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Abstract

A multitude of composite materials ranging from polycrystals to rocks, concrete, and
masonry overwhelmingly display random morphologies. While it is known that a Cosserat
(micropolar) medium model of such materials is superior to a Cauchy model, the size of the
Representative Volume Element (RVE) of the effective homogeneous Cosserat continuum
has so far been unknown. Moreover, the determination of RVE properties has always
been based on the periodic cell concept. This study presents a homogenization procedure
for disordered Cosserat–type materials without assuming any spatial periodicity of the
microstructures. The setting is one of linear elasticity of statistically homogeneous and
ergodic two–phase (matrix-inclusion) random microstructures. The homogenization is
carried out according to a generalized Hill–Mandel type condition applied on mesoscales,
accounting for non-symmetric strain and stress as well as couple-stress and curvature
tensors. In the setting of a two–dimensional elastic medium made of a base matrix and
a random distribution of disk-shaped inclusions of given density, using Dirichlet–type
and Neumann–type loadings, two hierarchies of scale-dependent bounds on classical and
micropolar elastic moduli are obtained. The characteristic length scales of approximating
micropolar continua are then determined. Two material cases of inclusions, either stiffer
or softer than the matrix, are studied and it is found that, independent of the contrast in
moduli, the RVE size for the bending micropolar moduli is smaller than that obtained for
the classical moduli. The results point to the need of accounting for: spatial randomness
of the medium, the presence of inclusions intersecting the edges of test windows, and the
importance of additional degrees of freedom of the Cosserat continuum.
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1. Introduction and setting of the problem

A wide range of composite materials, used in different engineering fields or present
in nature, display non–periodic arrangement of the constituents. Referring to particulate
composites made of particles (inclusions) embedded in dissimilar matrices, examples are
polymer, ceramic, metal matrix composites (Fig. 1, a, b), but also granular materials,
concrete, masonry made of crushed stones casually arranged in the mortar and even porous
rocks (Fig. 1, c, d).

The evaluation of the effective mechanical response of such materials cannot disre-
gard the spatial randomness markedly characterizing the disposition of the inclusions.
Within this framework, an interesting challenge, motivated by the needs of preservation
and restoration of the architectural heritage of many countries is the study of ancient ma-
sonry. This material can be regarded as a particulate composite generally characterized
by spatial randomness, unlike the current masonry in which the disposition of the con-
stituents is mainly periodic. Referring to masonry–like materials, while periodic stonework
masonry attracted the interest of several researches in the past decades, a comprehensive
understanding of the mechanical behaviour of such random assemblies is still lacking.

randomNN-eps-converted-to.pdf

Figure 1: Particulate random composites. a, b: ceramic/metal matrix composites ; c, d: Roman concrete,
tuffaceous rock.

For many years, periodically structured masonries have been effectively modeled as
anisotropic continua by adopting standard homogenization techniques, obtaining sat-
isfactory results using micromorphic continua modeling (De Bellis and Addessi, 2011;
Bacigalupo and Gambarotta, 2011; Addessi and Sacco, 2012), also resorting to coarse–
graining approaches based on discrete–continuum modeling (Ortiz and Phillips, 1999;
Trovalusci et al., 2008, 2010; Trovalusci, 2014), and addressing the non–linear behaviours
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(Trovalusci and Masiani, 2003, 2005; Sansalone and Trovalusci, 2010). Micropolar con-
tinua approaches accounting for the effects of material internal lengths and, in particular,
non–symmetries of the strain and stress tensors have turned out to be more effective than
the local and second gradient continua approaches (Pau and Trovalusci, 2011; Trovalusci
and Pau, 2014).

More recently, various procedures have also been proposed to perform classical homog-
enization for non–periodic masonry assemblies. In the work (Zeman and Šejnoha, 2007)
for instance, a notion of statistically equivalent periodic unit cell, accounting for the ge-
ometrical randomness of various material systems, is introduced in order to derive the
homogenized effective properties. In the article (Gusella and Cluni, 2006) instead, the au-
thors consider masonry assemblies characterized by random geometrical and constitutive
properties and use windows of varying size for defining the minimum size of a represen-
tative volume element for the homogenization process. In the work (Spence et al., 2008),
two random fields, one associated with the stone geometry and another representing the
global morphology, are adopted in order to simulate the realizations of an actual random
masonry wall by means of a statistical algorithm. In the article (Cecchi and Sab, 2009),
non–periodic masonry is studied aiming for evaluating the effect of a random perturba-
tion on the elastic material response. In another work (Milani and Lourenço, 2010), a
rigid–plastic homogenization model for the limit analysis of masonry walls made of blocks
of various size randomly assembled and out–of–plane loaded is presented. Finally, in the
article (Cavalagli et al., 2011) the non–periodicity of masonry structures is taken into
account in order to define a strength domain in generalized plane strain state.

Usually, homogenization techniques for random media are based on the solution of
boundary value problems (BVPs) over finite–size mesoscales (Terada et al., 2000; Kanit
et al., 2003; Sab and Nedjar, 2005; Gitman et al., 2007; Hatami–Marbini and Picu , 2009;
Ghosh, 2011; Salmi et al., 2012). In order to account for the effects of the microstructural
size, heterogeneous non–periodic materials have been also studied by extending the ho-
mogenization schemes to gradient–enhanced continua, applied to a single fixed mesoscale
(Kouznetsova et al., 2002, 2004). To the best of our knowledge, however, finite–size–
scaling homogenization techniques have never been applied to random non–classical ma-
terials and, in particular, to continua with additional degrees of freedom (Capriz, 1989;
Eringen, 1999). In this framework, the non–periodic masonry becomes an opportunity to
develop a general strategy for dealing with composite random media which are described
as micropolar continua (Nowacki, 1970, 1986; Eringen, 1999), in order to take into account
size effects and non symmetric behaviour.

The key issue in the homogenization theories for random materials is that the basic
concept of Representative Volume Element (RVE), well established in homogenization
of periodic media, requires the adoption of very large (theoretically infinite) material
domains; depending on the macroscopic body size, this may invalidate the scale separa-
tion commonly assumed in continuum mechanics (Ostoja-Starzewski, 1998, 2006). These
and related concepts have been widely studied within the framework of elastic, plastic,
thermoelastic and permeable random microstructures in (Ostoja-Starzewski et al., 2007;
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Khisaeva and Ostoja-Starzewski, 2006; Ostoja-Starzewski, 2008, 2011). According to
these studies, stochastic approaches can be used to perform homogenization of materials
with random microstructure approaching the minimum RVE size as convergence value of
two hierarchies of bounds stemming from the solutions of Dirichlet and Neumann BVPs.
In particular, under the assumption that the medium is characterized by statistical ho-
mogeneity and mean–ergodicity, Statistical Volume Elements (SVEs) can be set up on
a mesoscale, i.e. any finite scale relative to the microstructural length scale, on which
both Dirichlet and Neumann BVPs can be solved. On that basis, two scale dependent
hierarchies of mesoscale bounds for the effective material properties can be obtained. The
convergence trend, as the SVE increases, allows one to approximate the RVE size and to
estimate the effective constitutive moduli of the random composites.

Following the above mentioned approach, in this paper we develop a homogenization
procedure which applies to random composites perceived as Cosserat continua both at the
micro and macro level. The use of a Cosserat continuum at the local level is appropriate
when the size of a heterogeneity is comparable to the characteristic length of its inner
microstructure. In this framework, it is possible to account for local bending deformation
mechanisms, which can be prominent in the presence of voids of size comparable to the
heterogeneity size (e.g. nano–crystals, defected or cellular materials, etc.)(Forest et al.,
1999, 2001; Onck, 2002). Here we want to define a general description, able to represent
a wide range of materials characterized by different ratios between the above mentioned
scales. The classical description (Cauchy) can be obtained as a limit case in which the
characteristic length is very small, compared to the heterogeneity size. This approach
requires macrohomogeneity conditions generalized to micropolar continua (Li and Liu,
2009; Liu, 2013) which hold also in the case of spatial non–periodicity (Ostoja-Starzewski,
2011). As the first step, the linear-elastic case is taken into account, thus providing an
estimate of the elastic coefficients of the micropolar continuum. In particular, at the
microlevel each phase is isotropic while at the macrolevel the equivalent continuum of any
specific realization is generally anisotropic.

Among various parameters that may randomly vary in a particle composite, such as
position, size, shape, density of inclusions as well as mechanical properties of the con-
stituents, here we focus on the spatially random distribution of inclusions in a homoge-
neous matrix. We consider a simplified micromodel of an elastic two–phase composite,
made of a base matrix with randomly distributed circular inclusions of a fixed radius and
fixed nominal volume fraction. We take into account two cases characterized by different
contrasts between material phases. As a measure of the contrast, the following variables
are taken into account: the ratio between Young’s moduli of the inclusions and matrix
(Ei/Em) and ratio between the (micropolar) characteristic lengths of the inclusions and
matrix (lic/l

m
c ). Thus, case (a) is a material in which stiff aggregates are surrounded by a

softer mortar matrix (Ei/Em = 6 ; lic/l
m
c = 10), and case (b) is a material in which soft

inclusions are embedded in a stiffer matrix (Ei/Em = 0.167 ; lic/l
m
c = 0.1), Fig. 2.

The paper is organized as follows. In Sec. 2 the balance, compliance and constitutive
equations for a Cosserat medium are presented and the generalized macrohomogeneity
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Figure 2: Two cases of material contrast studied (inclusion/matrix): (a) higher contrast material; (b)
lower contrast material.

5



condition as well the relative Dirichlet and Neumann boundary value conditions to be
imposed on the test window are explained in detail. Sec. 3.1 is devoted to the description
of the stochastic procedure proposed for the estimation of the overall classical and microp-
olar moduli and to detect the RVE size. In Sec. 3.2 the numerical results for determining
the convergence trends of the elastic homogenized moduli of the two material cases (a)
and (b) are reported and discussed. Finally, in Sec. 4 some final remarks concerning the
suitability of the statistical approach applied to classical and non–classical continua are
presented and discussed.

2. Macrohomogeneity condition in micropolar media

Under consideration is a heterogeneous (two–phase) micropolar linear elastic contin-
uum in quasi–static setting. Given the micropolar character, the kinematical descriptors
of each material point are displacement and rotation vectors (ui) and (ϕi), i = 1, 3. Within
the framework of a linearized theory, the kinematics of this continuum is governed by:

γij = ui,j + ekijϕk, κij = ϕi,j, (1)

where (γij) and (κij) are the strain and curvature tensors, respectively. In Eq. (1) and in
the equations below (eijk) is the Levi–Civita tensor, and the indices vary as i, j, k = 1, 3.

The balance equations in the absence of body forces and couples are:

τij,j = 0, µkj,j +ekjiτij = 0, (2)

where (τij) and (µij) are respectively the stress and couple stress tensors. Denoting by
(ti) and (mi) the tractions and surface couples on the boundary of a control volume of
outward normal (ni), we also have:

ti = τij nj, mi = µij nj . (3)

In order to separately investigate the classical and micropolar components, we divide
the strain and stress tensors into their symmetric and skew-symmetric part:

γij = εij + αij, τij = σij + βij , (4)

where εij = 1
2
(ui,j +uj,i ), αij = 1

2
(ui,j −uj,i ) − ekijϕk, while σij = 1

2
(τij + τji), βij =

1
2
(τij − τji)

In the sequel we consider a two–dimensional (2D) micropolar continuum in which the
independent strain and stress components are ordered into the vectors:

{ε} = {ε11 ε22 ε12}T {σ} = {σ11 σ22 σ12}T
{α} = {α12} {β} = {β12}
{κ} = {κ31 κ32}T {µ} = {µ31 µ32}T .

(5)
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The stress–strain relations for a 2D linear elastic isotropic micropolar material can
then be written as:


σ11
σ22
σ12
β12
µ31

µ32

 =


λ+ 2µ λ 0 0 0 0
λ λ+ 2µ 0 0 0 0
0 0 2µ 0 0 0
0 0 0 −2µc 0 0
0 0 0 0 2µl2c 0
0 0 0 0 0 2µl2c




ε11
ε22
ε12
α12

κ31
κ32

 , (6)

which involves four independent elastic constitutive parameters: the Lamé constants λ
and µ, the Cosserat shear modulus µc, and the so–called characteristic length lc, which is
responsible for the rotational stiffness.

The micropolar continuum adopted here is piecewise–homogeneous: it is a randomly
structured two–phase composite made of matrix and disk–shaped inclusions. Both phases
are linear elastic and isotropic while the mesoscale and macroscale models are linear
elastic and generally anisotropic. These models are formulated as follows. We introduce
a mesoscale window Bδ of size L, and characterize it by a dimensionless mesoscale

δ =
L

d

where d is the inclusion size (Figure 2). The mesoscale stiffness properties of Bδ are ran-
dom and, generally, anisotropic. For spatially ergodic microstructures (such as assumed
here) their scatter (or noise-to-signal) ratio decreases as δ increases, and one arrives at
deterministic, macroscale properties of the RVE. In principle, lacking any spatial period-
icity of the material, one has to take the limit δ →∞, but, depending on the acceptable
level of scatter, a finite mesoscale may be chosen (Ostoja-Starzewski, 2006).

The mesoscale properties are defined from generalized macrohomogeneity (Hill–Mandel
type, (Hill, 1963; Mandel and Dantu, 1963)) conditions accounting for the presence of
classical and micropolar variables (Li and Liu, 2009; Ostoja-Starzewski, 2011; Liu, 2013),
here considered separately:

1

V δ

∫
Bδ

(σijεij + βijαij + µijκij)dV = σijεij + βijαij + µijκij , (7)

where Vδ is the volume occupied by a material described above, while the overbars denote
volume averaged quantities. In effect, Eq. (7) establishes an equivalence of the average
internal work over Bδ and the mechanical internal work density of the mesoscale model,
expressed in terms of homogenized stress and strain measures.

Providing that the hyperelastic materials’ major symmetries hold, the general anisotropic
2D stress–strain relations, using the vectors defined in Eqs. (5), are written:
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 σ

β
µ

 =

 A D F
DT B G
FT GT C


 ε
α
κ

 , (8)

or, in terms of components:


σ11

σ22

σ12

β12

µ31

µ32

 =



A1111 A1122 A1112 D1112 F1131 F1132

A2211 A2222 A2212 D2212 F2231 F2232

A1211 A1222 A1212 D1212 F1231 F1232

D1211 D1222 D1212 B1212 G1231 G1232

F3111 F3122 F3112 G3112 C3131 C3132

F3211 F3222 F3212 G3212 C3231 C3232




ε11
ε22
ε12
α12

κ31
κ32

 . (9)

It is noticed that, in the case of centrosymmetric (i.e. non–chiral) materials, the compo-
nents of tensors D, F and G are null. Henceforth, our strategy is to determine numerically,
consistently with the macrohomogeneity condition (7), the components of the mesoscale
stiffness tensors from a Dirichlet (D-BC) BVP. Separately, by solving the Neumann (N-
BC) BVP, we will find the mesoscale compliance tensors. These conditions correspond to
those proposed in (Onck, 2002).

� Dirichlet boundary conditions

We consider a square-shaped mesoscale domain Bδ whose center is fixed at the origin
of the coordinate system. On account of the above condition in Eq. (7), we set up the
Dirichlet boundary conditions:

ui = εijxj, ϕ3 =
1

2
eij3αij + κ3ixi on ∂Bδ ,

(i, j = 1, 2). The strategy of applying the boundary conditions is outlined in Fig. 3. The
solution of the cell problem under various combinations of boundary conditions yields the
homogenized stresses (i, j = 1, 2):

σij =
1

Vδ

∫
∂Bδ

(tixj + tjxi)dA, βij =
1

2Vδ
eij3

∫
∂Bδ

m3dA, µ3i =
1

Vδ

∫
∂Bδ

m3xidA .

� Neumann boundary conditions

In the case of Neumann boundary conditions, on account of Eq. (7), we impose (Fig.
4):

ti = (σij + βij)nj, m3 = mo
3 + µ3ini on ∂Bδ ,

8
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Figure 3: Dirichlet boundary conditions (D-BC); deformed configurations and corresponding stresses in
a homogeneous sample: classical (i) and micropolar modes (ii).
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Figure 4: Neumann boundary conditions (N-BC); deformed configurations and corresponding strains in
a homogeneous sample: classical (i) and micropolar (ii) surface tractions and couples.
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where mo
3 = −

∫
∂B
eij3xiβjknk is the moment imposed to ensure the moment balance in

the presence of skew–symmetric shear (i, j, k = 1, 2). The resulting homogenized strains
are (i, j = 1, 2):

εij =
1

Vδ

∫
Bδ
εij dV, αij =

1

2Vδ

∫
Bδ
αij dV, κ3i =

1

Vδ

∫
Bδ
κ3i dV .

The correct implementation of the boundary conditions described above has been
tested on square-shaped mesoscale domains made of a homogeneous material.

3. Computer solutions of boundary value problems

3.1. Realizations of random two-phase composites

We study the scale–dependent effective response of a heterogeneous random material
described as 2D and two–phase composites made of a base matrix with randomly dis-
tributed inclusions. In a composite material various parameters such as position, size,
shape and density of inclusions as well as the mechanical properties of the constituent
phases are spatially random. Here we fix the nominal volume fraction of the medium,
the particles’ shape (disk–shaped inclusions), the particles’ size (diameter d) and the
mechanical parameters of each phase.

With reference to Fig. 2, two material cases studied: (a) stiff inclusions in a soft
matrix and (b) soft inclusions in a stiff matrix. The attention is here focused on the
contrast between the Young’s moduli of inclusions and matrix and the contrast between
the so–called characteristic lengths between inclusions and matrix. The parameters of the
two material cases are inverted. Without losing the generality of the statistical procedure
developed to simulate the realizations of such composites with spatial randomness, case
(a) can be referred to concrete masonry and case (b) to filled rubble masonry or magmatic
rock structures.

The constitutive response of a non–periodic heterogeneous material requires the def-
inition of the size of a RVE, LRV E, larger than the microscale characteristic length, d,
so that to render the influence of the boundary conditions on the RVE to vanish. This
prescription ensures a homogenization limit in the sense of Hill but generically states
that LRV E >> d, for instance that LRV E is about 10 up to 100 times larger than the
heterogeneity size (Ostoja-Starzewski, 2006; Khisaeva and Ostoja-Starzewski, 2006). Ac-
cording to the approach presented in the above mentioned papers, as well as in (Du
and Ostoja-Starzewski, 2006) and (Ostoja-Starzewski, 2008), in this section we present
a procedure which requires the statistical definition of a number of realizations of the
possible microstructure, sampled in a Monte–Carlo sense, which allows us the determina-
tion of statistics of scale–dependent upper and lower bounds for the overall elastic moduli
approaching the RVE size.

In particular, we identify finite size test windows as portions of the heterogenous mate-
rial (SVEs) on which we perform homogenization by solving both Dirichlet and Neumann
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classical and micropolar BVPs, separately as defined in Sec. 2. The realizations of the
microstructure, that is, the number and position of inclusions within any window, are
generated by a hard-core Poisson point field (i.e. not allowing for disks’ overlaps), thus
simulating a mesoscale window placed anywhere in the random medium. By increasing
the window size and exploiting the results in terms of the statistical convergence of the
average results of the Dirichlet and Neumann BVPs, respectively, we then obtain the RVE
size and estimate the corresponding effective elastic coefficients.

Let the random medium be a set B = {B(ω); ω ∈ Ω} of realizations B(ω) defined
over a sample space Ω, ω being an elementary event. Under the hypothesis of statistical
homogeneity and isotropy combined with the mean–ergodicity of the medium, we gener-
ate particle distributions by a hard–core Poisson point field. The entire computational
stochastic mechanics procedure is structured as follows (Fig. 5).

1. Set a nominal area fraction ρ, defined as the ratio between the total area of the
inclusions and the area of a test window. Select a window size L and define the
dimensionless scale factor δ = L

d
.

2. For each mesoscale window (δ): determine the number of disks via simulations of
the Poisson random variable (Knuth’s algorithm), where the Poisson’s distribution
is characterized by the parameter pδ = (ρL2)/[π(d/2 + s/2)2], with s being the
minimum distance between disk boundaries (‘hard-core’ interactions) fixed in order
to avoid very narrow necks between the inclusions. Here ρ (fixed at 40%) is the
nominal areal fraction of inclusions.

3. Then simulate (uniform) random dispositions of disks’ centres, that is the realiza-
tions Bδ(ω) of portions of the random medium. Each realization is independent from
any previous one.

4. For each Bδ(ω), solve both the Dirichlet and the Neumann BVP defined in Sec. 2
and obtain the relative homogenized constitutive parameters.

5. Repeat steps 2–4 until the confidence interval of the average homogenized constitu-
tive parameters set at 95%, evaluated over a normal standard distribution, is less
than a small desired value, which depends on the data dispersion (as illustrated in
Subsection 3.2).

6. If the number of realizations necessary for ensuring the requirement in step 5 is
small enough (also depending on the data dispersion, as illustrated in Subsection
3.2), stop the procedure. Otherwise choose an increased value of δ and go to step 2.

On account of the spatial homogeneity of the Poisson point process, the steps 2–5
correspond to moving the window anywhere within a material domain (Fig. 6), thereby
accounting for the presence of inclusions that intersect the window’s edges.

The fulfillment of the requirement at step (6) means that the values of the homogenized
constitutive coefficients are distributed around their averages with a vanishing variation
coefficient and that the RVE size is achieved. The effective constitutive moduli are finally
estimated as the mean values between the Dirichlet (upper) and Neumann (lower) bounds
at the convergence window (RVE).

12



1. SETTING THE PARAMETERS
B ρ: nominal volume fraction of the medium B L: window size
B d: diameter of the inclusions B δ = L

d
: scale parameter

B s: ‘hard-core’ distance

density-eps-converted-to.pdf

2. DETERMINE THE EXPECTED NUMBER
OF INCLUSIONS B Poisson’s distribution parameter:
in each trial window of size δ pδ = ρL2/π(d/2 + s/2)2

3. GENERATE REALIZATIONS Bδ(ω) 4. SOLVE DIRICHLET AND NEUMANN BVP
of the disordered medium for each Bδ(ω)

different_win-eps-converted-to.pdf
bound-eps-converted-to.pdf

5. REPEAT STEPS 2-4 6. REACH THE CONVERGENCE
until reaching the desired statistical accuracy (RVE SIZE, ELASTIC MODULI)
for windows of increasing size δ

increasing_win-eps-converted-to.pdf convergence-eps-converted-to.pdf

Figure 5: Schematic of the performed statistical procedure.
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Figure 6: Different Bδ(ω) within a portion of a random medium.

Note that the statistical criterion adopted allows us to detect the RVE size also when
the Dirichlet and Neumann solution do not tend to the same value. Indeed, the mismatch
between the two solutions, which depends on the material contrast (Ostoja-Starzewski,
2006) as rigorously illustrated in terms of stretched–exponential scaling functions in (Ran-
ganathan and Ostoja–Starzewski, 2009), can be such as to affect the validity of a scale–
dependent homogenization via hierarchies of bounds (Salmi et al., 2012). On this basis,
in Subsection 3.2 the RVE size for both materials with high (a) and low (b) contrasts, the
latter with bounds significantly different, are estimated.

3.2. Numerical simulations

In order to investigate the response of the two paradigmatic material cases of Fig.
(2), we adopt the procedure described in Sec. 3.1 with the nominal area fraction in both
cases being ρ = 40%, the diameter d of inclusions set at 10mm, the hard-core distance
s = 1mm, and taking window sizes at δ from 5 through 25. The analyses are confined
to the 2D elastic framework. The adopted material parameters: Young’s modulus, E,
Poisson’s coefficient, ν, micropolar shear modulus, µc, and characteristic length, lc, are
reported in Table 1. It is also assumed that the Cosserat shear modulus takes the same
value as the classical shear modulus.

For each finite–size test window, the Dirichlet BVPs defined in Sec. 2 are numerically
solved using the code COMSOL Multiphysics r. and all the homogenized constitutive
parameters of Eq. (9) are evaluated. Similarly, the Neumann BVPs are solved to deter-
mine the homogenized compliances according to a relation inverse to Eq. (9). This code
is based on a finite element method in which it is possible to directly implement, both in
weak or strong form, the equations governing the problem to investigate; this is especially
suitable for solving non–classical BVPs. In particular, we adopted unstructured meshes
of triangular quadratic Lagrangian finite elements and paid special attention to solve the

14



Material Parameters
E [MPa] ν µc[MPa] lc[mm]

a matrix 5000 0.15 2710 0.1
inclusions 30000 0.4 10700 1

b matrix 30000 0.4 10700 1
inclusions 5000 0.15 2710 0.1

Table 1: Material parameters.

BVPs in the presence of non–homogeneous boundary, developing automatic procedures
for dealing with a very large number of material realizations Bδ(ω).

In Eqs. (8, 9) the most general form of the linear elastic constitutive law for the 2D
anisotropic Cosserat medium is reported. Nevertheless, for the materials here accounted
for, the resulting homogenized mesoscale components of the tensors D, F and G are always
equal to zero (central symmetry). We have separately studied the components of the
classical tensors A and of the micropolar tensors C and B. In particular, the longitudinal
elastic coefficients being predominant, we focused the attention on the scalar terms of
stiffnesses of the equivalent anisotropic continuum: A = (A1111 + A2222)/2, classical, and
B1212, trC, micropolar.

The results in terms of convergence trend of the ensemble average homogenized stiffness
coefficients are presented and commented on below. For all the cases analyzed, the RVE
size δRV E was judged as attained, when the statistical accuracy of 95% relative to a
standard normal distribution was attained.

Figs. 7 and 8 report, for the material cases (a) and (b), the average values of classical
and micropolar stiffness measures, < A > and < trC >, normalized with respect to the
average value of the same measures estimated at the convergence window, < ARV E >
and < trCRV E >, versus the number of simulations performed for different widow sizes.
The reported values correspond to solutions of Dirichlet boundary problems for any Bδ(ω)
allowing inclusions to randomly intersect the boundary ∂Bδ(ω). These figures provide a
picture of the statistical convergence criterion adopted to stop the simulation for any given
window size.

With reference to the procedure of Sec. 3.1 (step 5), the number of realizations N
for each test window has been chosen such that 1.96

<Xδ>
σ√
N
≤ tol, where σ is the standard

deviation, < Xδ > is the average stiffness estimated at a given δ = δ and tol is a given
tolerance set equal to 0.005 for the material (a) and equal to 0.0025 for the material (b),
which shows less dispersion. It can be observed that, by increasing the scale factor δ, the
confidence interval is reached and the average stiffness values converge after a more and
more reduced number of realizations Bδ(ω). The RVE size (δRV E) and the corresponding
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Figure 7: Average values of A (normalized to < ARV E >; Dirichlet solutions) versus the number of
simulations performed for different window sizes (δ). Material (a), left side; material (b), right side.
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Figure 8: Average values of trC (normalized to < trCRV E >; Dirichlet solutions) versus the number of
simulations performed for different window sizes (δ). Material (a), left side; material (b), right side.

average values of the effective constitutive parameters are then attained without dispersion
at the minimum window size for which the number of necessary realizations N is less
than a small number (i.e. 5; step 6). This circumstance also corresponds to reaching
the minimum window size (δRV E) for which the estimated homogenized moduli remain
constant, within a tolerance interval less than 0.5%, for both the Dirichlet and Neumann
solutions. Thus, as observed above, the statistical convergence criterion adopted allows us
to determine the scale δRV E also in the presence of discrepancies between upper and lower
bounds, which can be significant for weak levels of material contrast (Ostoja-Starzewski,
2006), so as to induce the search for solutions alternative to the upper–lower bounding
solutions (Salmi et al., 2012).

The decrease of statistical dispersion with the increase of the mesoscale δ is also shown
in Fig.9 , where the Coefficients of Variation (defined as the ratio of the standard deviation
to the mean: CV= σ/ < Xδ >) of the average values of A and trC obtained for materials
(a) and (b) are reported.

As expected, the scatter reduces, in both media, by increasing the window size and it
is always slightly greater in the medium with higher contrast (a).

As described in Sec. 3.1, the SVE ideally corresponds to a portion of the actual random
medium Bδ(ω) in which inclusions are not prevented from intersecting the window edges.
Thus, the numerical simulations are performed by taking into account non–homogeneous
boundaries ∂Bδ(ω) (crossing–inclusions). We also consider the less realistic case, widely
used in literature, of homogeneous boundaries in which inclusions do not intersect the
windows’ edges (non–crossing inclusions). The comparison between the homogenized
responses obtained by performing numerical simulations for the two cases, either applying
Dirichlet and Neumann boundary conditions, allows us to emphasize the influence of
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Figure 9: Coefficient of Variation (CV) of < A > (left) and < trC > (right) for various δ.
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positions of the inclusions with respect to the SVE’s boundary, as is shown in the following.
Fig. 10 reports the average of the classical stiffness coefficient A versus the scale

parameter δ, obtained by solving the Dirichlet and Neumann BVPs for both materials (a)
and (b). It can be noticed that the convergence trend is different in the case of inclusions
that cross or do not cross the SVEs boundary. In particular, for the higher contrast
material (a) δRV E = 20 in the case of crossing inclusions, while δRV E = 25 in the case of
non–crossing inclusions. In the presence of stiff inclusions which randomly intersect the
SVE boundary, we get an average stiffness value between Dirichlet and Neumann solution
higher by 8.22% than the corresponding value obtained for inclusions prevented from
intersecting the boundary. The lower contrast material (b) shows a slower convergence
trend. Accordingly, the RVE is attained for δRV E = 25 in the case of crossing inclusions,
while in the case of non–crossing inclusions δRV E > 25. The convergence value of the
average stiffness in the presence of soft inclusions that intersect the RVE boundary is
lower by 3.4% than in the case of non–crossing inclusions.

Overall, these results confirm the influence on the gross material response of the vari-
ation of the position of the test window, and this influence is more appreciable for the
higher contrast material (a).

A_a_FD_TB_C_NC-eps-converted-to.pdfA_b_FD_TB_C_NC-eps-converted-to.pdf

.

Figure 10: Hierarchy of scale dependent effective constitutive parameters: < A > obtained for higher
(a; left side) and lower (b; right side) material contrasts. Dirichlet (D-BC) and Neumann (N-BC) BVPs
solutions obtained with inclusions crossing (dash lines) and non–crossing (solid lines) ∂Bδ(ω).

Fig. 11 reports the average homogenized values < B1212 > versus the mesoscale δ.
Materials (a) and (b) exhibit convergence trends similar to the coefficient A, highlight-
ing that also for the skew–symmetric strain–stress behaviour analogous differences arise
between the two considered composite materials. In particular, in the random case of
inclusions that intersect the RVE boundary, the material (a) is stiffer by 3.3%, whereas
the material (b) softer of 1.5% relative to the case of inclusions embedded entirely within
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the window. The convergence values for RVE sizes coincide with the corresponding values
obtained for the classical term A.

B_a_FD_TB_C_NC-eps-converted-to.pdfB_b_FD_TB_C_NC-eps-converted-to.pdf

Figure 11: Hierarchy of scale dependent effective constitutive parameters: < B1212 > obtained for higher
(a; left side) and lower (b; right side) material contrasts. Dirichlet(D-BC) and Neumann (N-BC) BVPs
solutions obtained with inclusions crossing (dash lines) and non–crossing (solid lines) ∂Bδ(ω).

Fig. 12 shows the micropolar results in terms of the average homogenized characteristic

length parameter < l̄c >=<
√
tr(C)/B1212 >. The material (a) still exhibits differences

between the curves obtained in the cases of crossing and non–crossing inclusions, but in
the case of lower contrast material (b) such differences are more predominant. For the
higher contrast material (a), the RVE is attained at δRV E = 15 in the case of crossing
inclusions and at δRV E = 20 in the case of non-crossing inclusions. In the presence of stiff
inclusions that intersect the RVE boundary we find an average stiffness value between
Dirichlet and Neumann solution 35% greater than for the case of inclusions embedded in
the window. This is also the case for the low contrast material. The estimated micropolar
average stiffness value is smaller than 20% relative to the case of a homogeneous boundary.

Considering these results, it emerges that in both materials (a) and (b), the variation
of the test window position in the medium (i.e. variation of the position of the inclusions
in the window Bδ(ω)) has an influence on the gross material response greater than that
appreciated in the classical case. This aspect is apparent in particular in case (a). This is
also due to the higher differences between the micropolar moduli of the two phases rather
than between the classical moduli.

It can be also noticed that in the material (b), due to the lower contrast of the compos-
ite, the mismatch in the values of < l̄c >, obtained as solutions of Dirichlet and Neumann
BVPs in the case of crossing–inclusions, is greater than in the material (a). In both cases,
the average values between the two solutions tend to the value of the characteristic length
of the matrix lc. It is therefore noticeable that Cosserat bending effects are weaker when
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Figure 12: Hierarchy of scale dependent effective constitutive parameters: < l̄c >=<
√
tr(C)/B1212 >

obtained for higher (a; left side) and lower (b; right side) material contrasts. Dirichlet (D-BC) and
Neumann (N-BC) BVPs solutions obtained with inclusions crossing (dash lines) and non–crossing (solid
lines) ∂Bδ(ω).

the medium has higher contrast (a), but are stronger in the case of lower contrast (b).
These findings are in agreement with some experimental results (Gauthier, 1982; Lakes,
1983, 1986, 1995). In Lakes (1986) for instance, the author focused on two different porous
solids: a polyurethane foam characterized by rigid matrix and soft inclusions and a syn-
tactic foam with soft matrix and rigid inclusions, and concluded that Cosserat effects are
found only in the latter case. However, it is also worth noting that the homogenized
values of the micropolar elastic shear tensor B are not negligible in any case considered
here. These effects have not yet been investigated experimentally. Then, although the
characteristic effective length converges to very low values for the material (a), the mi-
cropolar continuum still provides additional information (i.e. relative rotation, measure of
the non–symmetry of strain. As widely shown in the case of anisotropic periodic materials
(Pau and Trovalusci, 2011; Trovalusci and Pau, 2014).

4. Discussion of results and final comments

This work studies scale-dependent micropolar homogenization of random micropolar
materials, our motivation coming from composite materials such as ancient masonry.
Attention is focused on particle composites, made of random distribution of inclusions
in a matrix, with two cases: (a) stiff inclusions embedded in a soft matrix, and (b)
soft inclusions in a stiff matrix. The homogenization procedure specifically developed to
deal with non–periodic composites has been developed based on hierarchies of solutions
to Dirichlet and Neumann boundary value problems (BVPs), defined on 2D two–phase
linear elastic continua of Cosserat type. This procedure employs a statistical process based
on the assumptions of mean ergodicity and statistical homogeneity of the medium. The
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statistical approach proposed follows the conceptual lines described in (Ostoja-Starzewski,
2006; Du and Ostoja-Starzewski, 2006), with reference to classical materials, and has been
developed to account for the presence of both classical and micropolar field descriptors,
separately. For each mesoscale test window the number and placement of inclusions
vary according to a hard-core Poisson point process of disks’ centres, thus simulating
a window moving within a random domain, the SVE. The RVE at which we evaluate
the effective elastic classical and non–classical moduli is approached approximately by
increasing the size of SVE until reaching the desired statistical accuracy with a minimum
number of simulations. It is worth noting that the adopted statistical convergence criterion
allows attainment of the RVE even for materials with strong contrast in moduli Ostoja-
Starzewski (2006). Notably, in both material cases studied − stiff inclusions in a soft
matrix (case a) and the reverse (case b) − the RVE size for the bending micropolar
moduli is smaller than that obtained for the classical moduli. Furthermore, the RVE
is attained at larger window sizes when a special condition is introduced preventing the
inclusions from crossing the window boundary.

On the other hand, for such materials with the given volume fraction (40%), the higher
contrast medium (a) shows, with respect to the lower contrast medium (b), a slightly
higher dispersion, of the averages of the effective elastic coefficients, to the variation
of the number and the position of inclusions within the mesoscale windows; that is to
the variation of the position of the test window in the random medium. Nevertheless
in both cases, the scatter of results quickly falls as the window size increases. At the
convergence window, the variation coefficient of the average coefficients varies within a
range of 0.01− 0.1%.

More comments are in place concerning the special random model in which inclusions
are prevented from intersecting the window boundaries. In general, we find that the higher
contrast medium (a) is slightly more sensitive than the medium (b) to the presence of
inclusions which cross the windows’ edges. In particular, the medium (a) when the stiff
inclusions cross the boundary is stiffer than in the case in which inclusions are forced not
to cross the boundary; conversely, the medium (b) with soft crossing inclusions is softer
with respect to the case of non–crossing inclusions. Moreover, the differences in terms
of average effective moduli and RVE sizes achieved, in the presence of crossing or non–
crossing inclusions, reduce but remain when the window size increases. These differences
are more appreciable when the micropolar moduli are evaluated; this is also because the
differences between the micropolar bending moduli of the material phases (characteristic
lengths), in both cases (a) and (b), are higher than the differences between the classical
(Young’s) moduli.

Overall, the statistical simulations show that it is not correct, both in the classical
and the micropolar case, to neglect the presence of inclusions that intersect the windows’
edges. The less realistic case, widely used in literature, in which the inclusions are pre-
vented from crossing the windows’ edges (thereby violating the hypothesis of statistical
uniformity) provides results significantly different compared to the results obtained tak-
ing into account inclusions intersecting the windows’ edges; this also occurs when the
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test windows are sufficiently large. This finding has been confirmed by a study which
also considers the the scale–dependent response of random media under periodic bound-
ary conditions, for both displacements and rotations (Trovalusci et al., 2014). In order
to lower the computational burden, it will be useful to verify, in future developments,
whether a homogenization procedure approaching the RVE via finite–size windows (with
the same convergence criterion as adopted here) considering specifically conceived peri-
odized boundary conditions (Sab and Nedjar, 2005; Gitman et al., 2007) can be performed
without resorting to scale–dependent lower (Neumann) and upper (Dirichlet) bounds. To
some extent, these questions are addressed in detail in an ongoing work, where a statistical
study, obtained by varying the size and position of the window, is performed based on
the solution of BVPs with centro–symmetric crossing–inclusions and periodic boundary
conditions.

Finally, it is observed, in agreement with experimental work (Lakes, 1983), that in the
material (a) with higher contrast between the characteristic lengths of the material phases
(inclusions/matrix), the curvature effects are less significant than in the case of material
with low contrast (b). Nevertheless, the elastic modulus relating the relative rotation,
which measures the skew–symmetric part of the strain, to the skew–symmetric part of the
shear stress, does not vanish as the window size increases. This implies that in the presence
of significant non–symmetric strain and shear effects, occurring in strongly anisotropic
materials, the Cosserat description is more appropriate; like in the widely investigated
case of anisotropic periodic materials (Pau and Trovalusci, 2011; Trovalusci and Pau,
2014). Further confirmations of the suitability of a micropolar model are expected from a
more complete, ongoing analysis that considers not only the randomness of the positions
but also the orientation of the inclusions of shape other than circular.
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Zeman, J., Šejnoha, M., 2007. From random microstructures to representative volume
elements. Model Simul Mater Sc 15, S325–S335.

27




