (bottom row). 

The artefacts were identified by means of typical temporal, 

spectral and topographic features (periodic signal with heart 

frequencies components, sudden temporal spikes, 1/f decay in 

the spectrum). Figure 1b reports instead ICs classified by 

experts as of brain source. 10 Hz activity is clear in the spectra 

together with dipole like topographic maps. 

 

 

C. EEG and MEG data pre-processing 

In order to provide an algorithm independent of the 

recording length, CNNs were applied to ICs spectrum and its 

weights topographic distribution, without considering time 

signal. Importantly, and differently from previous 

classification procedure reported in the literature [40], no 

complex features extracted with peculiar operators were 

provided to the classifier, thus relying on CNNs intrinsic 

capabilities of self-adjusting feature selection when a large 

data-set is provided to the machinery. 

 Each IC time course was resampled at 250 Hz to provide 

a sufficient, but not redundant, frequency information (Figure 

1). In order to compute spectral feature of the IC that were 

provided to the CNNs, the power spectrum of the IC time 

course was computed (Hamming window, 2048 samples, 

8.192 seconds, with a 50% overlap, [41]). Each IC’s spectrum 

(ICSPECT) consisted of 1025 samples, spanning frequencies 

up to 125 Hz with a frequency resolution of ~0.12 Hz. IC 

weights were organized in a topographic fashion by 

considering EEG and MEG channels’ locations for the 

different data-set and by warping them in a unitary circle by 

means of a commonly utilized EEGLAB algorithm [42]. 

Topographic images were constructed by interpolations of IC 

weights at the warped channel location in matrices of 51x51 

pixels (ICMAP). The spatial sampling provided by the chosen 

matrices size was heuristically chosen after investigation of 

the frequency content of the topographic images obtained 

(Figure 1). Both topographic images and spectra were 

normalized based on z-score computation and Min-Max 

normalization before feeding them to the CNN.  

D. EEG and MEG data selection for CNN input 

In order to provide balanced classes to the CNN classifier, 

EEG and MEG IC numerosity was randomly down-sampled. 

When CNN classification performance was evaluated on 

standalone EEG ICs, a balance between brain and artefact ICs 

was obtained by down-sampling artefact ICs numerosity to 

503. Thus, a total EEG dataset of 1006 was obtained. When 

CNN classification performance was evaluated on standalone 

MEG ICs, a balance between brain and artefact ICs was 

obtained by down-sampling artefact ICs numerosity to 2019. 

Thus, a total MEG dataset of 4038 was obtained. When CNN 

classification performance was evaluated on combined EEG 

and MEG ICs, a balance between brain and artefact ICs, as 

well as EEG and MEG dataset was obtained by down-

sampling artefact EEG ICs, as well as brain and artefact MEG 

numerosity, to 503. Thus, a total combined EEG and MEG 

dataset of 2012 was obtained. 

E. Convolutional Neural Network and Independent 

Components Classification  

DNNs allow computational models that are composed of 

multiple processing layers of non-linear units, called neurons, 

able to learn representations of data with multiple levels of 

abstraction. DNNs find complex structure in data-sets by using 

the backpropagation algorithm [43] that guides changes in 

networks’ parameters that are sequentially updated in each 

layer from the representation of the previous layer. Whereas 

network’s parameters are learned from the data, the DNN 

structure should be heuristically selected a priori or 

determined through computationally demanding hyper-

parameters optimization algorithms [44]–[46]. As evolution of 

DNNs, Convolutional Neural Networks are meant to deal with 

data in the form of multiple arrays, for example 2D images, 

but also 1D signals and sequences. Local connections, shared 

weights, pooling and the use of many layers are fundamental 

ideas behind CNNs. In general, a typical CNN architecture 

consists of an input layer and several successive layers that are 

divided in three categories: convolutional, pooling and fully 

connected layers (typically the last layers) [17].  

 The structure of the CNN employed in this work was 

heuristically chosen, in similarity with previously reported 

CNN structures on biological image analysis and classification 

[35]. The structure is reported in figure 2. The CNN was 

composed of 2- parallel, 3 convolutional layers and one fully 

connected layer. The input layers were respectively composed 

of normalized topographic images of the ICA mixing weights 

(ICMAPs) and spectrum of ICs (ICSPECTs). The ICMAPs 

were 51x51x1 images whereas ICSPECT were 1025x1x1 

images. The first two dimensions represented the height and 

the width of the images whereas the third dimension represent 

different levels of the maps (in general more than one level is 

considered in inputs when RGB images or time-frequency 

maps are analyzed, and more levels are generated in the 

convolutional layers by applying multiple filters on each 

image). The parallel structures consisted of convolutional, 

non-linear and pooling layers performing features extraction 

and dimension reduction. The convolutional layer generally 

performs convolutions between the original map and a set of 

weights (called a filter bank) by sliding the filter over the 

image and computing the dot product (convolution) between 
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the filter and the map. In detail, convolutional layers consist of 

rectangular grids of neurons. Neurons in a given grid take 

inputs from a rectangular sliding section of the previous layer 

and the weights for this rectangular section are constant during 

the sliding process. Multiple grids for each convolutional layer 

can be employed generating different maps. Thus, the 

convolutional layer performs different (equivalent to the 

number of grids) image convolutions of the previous layer, 

where the weights of each grid specify the convolution kernel. 

The convolutional layer is often called feature extraction layer. 

The sliding step, that determinates the resolution of the 

extracted feature, is called stride. For each convolutional layer 

and for both ICMAPs and ICSPECTs we employed 4, 8 and 

16 filters, respectively. All filters were of size 5x5 and 5x1 for 

ICMAPs and ICSPECT feature extraction, respectively with a 

stride of 1. The output of the convolutional layer is then 

passed through a non-linear transformation. As a non-linear 

processing function, we decided to employ the state of the art 

Rectified Linear Unit (ReLU) function, which was proven to 

dampen the vanishing gradient problem providing better 

performance than other non-linear functions (such as the 

hyperbolic tangent or the sigmoid function) [23]. Hidden 

neurons output, when ReLU function is employed, can be 

written as: 

 

𝑦 = {
0, 𝑤𝑥 + 𝑏 ≤ 0

𝑤𝑥 + 𝑏, 𝑤𝑥 + 𝑏 ˃  0
                                             (1) 

 

where x is the input vector, w and b are the weight vector 

and bias, respectively, and y is the output vector. The pooling 

layer performs a spatial pooling (also called subsampling or 

down sampling) reducing the dimensionality of each feature 

map retaining the significant information. The pooling layer 

takes small rectangular regions from the convolutional layer 

and subsamples it to produce a single output from each region. 

There exist different procedures for spatial pooling. For the 

implemented CNN we employed the common procedure of 

max pooling, where the largest element from the rectified 

feature map is retained. A 4x4 MaxPooling and a 11x1 

MaxPooling was implemented for the ICMAPs and 

ICSPECTs respectively, to reduce the dimensionality of each 

feature to 1 after the three convolutional layers and before the 

full connected layer. In fact, the output of the last pooling 

layer acted as an input to a fully connected layer.  The term 

“fully connected” implies that every neuron in the previous 

layer is connected to every neuron in the next layer. Fully 

connected layer is generally a Multi-Layer Perceptron that, in 

our case, used the ReLU function for non-linear 

transformation. The fully connected layer (32 neurons) was 

introduced to summarize and share information between the 

parallel convolutional structures (composed of 16 features 

each after the last feature extraction layer). Whereas the 

convolutional layers with associated pooling stage acted as 

futures extractors, the fully connected layers acted as 

classifier. Finally, a SoftMax activation function constituted 

the output layer to provide a probability of the inputs of being 

in the different classes of the dataset. A two neuron SoftMax 

layer was employed as output layer.  

The operation of the SoftMax layer can be written as: 

 

[
𝑃𝑏𝑟𝑎𝑖𝑛

𝑃𝑎𝑟𝑡𝑒𝑓𝑎𝑐𝑡
] = [

𝑒𝑤1𝑥

∑ 𝑒𝑤𝑘𝑥2
𝑘=1

𝑒𝑤2𝑥

∑ 𝑒𝑤𝑘𝑥2
𝑘=1

]                (2) 

 

where x is the input vector, from the full connected layer, of 

the SoftMax layer, w1 and w2 are the weight vectors of the 

neurons and Pbrain and Partefact are the probabilities of the IC of 

being of brain or artefactual origin.  

In fact, the SoftMax function output the predicted 

probability of an IC of being of Brain or Artefactual origin. 

 All Weights of the CNN were initialized in a pseudo-

random fashion employing a truncated normal distribution 

(mean=0, standard deviation=0.1, truncation at 2 standard 

deviations), whereas the biases were initialized to 0 [47].  

 The DNN was trained in a supervised learning approach 

[48]. In the supervised learning, DNN parameters, i.e. weights 

ws and biases bs, are adjusted relying on an objective function 

minimization procedure. The objective function measures the 

error (or distance) between the output scores and the desired 

scores. We employed the cross-entropy error as objective 

function. Cross-entropy (CE) is defined as: 

 

𝐶𝐸 = −
1

𝑛
∑ 𝑦𝑖

′𝑙𝑛𝑦𝑖
𝑛
𝑖=1                   (3) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

6 

 where n is the training set, or test set, numerosity, y is the 

Fig. 2. CNN employed in the study. The CNN was composed of 2- parallel, input layers and 3 convolutional layers, and a fully connected plus a SoftMax layer. 
The input layers were composed of normalized topographic images of the ICA mixing weights (ICMAPs) and spectrum of ICs (ICSPECTs).  The parallel 

structures consisted of convolutional, non-linear and pooling layers performing feature extraction and dimension reduction. The fully connected layer and the 

SoftMax layer acted as classifier on the features extracted from the convolutional layers (16 features from ICMAP and ICSPECT, respectively). In fact, a two 

neuron SoftMax layer constituted the output layer to provide a probability of the inputs of being either a brain or artefact IC.  
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output vector of the DNN ([PBrain PArtifact] in the study) and y’ 

is the correct classification, that in our case was supposed to 

be the one derived from the experts’ visual inspection ([1 0] 

for Brain IC or [0 1] for Artifact). Cross-entropy metric takes 

into account the closeness of a prediction and is a more 

granular way to compute error than Classification Error or 

Mean Squared Error [49]. As optimization algorithm we 

employed the Adam Optimizer [22]. Adam Optimizer is a 

state-of the art learning algorithm that is different from 

classical stochastic gradient descent since it computes 

individual adaptive learning rates from estimates of the first 

and second moments of the gradients, dampening slow 

learning rate and/or local minima issues. Adam Optimizer 

parameters were set to: learning rate=10-4, first moment 

exponential decay rate=9·10-1, second moment exponential 

decay rate=9.99·10-1, constant=10-8 [22].  The overall CNN 

learning process is summarized in the following steps:  

1. Given an input image the forward propagation step was 

performed; convolution, ReLU and pooling operations 

along with forward propagation in the fully connected 

and SoftMax layers were computed.  

2. The total error at the output SoftMax layer was 

calculated based on cross-entropy.  

3. Backpropagation was used to calculate the error 

gradient with respect to all weights and gradient 

descent algorithm was employed to update filter 

weights and parameters values with the target of 

minimizing the output error. That is, the weights were 

adjusted proportionally to their contribution to the 

classification error of the network. 

Steps were repeated for all images in the training set 

multiple times. The accuracy of the CNN was evaluated by 

counting the number of correct predictions after an ArgMax 

evaluation of probabilities (selection of the state with the 

highest probability) of the SoftMax output vector.  

In order to reduce learning computational cost and to avoid 

local minima through noisy updates, the training set is 

generally divided in small batches that are utilized one at a 

time in each iteration. The number of iteration required to train 

the machinery on all the training set available constitute an 

epoch. 

The optimization procedure was iterated for 180 epochs 

with a batch size of 20. In order to address the CNN 

performance, for each training set considered, we performed a 

10-fold cross validation procedure, thus separating the data-set 

in 10 randomly selected equal size subsamples and employing 

9 subsamples, 90% of the data, for training and 1 subsample, 

10% of the data, for testing, for 10 times [50]. 

 The described CNN architecture, training and validation 

were implemented in Python through the open-source software 

library Tensorfow [51]. Further analysis was performed in 

Matlab. 

 

 

III. RESULTS 

Figure 3 reports average (and related standard error), 10-

fold cross-validated, accuracy (evaluated after an ArgMax 

operation on the SoftMax output) and cross-entropy of the 

CNN in classifying brain or artefact ICs as a function of 

training epoch. Employing an early-stop approach, we 

obtained a best-performance classification accuracy of 92.2 ± 

4.2 % for standalone EEG, of 95.7 ± 1.3 % for standalone 

MEG and 94.3 ± 2.3 % for combined EEG and MEG dataset.  

 
Fig. 3. Average (and related standard error), 10-fold cross-validated, accuracy 

(evaluated after an ArgMax operation on the SoftMax output) and cross-

entropy of the CNN in classifying brain or artefact ICs as a function of 
training epoch. The CNN was trained on three datasets: standalone EEG 

(green), standalone MEG (blue), combined EEG and MEG (magenta). 

Figure 4 and 5 report examples of ICMAPs and ICSPECTs 

(CNN inputs) for ICs classified by human experts as either 

brain activity (figure 4) or artifact (figure 5). Feature maps 

extracted from each convolutional layer are reported together 

with machinery output probability, The CNN correctly 

classified the ICs (figure 4, Pbrain=1; figure 5 Partefact=0.998).  

Figure 6 instead reports examples of ICMAPs and 

ICSPECTs classified by human experts as either brain activity 

(a and b), or artefact (c and d). The CNN, after the ArgMax 

operation on the output of the SoftMax layer, correctly 

classified the ICs reported on the left side of the figure (a and 

c), and erroneously classified the ICs reported on the ride side 

of the figure (b and d).  
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Fig. 4. Example of ICMAP and ICSPECT (CNN inputs), together with feature maps from each convolutional layer and machinery output probability, for an 

IC classified by human experts as brain activity related. The CNN correctly classified the IC. 
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IV. DISCUSSION 

Blind source separation techniques are generally considered 

the gold-standard procedures for offline removal of artefacts 

in multi-dimensional (multi-channel) brain 

electrophysiological recordings. In fact, they do not use any 

training data and do not have a priori assumptions of artefact 

and brain signal characteristics. ICA is a blind source 

separation procedure which exploits multi-channel EEG or 

MEG information, allowing to decompose the recordings in 

ICs of brain or artefact origin. However, ICA based algorithms 

for artefact identification and removal must rely on external 

classification of the ICs. Often, the ICs are classified based on 

human visual inspection of temporal, spatial and spectral 

characteristics. These procedures are time-consuming and 

prone to human error. Automatic procedures for IC 

classification are thus highly likeable. Development of 

automatic procedures in the last years generally focused on 

pre-classification complex feature extraction of the ICs 

temporal, spatial and spectral characteristics.  In this study, we 

Fig. 5. Example of ICMAP and ICSPECT (CNN inputs), together with feature maps from each convolutional layer and machinery output probability, for an IC 

classified by human experts as artefact. The CNN correctly classified the IC. 
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explored the possibility of applying Deep Learning, feature-

less, classification algorithms based on Convolutional Neural 

Network (CNN). CNNs are Neural Networks where neurons 

are connected to sliding portions of signals and or images that 

are close in time and/or space [30], [34]. Since neurons of 

CNNs are combined in groups and connected to sliding 

portions of the signals or images, the free parameters of each 

neurons, after learning, generate peculiar filters that 

automatically identify patterns of interest avoiding a-priori 

feature selection.  CNNs have recently shown their 

potentialities in image and video recognition as well as in 

biomedical signal/imaging applications [35]. In order to make 

the machinery classification independent of the recording 

length, we applied the CNN to spectra and topographic maps 

of the ICs (and not temporal signals). The hyperparameters of 

the CNN were heuristically selected in similarity with 

previously described CNN architectures [27], [30]. Although 

the heuristically selection of hyperparameters and the absence 

of complex feature selection, state of the art performance of 

electrophysiological IC classification was demonstrated by 

applying the CNN to ICs extracted from recordings of 

different origin (EEG and MEG), and different datasets (from 

in house systems and connectome project) for a total dataset 

numerosity of few thousand samples. Cross validated, best 

performances as a function of training epoch were 92.2 ± 4.2 

% for standalone EEG, of 95.7 ± 1.3 % for standalone MEG 

and 94.3 ± 2.3 % for combined EEG and MEG dataset (Figure 

4). The highest performance, reflecting in the highest accuracy 

and lower cross-entropy, was obtained for standalone MEG 

data despite the different recording systems of MEG, thus 

reflecting the larger sample numerosity of MEG recordings 

with respect to EEG. The higher sample numerosity of MEG 

recordings with respect to EEG was also highlighted by a later 

over-fitting effect (slightly decrease in accuracy and evident 

increase in cross-entropy) at increasing epochs. These results 

suggest the generalization capabilities of the procedure being 

robust to a change in the recording instrumentation. Combined 

EEG and MEG data provided an average classification 

accuracy and cross-entropy in between standalone modalities. 

It should be highlighted that, although classified erroneously, 

often errors in classification after the argmax procedure were 

driven by probabilities of being one of the two classes not far 

from 50% (Figure 6).  This aspect, combined with an expert 

dependent classification of the IC when the IC characteristics 

are not clear, suggest that CNNs may be highly suited for 

feature-less classification of electrophysiological ICs.  

 
Fig. 6. Examples of CNN input ICMAPs and ICSPECTs classified by human 
experts as either brain activity (a and b), or artefact (c and d). The CNN 

correctly classified the ICs reported on the left side of the figure (a and c), and 

erroneously classified the ICs reported on the ride side of the figure (b and d). 

It should be further highlighted that CNN, since they self-

select the features of interest in a data-driven fashion, 

generally require large data-set for training. However large 

data should be available for EEG and MEG recordings, 

allowing increased performances of feature-less CNN 

classification beyond the current study thus making CNN the 

gold-standard classifier for this application. Further research 

for CNN classification should in fact focus on augmenting the 

training data-set beyond the current study, possibly combining 

recordings from multiple systems to provide good 

generalization. Finally, by increasing the data-set, CNN may 

be further employed for accurate classification of artefactual 

ICs of different source origin (e.g., heart, movement, muscle).  

V. CONCLUSIONS 

 

  

State of the art performance of Independent Components 

(ICs) classification was demonstrated by applying a 

Convolutional Neural Network (CNN) on ICs extracted from 

brain electrophysiological multi-channel recordings of 

different origin (EEG and MEG), and different datasets. These 

performances were achieved by heuristically selection of 

hyper parameters and the absence of a priori complex feature 

extraction, relying on CNN self-selection of the feature of 

interest. The results suggest that CNNs may be highly suited 

for feature-less classification of ICs of brain 

electrophysiological recordings. Considering the high data 

numerosity of multi-channel EEG and MEG recordings, CNN 

classification can become the gold-standard procedure for this 

application.  
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