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Abstract  14 

Spontaneous brain activity at rest is spatially and temporally organized in networks of cortical and 15 

subcortical regions specialized for different functional domains. Even though brain networks were first 16 

studied individually through functional Magnetic Resonance Imaging, more recent studies focused on their 17 

dynamic ‘integration’. Integration depends on two fundamental properties: the structural topology of brain 18 

networks and the dynamics of functional connectivity. In this scenario, cortical hub regions, that are central 19 

regions highly connected with other areas of the brain, play a fundamental role in serving as way stations 20 

for network traffic. In this review, we focus on the functional organization of a set of hub areas that we 21 

define as the ‘dynamic core’. In the resting state, these regions dynamically interact with other regions of 22 

the brain linking multiple networks. First, we introduce and compare the statistical measures used for 23 

detecting hubs. Second, we discuss their identification based on different methods (functional Magnetic 24 

Resonance Imaging, Diffusion Weighted Imaging, Electro/Magneto Encephalography). Third, we show that 25 

the degree of interaction between these core regions and the rest of the brain varies over time, indicating 26 

that their centrality is not stationary. Moreover, alternating periods of strong and weak centrality of the 27 

core relate to periods of strong and weak global efficiency in the brain. These results indicate that 28 

information processing in the brain is not stable, but fluctuates and its temporal and spectral properties are 29 

discussed. In particular, the hypothesis of ‘pulsed’ information processing, discovered in the slow temporal 30 

scale, is explored for signals at higher temporal resolution. 31 

 32 

1. Introduction  33 

Two complementary principles underlie cognition in the brain: functional specialization and dynamic 34 

integration (Fox and Friston, 2012; Tononi et al., 1994). Over the past two decades it has been shown that 35 

spontaneous brain activity (i.e. at rest in the absence of any task) is organized in functionally specialized 36 

large-scale networks (or resting state networks – RSNs) (Attwell and Laughlin, 2001; Biswal et al., 1995; Fox 37 

et al., 1988; Snyder and Raichle, 2012). Several RSNs have been observed: attentional, visual, somato-38 

motor, auditory, language, executive control, and default systems that roughly correspond to different 39 

functional domains (Doucet et al., 2011; Glasser et al., 2016; Hacker et al., 2013; Yeo et al., 2011). These 40 

networks were originally studied assuming temporal stationarity, but recent methodological developments 41 

indicate that these networks are dynamic (i.e. they evolve over time). For recent reviews, see (Hutchison et 42 

al., 2013; Preti et al., 2016), although see the critique on the influence on the fMRI dynamics of head 43 

motion, sampling variability and fluctuating sleep state reported in (Laumann et al., 2016). We posit that 44 

efficient processing of information necessarily must involve dynamic (i.e. time varying) integration among 45 
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spatially separate networks as behavior unfolds. A possible mechanism easing this dynamic integration is 1 

the presence of structural and functional ‘hub’ regions. By hub it is meant a node showing either many 2 

connections or connections that place it in a central position for facilitating the communication within a 3 

network (Power et al., 2013). The centrality can be assessed by several metrics, as discussed in the next 4 

section, and the connections can be both structural or functional. A fundamental question is whether 5 

‘structural’ and ‘functional’ hubs correspond (Cole et al., 2014; Shirer et al., 2012; van den Heuvel and 6 

Sporns, 2013b). 7 

However, most of what we know about brain dynamic integration comes either from structural studies 8 

(e.g. diffusion weighted imaging -DWI- imaging) that infer aspects of temporal organization based on the 9 

structural properties of brain networks, or from functional studies, mainly functional magnetic resonance 10 

imaging (fMRI), that examines this integration at low temporal resolution.  This review focuses on the issue 11 

of dynamic integration as examined with electrophysiological methods that allow for high temporal 12 

resolution, specifically magneto-encephalography (MEG), electroencephalography (EEG), and 13 

electrocorticography (EcoG). First, we briefly discuss different measures that have been adopted to identify 14 

structural or functional hubs in the brain (Bassett and Sporns, 2017; van den Heuvel and Sporns, 2013b). 15 

This is important since differences among these measures, and the different metrics to estimate the 16 

spatiotemporal structure of connectivity typically lead to discrepancies in the literature on the precise 17 

localization of central regions, (Buckner et al., 2009; Bullmore and Sporns, 2012; Cole et al., 2010; de 18 

Pasquale et al., 2012; de Pasquale et al., 2013; Hagmann et al., 2008; Power et al., 2013; Tomasi and 19 

Volkow, 2011; van den Heuvel and Sporns, 2013b). Next, we introduce the concept of dynamic core, 20 

defined as a set of brain regions showing the most consistent dynamic centrality with the rest of the brain 21 

(de Pasquale et al., 2016; de Pasquale et al., 2013). These areas appear to be overlapping with structural 22 

and functional hubs as identified with fMRI and DWI. We characterize the temporal and frequency 23 

properties of these regions, and the dynamics of their centrality. We propose that this dynamic core plays a 24 

fundamental role for an efficient and flexible communication across different functional domains. 25 

Specifically, such communication is not stable, but slowly varies over time allowing for different temporal 26 

modes of network interaction. These can be altered during active behavior and disease, and may relate to 27 

faster modes of network synchronization. 28 

 29 

2. Cortical hubs in the brain 30 

 31 

Identification of cortical hubs: measures of centrality 32 

Several local and global measures can be applied from graph theory to characterize the topology of 33 

networks and to identify central (hub) regions (Bassett and Sporns, 2017; Bullmore and Sporns, 2009; 34 

Sporns, 2013). In this framework, a graph is an ordered set of nodes and edges represented by brain voxels 35 

(or parcels) and some measure of their coupling, respectively. The coupling is typically represented by 36 

structural (anatomical links), functional (statistical and symmetric dependence), or effective (causal 37 

interactions) connectivity  information (Friston, 1994). The graph can be binarized (i.e. all connections are 38 

either 0 or 1) or weighted and directed or undirected. A directed graph consists of a set N of nodes and a 39 

set E of edges which are ordered pairs of elements of N. The edges have a direction associated with them. 40 

On the contrary, in an undirected graph the edges are bidirectional and thus correspond to unordered pairs 41 

of nodes. Directed edges can be obtained from effective connectivity or tract tracing studies.  Since the 42 

concept of centrality involves different aspects such as the number of edges, their strength and quality 43 

(intra vs inter-modular connections), the definition of a cortical hub depends on the metrics adopted. In 44 

what follows, we provide an overview, far from exhaustive, of some typical measures of centrality, more 45 

details can be found in (Rubinov and Sporns, 2010).  46 
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The degree K (for a complete list of abbreviations used in the text, see Table 1) is defined as the number 1 

of edges connecting a node in a binary graph, see eq. (1) in SI. In weighted graphs it is defined as the sum of 2 

edge weights connecting to a node. This measure is widely adopted, for example it has been reported that 3 

high K nodes, obtained from structural connectomes, tend to be more connected to each other forming a 4 

“Rich Club” (van den Heuvel and Sporns, 2011). However, as noted in (Power et al., 2013), a drawback of K 5 

is its dependence on the community size. This implies that assessing the centrality through K might inflate 6 

the importance of nodes that belong to large networks. In fact a node with high K may be either a 7 

connector (connecting nodes of different modules) or a provincial  (connecting nodes within the same 8 

module) hub. 9 

An alternative measure, less sensitive to the eventual inflation induced by the community size, is the 10 

betweenness centrality (BC), see eq.(2) in SI, defined as the number of times a node participates in a 11 

shortest path (i.e. the node acts as a bridge between the strongest connections of any two nodes). BC is 12 

more sensitive to detecting connector hubs than provincial ones, and it often co-varies with other 13 

measures of nodal centrality (Zuo et al., 2012).  14 

Another measure of hubness, less influenced by the community size, is the participation index (PI), see eq. 15 

(3) in SI, that measures how ‘well-distributed’ the links of a node are among different modules. The PI of a 16 

node is close to 1 if its links are uniformly distributed among all modules, and 0 if all its links are within its 17 

own module (Guimera and Nunes Amaral, 2005). Thus, this measure classifies hubs as nodes participating 18 

to a large number of communities (i.e. showing a large number of edges linking them to different modules). 19 

Nodes with a high PI behave as connector hubs while nodes with a low PI as provincial ones. Thus, it may 20 

happen that a node with a high degree scores a low PI, as in the case of a provincial hub, while K and PI 21 

agree in connector hubs. For this reason, the role of a node can be determined, to a great extent, by its 22 

within-module degree and its participation index, which define how the node is positioned in its own 23 

module and with respect to other modules, see (Guimera and Nunes Amaral, 2005; Sporns et al., 2007). 24 

Notably, PI depends on the outcome of the decomposition of the network into modules, and thus on the 25 

modularity measure adopted.  26 

The measures K, BC, PI are local metrics. A global measure of centrality, although less used than the 27 

previous ones, is the recursive Eigenvector Centrality (EVC). In eq. (4) in SI we provide the mathematical 28 

definition, see (Lohmann et al., 2010; Zuo et al., 2012). The EVC classifies a node as central only if it is 29 

connected to other central nodes and thus it measures the influence of a node in a network. It assigns 30 

relative scores to all nodes in the network based on the concept that connections to high-scoring nodes 31 

contribute more to the score of the node in question than equal connections to low-scoring nodes. For this 32 

reason, EVC provides complementary information compared to K, since the EVC of a node connected 33 

through few but important links might be large despite a low K and vice versa. An important aspect in the 34 

analysis of binary graphs and related estimation of centrality is the choice of the threshold. This is discussed 35 

in the Supplementary Information. 36 

 37 

Functional hubs in fMRI and MEG 38 

By measuring K, fMRI hubs (van den Heuvel and Sporns, 2013b) were mainly found in the Default Mode 39 

Network (DMN, in regions/nodes such as Posterior Cingulate Cortex (PCC), Medial Prefrontal Cortex 40 

(mPFC), Angular Gyrus (AG)), see Fig. 1A and Table 1 (Buckner et al., 2009; Cole et al., 2010; de Pasquale et 41 

al., 2013; Tomasi and Volkow, 2010; Zuo et al., 2012). Additional functional cores have reported in the 42 

Somato Motor Network (SMN, in the Supplementary Motor Area (SMA) and Central Sulcus (CS)), in the 43 

Visual network (VIS) (Tomasi and Volkow, 2011) and frontoparietal (FPN) networks (regions marked by * in 44 

Table 1) (Zuo et al., 2012). When using PI as a measure of centrality, Power et al. found a poor agreement 45 

with findings in the DMN (Power et al., 2013). In fact, the authors emphasize a different set of associative 46 
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regions more closely related to the FPN, DAN, and CCN (see Fig. 1B, Table 1). However, given the uncertain 1 

spatial localization, some hub regions labeled as DMN, for example AG, could easily fall within the FPN 2 

(Cole et al., 2014; Vincent et al., 2008), and some regions in (de Pasquale et al., 2013) fall within the DAN 3 

and SMN. 4 

Compared to fMRI, the spectral richness of electrophysiological techniques (MEG, EEG, and EcoG) allows 5 

the analysis of both slow (band limited power, BLP) and fast (signal) temporal scales. These aspects are 6 

particularly important when studying the temporal dynamics, see (Larson-Prior et al., 2013) for a review. At 7 

the slow timescale, comparable to that measured with fMRI (~0.01-0.1 Hz), the highest centrality was 8 

consistently found in the β-band using different metrics and connectivity estimates (see Fig. 1C-F) (de 9 

Pasquale et al., 2012; de Pasquale et al., 2016; Hipp et al., 2012). In particular, in (Hipp et al., 2012) (Fig.1C) 10 

normalized BC peaks at about 16Hz (range 8-32 Hz) with maximal centrality in parietal, temporal, lateral 11 

and medial prefrontal cortex (Fig.1D). Accordingly, in (de Pasquale et al., 2012), where time-varying 12 

correlation of β-BLP and weighted K were computed, central nodes were localized mainly in the DMN (PCC, 13 

bilateral AG and  mPFC), DAN (left PIPS) and SMN (left CS). When using BC on the same data set (de 14 

Pasquale et al., 2016), the most central nodes were again PCC, bilateral PIPS, and SMA (see Fig. 1E-F). This 15 

latter set of regions partially overlaps with those found by means of BC computed on orthogonalized power 16 

times series (Hipp et al., 2012). By using graphs obtained from leakage-corrected β-BLP time series, K hubs 17 

were confirmed in PCC and bilateral AG (Maldjian et al., 2014). Notably, there is evidence that central 18 

regions in MEG are identified in the β-band, independently of the connectivity estimator and metrics of 19 

centrality. In particular, PCC was still a hub when analyzing connectivity at the fast time scale, although in 20 

different bands (α or γ) (Jin et al., 2014). Interestingly, by combining K and EVC to detect central nodes, 21 

bilateral precuneus, inferior parietal, precentral and supramarginal regions were identified as hubs in MEG 22 

(β- and γ-BLP), fMRI, and DWI (Garces et al., 2016). At fast timescale, using the Phase Locking Index to 23 

estimate connectivity, frequency specific sets of K based hubs were identified in the α, β and γ-band 24 

(Hillebrand et al., 2012). Other relevant papers include (de Haan et al., 2012; Jin et al., 2014; Schmidt et al., 25 

2014). 26 

In summary what did we learn? First, not surprisingly, the identification of central areas strongly 27 

depends on the method (e.g. fMRI, MEG), the metric (e.g. K, BC or PI), and the threshold used to derive the 28 

graphs, see SI and (Zuo et al., 2012). However, several MEG and fMRI studies using different metrics point 29 

to the DMN, specifically PCC and AG in parietal cortex as hubs. Certainly other networks including FPN, 30 

DAN, and SMN also contain central regions. For a recent work on the anatomical scaffold of these central 31 

regions, see (de Pasquale et al., 2017). 32 

 33 

3. Core networks, the architecture of interaction among cortical hubs 34 

 35 

It has been suggested that the presence of cortical hubs, especially connectors, is important for 36 

integrating information across functionally specialized networks, see for example (de Pasquale et al., 2016). 37 

Furthermore, the modulation of hub dynamics occurring under different cognitive states or disease is of 38 

considerable interest, especially because it might provide important insights on the neurophysiological 39 

processes underlying behavior and cognition. These aspects are reported in SI. However, since behavior 40 

requires a flexible reconfiguration of task networks, the integration must occur across domains, 41 

notwithstanding the high energetic cost of neural architectures connecting spatially distant local modules. 42 

Computational studies suggested that a balance between segregation and integration may be achieved 43 

through networks emphasizing the local efficiency through highly connected local modules, expert at 44 

processing one kind of information, and the integration through sparse inter-module connections involving 45 
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a small number of hubs. This architecture is denoted ‘Small World’ (Bassett and Bullmore, 2006; Bassett 1 

and Bullmore, 2016) and it has been observed across a wide range of imaging modalities including MEG 2 

(Stam, 2004; Valencia et al., 2008), fMRI, DWI (Achard et al., 2006; Salvador et al., 2005; Vaessen et al., 3 

2010; van den Heuvel et al., 2008), EEG (Smit et al., 2008) and tract-tracing (Hilgetag and Kaiser 2004; 4 

Sporns and Zwi 2004). The original idea behind small-worldness paved the way for many successive works 5 

on the communication among these few central regions. In a very influential paper, Van de Heuvel and 6 

colleagues (van den Heuvel and Sporns, 2011) presented a refinement of the hubs/small world idea by 7 

showing that the brain not only contains hubs, but these are preferentially connected in a “Rich Club” (see 8 

Fig.2). Using deterministic tractography and a high-resolution parcellation of the brain, they mapped sub-9 

cortical and neocortical hubs and examined their structural links. High K nodes tend to form denser 10 

connections among themselves than with lower K nodes. These regions include bilateral superior fronto-11 

parietal regions, including PCC, as well as subcortical regions such as hippocampus, thalamus, and 12 

putamen. Connections linking non Rich-Club to Rich Club nodes are called feeder (see Fig.2A), while edges 13 

connecting non-Rich Club regions are labeled ‘local’ (Fig.2B) and connections among rich-club members are 14 

called ‘rich-club’ (Fig.2C). A model for these results suggests that hubs communicate as a strongly 15 

interlinked ensemble able to flexibly link to different peripheral networks in the course of different tasks.  16 

This idea was explored later on in fMRI showing that a common set of hub regions tend to co-activate 17 

across a large number of different cognitive tasks (Cole et al., 2014; Cole et al., 2013). This organization is a 18 

plausible solution to the issue of flexible control since the rich club contains nodes participating in other 19 

networks (Gollo et al., 2015; van den Heuvel and Sporns, 2013a; van den Heuvel and Sporns, 2013b). In 20 

fact, it has been shown that rich-club nodes distribute across different RSNs with a certain degree of 21 

overlap (see Fig.2D). However, it must noted that in (van den Heuvel and Sporns, 2013a) it was also 22 

reported that inter-modular connections are disproportionately represented by hub-connections and these 23 

regions play a critical role in network communication also in terms of longer fiber-lengths and higher 24 

network traffic (Collin et al., 2014; van den Heuvel et al., 2012). Finally, this architecture, might also be a 25 

convenient way to protect global communication in the brain in the course of damage or diseases (Kaiser et 26 

al., 2007). In the case of one malfunctioning hub, distant effects may be felt in the system (Tuovinen et al., 27 

2016), but the effect on global communication may be alleviated by strong connections among other hubs. 28 

In summary, the challenge of flexible behavioral control leads to the possibility that the brain exploits a 29 

small world architecture in which a few highly inter-connected regions function as bridges dynamically 30 

linking to peripheral nodes involved in local processing.  31 

 32 

4. Cortical cores as a tool of dynamic network integration 33 

 34 

Temporal and spectral dynamics of brain networks 35 

It is well established that the electrophysiological signals recorded from surface/deep electrodes show 36 

fractal features (e.g. scale-free properties) and are incredibly rich in the frequency domain ranging from 37 

[0.001, >500] Hz (Buzsaki and Draguhn, 2004). This spectral richness leads to three fundamental 38 

observations for our discussion. 39 

 First, brain networks observed with fMRI correspond to interactions involving both fast and slow 40 

electrophysiological signals. At slow frequencies (<4 Hz), the coupling based on the slow cortical potential 41 

represents one electrophysiological correlate of these networks, while at higher frequencies such 42 

correspondence is lost (Hacker et al., 2017; He et al., 2008; He et al., 2010; Nir et al., 2008). The other 43 

correlate is the BLP coupling at different frequencies. In ECoG studies, interactions occurring at γ, α and 44 

β bands have been associated to fMRI RSNs (Hacker et al., 2017; He et al., 2008; Keller et al., 2013; Leopold 45 
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et al., 2003; Nir et al., 2008). MEG studies have mainly reported similarities between fMRI and MEG RSNs in 1 

α- and β-BLP (Brookes et al., 2011b; de Pasquale et al., 2010; de Pasquale et al., 2012; de Pasquale et al., 2 

2016; Hipp et al., 2012). 3 

Second, there appears to be frequency specific interactions both within/across networks. Mantini et al. 4 

originally showed that EEG signals at different frequencies differently contributed to fMRI signals recorded 5 

in various RSNs (Mantini et al., 2007). A predominance of α power was recorded in parietal and visual 6 

regions, while a predominance of β power in SMN regions. MEG studies found stronger interactions among 7 

VIS regions in the α-BLP, DAN in the α- and β-BLP, SMN in the β-BLP, and DMN also in α- and β-BLP, and at 8 

a lesser extent in the θ-BLP (Brookes et al., 2011a; Brookes et al., 2012; de Pasquale et al., 2010; de 9 

Pasquale et al., 2012; Hipp et al., 2012). In addition, across-network interactions were also found spectrally 10 

selective. In the signal domain, DAN-VIS interactions (estimated from imaginary coherence) occur in the α-11 

band while DAN-SMN interactions occur in the β-band (Marzetti et al., 2013). It must be noted that at a 12 

larger spatial scale, when analyzing the correspondence between fMRI and MEG functional connections 13 

across the entire cortex, the correction of signal-to-noise ratio (SNR) across frequencies suggested the 14 

involvement of a wider range of frequencies, namely [2, 128] Hz (Hipp and Siegel, 2015); see (Palva and 15 

Palva, 2012) for methodological discussions). Very recently, Hacker et. al found in ECoG recordings that 16 

regions involved in internal cognition (DMN, FPN) were more strongly correlated in the θ band, whereas 17 

regions more involved in sensory-attention-motor processing (DAN, SMN) were more strongly coupled in 18 

the α band (Hacker et al., 2017) . 19 

Third, and more importantly, these connectivity patterns are not static but slowly (in the order of 20 

seconds) vary over time.  de Pasquale and colleagues observed that the coupling between regions of a RSN 21 

slowly changed over time alternating periods of strong and weak coupling (de Pasquale et al., 2010). In a 22 

subsequent work, they showed that the alternation of strong/weak network coupling (at least for some 23 

central networks like DMN or regions like PCC) predicted varying degree of across-network interactions 24 

(see next paragraph). Notably, in this work, RSN connectivity and its temporal dynamics were studied in 25 

source space by means of the combination of a Minimum Norm Estimator, Independent Component 26 

Analysis and the Pearson correlation coefficient as a measure of coupling over sliding windows (Betti et al., 27 

2013; de Pasquale et al., 2010; de Pasquale et al., 2012; de Pasquale et al., 2016; Mantini et al., 2011). 28 

However, in other MEG studies such as (Brookes et al., 2014) a beamforming technique supported by a 29 

leakage correction (that could also be applied to Minimum Norm solutions, see for example (Wens, 2015)) 30 

and canonical correlation were used to retrieve time-varying functional interactions (O'Neill et al., 2015). 31 

Interestingly, even though MEG signals are acquired at very high temporal resolution (~1000 KHz), and 32 

different groups adopted different approaches to measure time-varying interactions, there is consensus 33 

that these fluctuations of coupling occur at slow temporal scales (few seconds). This is comparable to what 34 

found in fMRI. Of note, while in fMRI the temporal scale is limited by the temporal resolution induced by 35 

the neurovascular coupling, in MEG the duration of the sliding window is longer than the available MEG 36 

temporal resolution (around 1ms), but it represents a good compromise between the robustness of the 37 

connectivity estimator and the temporal resolution of the investigated fluctuations.  It is possible that these 38 

slow time scales reflect the adopted measure (BLP), and that faster frequencies would be observed in the 39 

signal domain.  This is the case for the so called MEG brain states, see (Baker et al., 2014), as discussed in 40 

Section 5.  41 

The time-varying nature of connectivity has also been investigated with fMRI, but is controversial if the 42 

observed dynamics truly reflects non-stationarity (Hutchison et al., 2013; Preti et al., 2016) or rather just a 43 

poor estimate (influenced by motion artifacts and sampling variability) of a static coupling (Laumann et al., 44 

2016). Early findings showed significant fluctuations of inter-regional correlation (Chang and Glover, 2010), 45 
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mainly involving across-module interactions (Zalesky et al., 2014). However, estimates of correlation in 1 

time are limited by several factors including the number of available samples (Zalesky and Breakspear, 2 

2015), residual subject’s motion, see (Power et al., 2015), and a severe trade-off between robustness and 3 

temporal resolution. Alternative approaches have been proposed including dynamic spectral analyses 4 

(Yaesoubi et al., 2015), data-driven temporal ICA (Smith et al., 2012) and connectivity states extraction 5 

(Allen et al., 2014), see next section. Another important aspect is the connection between brain structure 6 

and dynamics which is related to network motifs. These are the building blocks of the network (Milo et al., 7 

2002; Sporns and Kotter, 2004) and provide a testbed for many hypotheses on empirical data as well as in 8 

computational models. In this context, apex nodes can be considered the core nodes of network motifs. 9 

They appear more often in hub regions and play an important role in brain structure (Harriger et al., 2012) 10 

and dynamics (Alstott et al., 2009; Gollo et al., 2014; Senden et al., 2014; Senden et al., 2012; Vasa et al., 11 

2015; Wei et al., 2017). Moreover, frustrated network motifs can be considered a structural basis for 12 

dynamic connectivity since they facilitate dynamic functional connectivity via metastable transitions (Gollo 13 

and Breakspear, 2014). 14 

Finally, the slow and fast temporal scales of network interaction, the frequency specificity by network 15 

and the time varying interactions have important implications on how cortical cores may interact at rest 16 

and during task processing. This is considered in the next section. 17 

 18 

Dynamic core network as the substrate for an efficient global communication in the brain 19 

The time-frequency properties of the functional architecture are fundamental to unravel mechanisms of 20 

dynamic integration in the brain (Bassett and Sporns, 2017). There are several important questions to be 21 

addressed: do hub regions show fluctuations in their centrality similarly to other networks? What are the 22 

implications of these fluctuations for other regions that are connected to the hubs? Do these fluctuations 23 

have a functional implication in healthy processing, aging, or disease? fMRI studies tend to show that these 24 

central regions are topologically stable during a task as compared to rest (Cole et al. 2013; 2014; (Chiang et 25 

al., 2016; Liao et al., 2015), but these results are just beginning to come in, and other studies show a 26 

significant reorganization of network interaction during task performance (see for example, Spadone et al 27 

2015). Moreover, it must be considered that the limited temporal resolution of fMRI may miss fast 28 

transient variations in topology. MEG results instead provide a very interesting insight on cortical dynamics 29 

of RSNs and hubs. In one set of observations, de Pasquale and collegues (de Pasquale et al., 2012) showed 30 

that in the β-BLP, the DMN represented a functional core of integration in the brain. This was observed 31 

during epochs of high internal coupling of this RSN. Specifically, in these epochs, PCC, bilateral AG, and 32 

mPFC were strong K hubs. Similar observations were made for other networks/hubs including DAN/left 33 

PIPS and SMN/left CS. Interestingly, these nodes spent only a small part of time (20-30%) in epochs of high 34 

centrality, and these epochs did not overlap indicating that different hubs significantly alternated their 35 

central role, see Fig. 3A (de Pasquale et al., 2016).  These results were then the first hint that there may be 36 

a link between dynamic connectivity and integration. In other words, the amount of integration among 37 

different networks seems to increase when some networks (DMN, DAN, SMN) are more strongly coupled. 38 

More recently, in (de Pasquale et al., 2016) this work was extended by focusing on BC as a measures of 39 

centrality. This measure, as previously described, emphasizes ‘connector hubs’ and thus accounts more 40 

explicitly for interactions among different networks. The temporal evolution of BC was estimated and, on 41 

average, high BC nodes included again PCC (DMN), bilateral PIPS (DAN), and SMA (SMN, see Fig.3B). In 42 

agreement with the prior MEG study, but in contrast to fMRI studies indicating stable hubs over time, 43 

peaks of high BC occurred about 40% of time. Again, these hubs asynchronously alternated epochs of high 44 

and low centrality, forming what can be defined as a ‘dynamic core network’ (Fig.3C). Notably, the regions 45 

comprising this dynamic core network largely overlap with the previously discussed “Rich Club” (van den 46 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 

 

Heuvel and Sporns, 2013a). Perhaps the most intriguing result of this study was that epochs of high BC 1 

correspond to periods of high global efficiency in the whole brain. The Global Efficiency (GE) is defined as 2 

the average of the reciprocal shortest path length over all the network nodes (Rubinov and Sporns, 2010). 3 

For RSNs including hubs of the core network, epochs of high internal connectivity (i.e. epochs in which the 4 

RSN shows a higher internal connectivity as compared to the rest of the brain) predicted epochs of maximal 5 

GE (see for example a representative timecourse of DMN in Fig.4A). Interestingly, these epochs correspond 6 

to peaks of centrality of PCC, see Fig.4B (left panel - red bar). This property seems to be lost outside these 7 

temporal windows and the centrality of the DMN is mainly realized by external to DMN connections 8 

(Fig.4C, black bar). To study if the GE peaks could be predicted by epochs of high internal coupling of these 9 

networks, de Pasquale and collegues classified through Receiver-Operator-Curves these time intervals 10 

(Fig.4D): epochs of high internal connectivity within DMN, DAN and SMN predicted more than 70% of GE 11 

peaks (see Fig.4E).  These epochs of high internal connectivity were also epochs of high centrality for hubs 12 

included in the dynamic core network. Of note, this mechanism linking the dynamic core network, 13 

fluctuations of BC, and GE occurred specifically in the β-BLP. 14 

In summary, these findings link in a novel mechanistic framework three results. First, RSNs dynamically 15 

fluctuate and these fluctuations involve changes in within/across network interactions. These occur 16 

specifically between hub regions of specific RSNs and other nodes in periods of strong coupling for the 17 

central networks. Second, these hubs are consistent over time, but they are engaged at different times. 18 

Third, epochs of high RSN coupling and centrality correlate and predict periods of high efficiency in the 19 

brain.  As a whole, these findings suggest the novel idea that transfer of information, as captured by GE, 20 

occurs with a ‘pulsatile’ regime controlled by the dynamics of network integration, at least in the resting 21 

state. However, additional MEG studies are required to fully characterized such pulses (e.g in terms of 22 

time-intervals etc…). 23 

This framework fits a number of recent studies. Zalesky and colleagues linked the dynamics of fMRI 24 

connectivity to a measure of efficiency (Regional Efficiency, a measure of nodal not global efficiency like 25 

GE) (Zalesky et al., 2014). They reported that the most dynamic connections link elements from 26 

topologically distinct subsystems. These connections involve known DMN and FPN hubs that spontaneously 27 

increase, for brief intervals, their efficiency producing temporarily globally integrated network states. Since 28 

the integration through long connections might involve higher metabolic costs, their results suggest that 29 

brain dynamics reflects a balance between integration of information and metabolic expenditure (Zalesky 30 

et al., 2014). They also support the idea that this transfer of information, occurring in specific epochs 31 

controlled by the dynamics of network interaction, enables otherwise segregated network elements to 32 

access a cognitive global workspace. The transient exploration of this workspace may allow the brain to 33 

efficiently balance segregated and integrated dynamics. A related study explored the origin of slowly 34 

fluctuating patterns of cortical synchronization and found that these patterns match well the activity within 35 

the Rich Club regions (Gollo et al., 2015). Furthermore, it has been shown that fluctuations of global 36 

efficiency alter patterns of activity in local neuronal populations elicited by changes in incoming sensory 37 

stimuli (Cocchi et al., 2017). Accordingly, it was reported the presence of multiple cortical timescales 38 

involving the emergence and dissolution of interactions of cortical regions within the human visual system 39 

(e.g. with frontal eye fields) when the neural activity is perturbed (e.g. by means of Trans Magnetic 40 

Stimulation) was reported in (Cocchi et al., 2016). 41 

To summarize, dynamic interactions among hubs occur at multiple time scales, but also involve epochs 42 

of variable integration hence probably information processing.  Thus, the brain seems to exploit a temporal 43 

‘multi-scale pulsed’ mode for network communication where slower time scales provide information about 44 

the state of the system, while faster time scales reflect the temporal details of behavior (this is elaborated 45 

more the next section). This new perspective opens up a number of interesting new issues for the field. In 46 
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particular, it would be fundamental to understand why the temporal dynamics in interacting brain 1 

networks occur on a slow temporal scale, what is its origin (biophysical, neuronal),  functional significance 2 

and the role played by fast synchronizations during task/cognitive processes. 3 

 4 

5. Cortical cores and slow vs. fast dynamic brain states 5 

 6 

The results reviewed thus far indicate that brain networks are not segregated but dynamically 7 

integrated, and this property varies over multiple temporal scales: slow, in the order of seconds, and fast in 8 

the order of hundreds of milliseconds.  Here, we elaborate on the functional roles of hub/cortical dynamics 9 

at rest and during task processing. We will first consider the slow temporal scale. 10 

The slow time-varying nature of BLP interactions at rest suggest that these must reflect processes that 11 

are not changing rapidly as a function of environmental or behavioral conditions.  The mechanism linking 12 

the dynamic core network and GE occurs in the β-BLP, which has been proposed to reflect the band 13 

signaling the “status quo” of a current behavioral state (Engel and Fries, 2010). Therefore, one possibility is 14 

that these slow β-BLP fluctuations reflect endogeneous states occurring at a slow temporal scale. Gollo and 15 

colleagues (Gollo et al., 2015) proposed that the time-frequency of hub-regions match the slow time-scales 16 

of autonomic regulation which are hence closely synced to affective experiences, for a review of this 17 

emerging field see (Seth and Friston, 2016). In contrast, the topology of the surrounding ‘feeder’ regions 18 

(see previous definition and Fig. 2A) shows rapidly fluctuating dynamics likely to be crucial for fast 19 

perceptual processes. It was suggested that the “Rich Club” nodes promote a stable, dynamical core of 20 

spontaneous activity related to internal processes, and highly unstable dynamical transitions in the 21 

periphery (Gollo et al., 2017). A similar notion that peripheral areas of the brain’s network change as a 22 

function of task demands, while a central core remains relatively stable, is also part of the interpretation of 23 

recent fMRI studies on the role of hubs in cognition (Cole et al., 2014). Another interesting idea is that the 24 

dynamics in core regions reflects anticipatory processes, both spatial and temporal. Spadone et al. 25 

compared fMRI functional connectivity both at rest and during a demanding visuospatial attention task 26 

(Spadone et al., 2015). Despite an overall preservation of network structure they showed a significant 27 

increase in across network interactions between DAN regions involved in control and VIS regions involved 28 

in stimulus analysis. More importantly, they found that, during attention, directional interactions between 29 

DAN and VIS became more strongly top-down. On the contrary, functional interactions (as measured via 30 

temporal correlation) within the DAN, a central network, did not change from rest to task, and thus were 31 

set up in ways to anticipate task states. This relates to the idea of spontaneous activity as a prior proposed 32 

to explain the similarity between RSN and task states in fMRI (see also (Raichle, 2011)). Accordingly, Betti et 33 

al. recently showed that slow temporal scale dynamic fluctuations in the core predict the dynamics during a 34 

natural visual stimulation. The idea that dynamics in core regions synchronize multiple brain states is also 35 

suggested by Smith et al. that used temporal ICA to decompose different temporal components in 36 

spontaneous activity (Smith et al., 2012). In fact, at the slow time scale of the fMRI functional connectivity, 37 

Multiple Temporal Functional Modes (TFM) were identified, and the centrality of a node was measured by 38 

the overlap among them. Interestingly, DMN regions were found to be involved in many of these modes 39 

concerning semantic and language systems. When multiple temporal functional modes were averaged, a 40 

complete DMN topography was recovered with the strongest overlap in PCC. Now, if TFMs represent how 41 

modes of connectivity evolve over time, in this evolution, the observation that PCC at distinct temporal 42 

epochs is involved with many different RSNs seems to suggest that its dynamics allows it to coordinate 43 

interactions among separate functional systems. Therefore, the centrality of this node does not reflect a 44 

single state, rather the combination in time of multiple ones .  45 
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Which is the relationship between slow and fast temporal scale dynamics? Overall more research is 1 

needed on this point.  There has been important work on the notion of EEG microstates, reported for the 2 

first time in (Lehmann et al., 1987). They showed that the electric topography of the scalp does not change 3 

randomly and continuously over time, but remains stable for ~80–120 ms; these periods of quasi-stability 4 

were termed “EEG microstates”. Surprisingly, only few (between four and six) distinct microstates are still 5 

consistently observed at rest. Recently, it has been shown that these rapidly changing microstates correlate 6 

significantly, albeit not strongly, with activity in fMRI RSNs after convolution with the hemodynamic 7 

response function (Van de Ville et al., 2010). While there is some uncertainty in linking microstates to fMRI 8 

networks, EEG microstates nicely link to ongoing investigations of brain dynamics in whole brain 9 

recordings. Microstates have time scales that are in the range of cognitive processes, and show a scale-free 10 

dynamics. This might be the basis for the rapid reorganization and adaptation of the functional networks in 11 

the brain (Van de Ville et al., 2010). However, caution must be taken when comparing states across EEG 12 

and fMRI or MEG. In fact, these EEG states are extracted in time epochs corresponding to peaks of Global 13 

Field Power while fMRI and MEG connectomes are based on some measure of synchronicity. However, 14 

since those peaks correspond to moments of overall high activity and thus likely to high synchronicity, 15 

some cross-modal agreement is not unexpected. Notably, recent work shows an interesting link beween 16 

microstates and cortical hubs. In fact, Pasqual-Marqui and colleagues observed that all microstates have 17 

common generators in PCC, while three microstates additionally include activity in the left 18 

occipital/parietal, right occipital/parietal, and anterior cingulate (Pascual-Marqui et al., 2014). Thus, these 19 

generators appear to be a fragmented version of DMN supporting the notion that these regions activate 20 

sequentially at high temporal resolution, and that this RSN might correspond to a very low-pass time 21 

filtered version of this faster dynamics. Moreover, they show that PCC acts an important hub in 22 

connections mediating the microstate transitions, sending alpha and beta oscillatory information to all 23 

other microstate generator regions.  24 

Brain states have also been identified with MEG. Baker and colleagues (Baker et al., 2014), using Hidden 25 

Markov Models, revealed transient (100–200 ms) brain states whose spatial topographies somehow 26 

resembled those of well-known RSNs. In this temporal dynamics of state transitions, functional hubs would 27 

seem essential. Yet PCC was notably absent possibly due to its interaction with multiple states, which 28 

would make it not detected with this strategy of analysis. A more speculative avenue of investigation is the 29 

relationship between ongoing microstates, and a general synchronization in the slow/fast temporal scale. 30 

Task synchronization, especially in the high frequency range (high γ) has been shown to index selective 31 

cortical communication during visuomotor and attentional processing, as well as a number of other 32 

cognitive processes (working memory, language, navigation, etc.) (Engel et al., 2001; Melloni et al., 2007). 33 

An interesting recent development in the conceptualization of task dependent synchronization is that this 34 

mechanism does not only provide a way for spatially linking task relevant neuronal populations, but also as 35 

a mechanism for temporally sampling the environment (Vanrullen and Dubois, 2011). In this respect, the 36 

alternation between cycles of excitation and inhibition provides temporal windows for perception and 37 

motor behavior, as well as cortical synchronization between distant neural populations. This notion might 38 

be linked to the temporal prior idea on the possible interaction between slow and fast temporal scales. This 39 

has been shown to occur through a number of cortical mechanisms, such as amplitude-amplitude/phase-40 

amplitude/phase-phase interactions (Jensen and Colgin, 2007).  41 

 42 

6. Theoretical aspects of hub dynamics and brain states 43 

 44 

The observation that functional cores and their dynamics play a fundamental role in a ‘pulsed’ (i.e. non 45 

stationary) synchronization of distinct functional modules, seems to be supported also by theoretical and 46 
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modeling studies, see (Breakspear, 2017; Cabral et al., 2017) for a review on computational models. The 1 

notion of distinct functional connectivity states recurring at different points in time is compatible with 2 

models of neuronal connectivity (Deco and Corbetta, 2011; Deco et al., 2011). Accordingly, a ‘dynamic 3 

repertoire’ of states is expected to be continuously explored to more quickly adopt the optimal network 4 

configuration for a given impending input (Deco et al., 2011). Such dynamic exploration, where brain states 5 

never set in a fixed point (Cabral et al., 2014), can provide the flexibility required to adapt to the rapidly 6 

changing computational demands of cognitive processing (Bressler and Tognoli, 2006). Hansen and 7 

colleagues showed that the resting state regime has a rich structure, characterized by rapid transitions 8 

switching between a few discrete connectivity states, see Fig. 5A,B (Hansen et al., 2015). This nicely links to 9 

the small dimensionality of both EEG and MEG states. In particular, a slight enhancement of the non-10 

linearity in the model is sufficient to broaden the repertoire of possible network behaviors, leading to 11 

modes of fluctuations that are reminiscent of the observed RSNs. These can span multiple functional 12 

connectivity states and a given state can generate fluctuation patterns related to multiple RSNs similarly to 13 

what observed in Temporal Functional Modes observed with fMRI, and transitions among MEG states 14 

(Baker et al., 2014; Smith et al., 2012).  15 

How does the brain move among these cognitive states? Again, cortical hubs seem to play a 16 

fundamental role in such transitions. In fact, Schmidt et al.  (Schmidt et al., 2015), by employing a Kuramoto 17 

model combined with structural (DTI) connectivity reported that cortical hubs facilitate the intermodular 18 

communication and global integration. They showed that hub nodes lead to synchronization of functional 19 

modules (see Fig.5C). Notably, the suppression of connectivity among hubs resulted in an elevated modular 20 

state, indicating that hub-to-hub connections are critical in intermodular synchronization. These results are 21 

consistent with the empirical observations reported in (de Pasquale et al., 2016). In addition, the model 22 

suggests that the perturbation of connectivity among hubs prevents the synchronization of functional 23 

modules (Fig.5D). In other words, the hub dynamics seems to have a causal influence on the functional 24 

module synchronization.  25 

 26 

7. Future directions 27 

 28 

At this stage of development, it is relatively well established that the brain contains central areas that 29 

are structurally and functionally well connected with more peripheral regions. There is also growing 30 

evidence that these regions may be important for linking functionally specialized modules of the brain 31 

across different tasks.  However, more studies are needed on the spatio-temporal and spectral 32 

modifications occurring in the core regions at rest and during active behavior. 33 

An important advance highlighted here is that core regions show variable strength of integration with 34 

more peripheral regions, and that this fluctuating centrality is related to global efficiency and putatively 35 

information processing. We hypothesize that this dynamic integration reflects a pulsed mode of 36 

information processing that is dependent on the temporal scales of connectivity across the brain, slow in 37 

the order of seconds or fast in the order of hundred of milliseconds. A fundamental question then, is the 38 

relationship between connectivity at slow vs. fast-time scales and related dynamics. Do network 39 

interactions observed at different time-scales and frequencies reflect separate processes (e.g. 40 

endogeneous homeostatic vs. sensory-attention-motor states) or similar neural processes that unfolds at 41 

different temporal scales?  Is the dynamics of hubs the same for slow or fast activity fluctuations? (He, 42 

2014; Linkenkaer-Hansen et al., 2001; Van de Ville et al., 2010).  The functional significance of these multi-43 

scale properties is of considerable interest. To this aim, some effort has already been done in characterizing 44 

multilayer networks. This modeling, where nodes are connected by different types of edges in different 45 

layers, allows to encode in the same network information gathered from different imaging modalities, 46 
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time, and frequency scales (Brookes et al., 2016). The characterization of multidimensional hubs and their 1 

architecture of interaction is certainly an exciting future development, see for example the first 2 

characterization of hubs in multi-frequency networks (De Domenico et al., 2016). Furthermore, by 3 

extending these approaches, multidimensional brain states might be estimated. In this framework, the 4 

characterization of cortical cores would be crucial in understanding transitions across states, as supported 5 

by the preliminary evidence of the involvement of PCC and DMN as sources of EEG microstates (Pascual-6 

Marqui et al., 2014). 7 

Another key question is the functional role of the internal dynamics. It is well established that most of 8 

the metabolic budget of the brain is spent in intrinsic activity, and that task activity costs relatively little 9 

(Attwell and Laughlin, 2001; Raichle and Mintun, 2006). It has also been proposed that connections 10 

between hubs are in general longer and more expensive metabolically to maintain (Bullmore and Sporns, 11 

2012). Then, there must be a significant functional advantage in maintaining such a high ongoing cost, 12 

partly due to hub organization and dynamics. Thus, an intriguing question is whether functional hubs and 13 

their dynamics encode at rest models of behavior and environment that are helpful during actual behavior 14 

(i.e. an internal model). We believe that this question will lead to significant insight on the role of 15 

spontaneous activity in the brain. 16 

 17 

Figure legends 18 

 19 

Figure 1. Functional hubs in the human brain. 20 

(The adopted labels are reported in Table 1) 21 

A) Top 5% and 10%  fMRI hubs found through weighted degree obtained from functional connectomes. 22 

The majority of top 5% hubs are comprised in the Default Mode Network (blue labels) and the entire set of 23 

cognitive control network (CCN) (red labels) contains all top 10% hubs (Adapted with permission from (Cole 24 

et al., 2010).  25 

B)  To identify nodes that routinely participate in multiple communities, the Participation Index can be 26 

adopted. Here, this was computed on communities evaluated on the binary graph thresholded at 5% 27 

connection density. Communities are shown on the surface (left) and through a spring-embedded plot.  28 

(Adapted with permission from (Power et al., 2013).  29 

C) The percentage  of central nodes evaluated by means of the Betweenness Centrality (BC). The 30 

reported nodes show significantly increased centrality compared to the average value in the brain (p < 31 

0.05). These results were obtained from MEG Band Limited Power connectivity matrices following signal 32 

orthogonalization. The larger, statistically significant percentage of hubs is found at the carrier frequencies 33 

in the β band, extending also to the α band (adapted with permission from (Hipp et al., 2012)).  34 

D) From the same graph as in C), regions showing the highest centrality at 16 Hz were found in bilateral 35 

medial/dorso-prefrontal and Temporal Cortex (see Table 1 for the definition of labels). The centrality 36 

evaluated by means of Betweenness Centrality is statistically masked at two levels of significance, one 37 

corrected for the number of nodes (p < 0.05, saturated color scale) and the other uncorrected (p < 0.05) 38 

(Adapted with permission from (Hipp et al., 2012). 39 

E) Hubs estimated from β Band Limited Power dynamic connectivity. It is reported the product of the 40 

mean Betweenness Centrality (BC) across epochs of high internal connectivity for the Default, 41 

Dorsal/Ventral Attention, Motor, Visual and Language Networks and the consistency of BC in the same 42 

epochs. The hubs characterized by a strong and consistent centrality in all epochs (red bars) are the 43 

Posterior Cingulate, left/right posterior interaperietal sulcus and supplementary motor area, see Table 1 for 44 

the definition of labels (Adapted with permission from (de Pasquale et al., 2016)). 45 
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F) Topography of connections of the above hubs (yellow) shows a large number of external connections 1 

driving the high value of centrality. These topographies are obtained in epochs of high internal connectivity 2 

for the above mentioned networks (Adapted with permission from (de Pasquale et al., 2016)).  3 

 4 

Figure 2. The Rich Club model. 5 

Structural brain hubs exhibit a strong tendency to be mutually and densely interconnected, forming a 6 

structural core or “Rich Club”. This central high-cost, high-capacity backbone for global brain 7 

communication comprises a set of spatially widely distributed brain regions including portions of the 8 

precuneus, anterior and PCC, superior frontal cortex, superior parietal cortex and the insula, all in both 9 

hemispheres. Edges connecting Rich Club to non-Rich Club regions are labeled as ‘fedeer’ (A), while edges 10 

connecting non-rich club regions are labeled as ‘local’ (B) and  connections among rich-club members are 11 

called ‘rich-club’ (C). Nodal degree K is reported on the right. Rich club nodes are selected based on k>10 12 

(red circles) (Adapted with permission from (Sporns, 2014)).  13 

D) (left Panel) structural Diffusion Tensor Imaging (left triangle) vs fMRI (right triangle) connections 14 

averaged across a group of 75 healthy volunteers. Functional modules are based on independent 15 

component analysis: Pr visual, primary visual; Ex visual, extrastriate visual; FP, frontoparietal; (right Panel) 16 

Distribution of Rich Club nodes in relation to resting state networks, expressed as proportions across 17 

networks (Adapted with permission from (van den Heuvel and Sporns, 2013a). 18 

 19 

Figure 3. The dynamic core network. 20 

A set of functional hubs alternate their centrality forming a dynamic core of integration. 21 

A) Dynamic binary graphs obtained from the β Band Limited Power connectivity matrices at three 22 

representative time samples. B) Centrality as estimated through the Betweenness Centrality at the three 23 

epochs as in A), together with the random graph significance threshold (dotted line). Hubs forming the core 24 

network are transiently central: Posterior Cingulate Cortex (left), Supplementary Motor Area (middle) and 25 

right Posterior Intraparietal Sulcus (right). C) Schematic model of the dynamic mechanism underlying the 26 

core network: central nodes alternate their central role to ensure an efficient communication in the whole 27 

brain dynamically. (Adapted from (de Pasquale et al., 2016)). 28 

 29 

Figure 4. The Global Efficiency of integration. 30 

The dynamic core network corresponds to an optimal strategy of the brain in maximizing the efficiency 31 

of communication as measured through the global efficiency. 32 

A) Transient global efficiency for a representative run. Epochs of high internal coupling for the Default 33 

Mode Network, shown as shaded areas, overlap with epochs of high Global Efficiency.  34 

B) Notably, these epochs correspond to high centrality for the Posterior Cingulate Cortex (red bar), a 35 

hub in the dynamic core network (left panel). Outside these epochs the centrality of this node is lower 36 

(right panel). 37 

C) Percentage of connections contributing to the centrality of the Default Mode Network. The centrality 38 

of this network is realized by a consistent proportion of external connections (black) compared to internal 39 

ones (red). 40 

D) The Receiver Operator Curve analysis shows that epochs of high internal coupling for the involved 41 

networks classify peaks of global efficiency. 42 

E) Incremental percentage of classification of GE peaks computed for the networks involved in the 43 

dynamic core. DMN classifies 45%, DAN increments this value by 19% and MN by 7%. Overall,  71% of the 44 

GE peaks are covered by these three RSNs internal coupling, see Table 1 for the definition of labels. 45 

(Adapted from (de Pasquale et al., 2016)). 46 
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 1 

Figure 5. Models of dynamic integration through cortical cores. 2 

Models of non-stationarity reveal a rich structure characterized by rapid transitions between a few 3 

discrete connectivity states reminiscent of some of the most frequently observed Resting State Networks.  4 

A) An appropriate choice of the parameters adopted in the  enhanced non-linearity mean-field model 5 

leads to an out-of-equilibrium dynamics associated with a self-organized switching between functional 6 

connectivity (FC) states (α and β) as revealed by the block structure of the matrix modeling the dynamics of 7 

Functional Connectivity. Epochs of stability in the α and β states are reported in green and violet, 8 

respectively.  9 

B) Note the correspondence between representative functional connectivity matrices (left) obtained 10 

from time windows within “α” state epochs (FCα, top) or within “β” state epochs (FCβ, bottom) and the 11 

empirical connectivity matrices extracted from BOLD data (right). (Adapted with permission from (Hansen 12 

et al., 2015)). 13 

C) The connectivity among hubs plays a fundamental role in linking distinct modules in the brain. When 14 

hubs are disconnected, the modularity increases. The ratio between the mean intra-modular synchrony 15 

and the whole brain synchrony is reported as a function of the cortical coupling factor when either edges 16 

between hub nodes (red) or random edges (black) have been removed. In the critical regime the intra-17 

modular synchrony increases when hub connectivity is suppressed. 18 

D) The effect of perturbation of internal modular frequencies on the whole brain synchrony. When the 19 

internal frequencies of “Rich Club” nodes are altered, the rest of the modules are unable to synchronize. 20 

The synchronization is recovered when the hub nodes’ frequency comes down to the range of frequencies 21 

of the functional modules (left panel). When a random set of nodes, equal in number to the previous set, is 22 

perturbed the functional modules are able to synchronize before these nodes join at a whole brain shared 23 

frequency.  (Adapted from (Schmidt et al., 2015)). 24 

 25 

 26 

Table 1 27 

List of abbreviations adopted in the text and figures. 28 

 29 

Supplementary Figures 30 

Figure S1. Core flexibility and reconfigurations. 31 

A) Flexible hub theory. Histograms summarize the spread of the functional connectivity estimates across 32 

64 tasks. The mean of the network variable connectivity (GVC) for the Fronto Parietal Network is 33 

statistically higher than for the other networks. Adapted with permission from (Cole et al., 2013). 34 

B) Core-periphery organization. (Top) Example of a network with a modular organization where high-35 

degree nodes (brown) bridge distinct modules composed mostly by low-degree nodes (blue). (Bottom) 36 

Nodes in the core (purple) are more densely connected with one another than nodes in the periphery 37 

(green). 38 

C) The anatomical distribution of regions in the core, bulk, and periphery appears to be spatially 39 

contiguous. The core primarily contains sensorimotor and visual processing areas, the periphery primarily 40 

contains multimodal association areas, and the bulk contains the remainder of the brain. Adapted with 41 

permission from (Bassett et al., 2013). 42 
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AIC Anterior Insula Cortex L/R SII Secondary somatosensory 

region 

aTL Anterior Temporal Lobe LAN Language Network 

AUD Auditory Network LFP Local Field Potential 

β band [14, 25] Hz LPC Lateral Prefrontal Cortex 

BC Betweenness Centrality MOG Middle Occipital Gyrus 

BLP Band Limited Power mPFC Medial Prefrontal Cortex 

CCN Cognitive Control Network MTG   

D L/R PFC Dorso (Left/Right) Prefrontal 

Cortex 

PCC Posterior Cingulate Cortex 

D/V AN Dorsal/Ventral Attention 

Network 

PFC Prefrontal Cortex 

DC Degree Centrality PI Participation Index 

DMN Default Mode Network PMC Pre-Motor Cortex 

DPFC Dorso Prefrontal Cortex PPC Posterior Parietal Cortex 

EVC Eigenvector Centrality θ band [3.5, 7] Hz 

FEF Frontal Eye Field RSN Resting State Networks 

FPN Fronto Parietal Network SFC Superior Frontal Cortex 

γ band [27, 70] Hz SMA Supplementary Motor Area 

GE Global Efficiency SMN Sensory Motor Network 

HMM Hidden Markov Model STG Superior Temporal Gyrus 

IFG* 

Insula* 

Inferior Frontal Gyrus 

 

TMPFC Temporal Cortex 

L/R AG/IPL Left/Right Angular Gyrus V1,2,3,7 Visual Areas 1,2,3,7 

L/R CS Left/ Right Central Sulcus VIS Visual Network 
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