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Abstract
Preference orderings assigned by coherent lower and upper conditional previsions are
defined and they are considered to definemaximal randomvariables andBayes random
variables. Sufficient conditions are given such that a random variable is maximal if
and only if it is a Bayes random variable. In a metric space preference orderings
represented by coherent lower and upper conditional previsions defined by Hausdorff
inner and outer measures are given.

Keywords Preference ordering · Coherent upper and lower conditional previsions ·
Choquet integral · Disintegration property · Hausdorff outer measures

1 Introduction

Complex decisions can be defined as decisions where a preference ordering� between
random variables cannot be represented by a linear functional, that is there exist no
linear functional Γ such that

X � Y ⇔ Γ (X) > Γ (Y ) and X ≈ Y ⇔ Γ (X) = Γ (Y ).

Complex decisions arise also in decision making under ambiguity where aversion
towards ambiguity can effect the preferences (Ellsberg 1961) and leads to a violation
of Savage’s sure think principle (Savage 1954) and cannot be described by subjective
expected utility theory. The modeling of preferences and their representations have
been investigated in Seidenfeld et al. (1995).

The Choquet expected utility theory has been introduced to modeling decision
making under ambiguity using non-additive probabilities (Choquet 1953; Schmeidler
1989; Gilboa 1987; Mayag et al. 2011; Anscombe and Aumann 1963).
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Examples of non-additive measure are coherent upper and lower probabilities and
non linear functional can be defined by coherent upper and lower prevision.

The vantages of using coherent upper and lower conditional probabilities instead
of fuzzy measures, which are not required to be coherent, to define functional which
represent a preference ordering are:

• coherent upper and lower conditional previsions define on a given class of random
variables can be extended to the class of all random variables on Ω;

• coherent upper and lower conditional previsions are required to be fully conglom-
erable, i.e. to be conglomerable with respect to every partition even if they may
fail the disintegration property.

• a new model of coherent upper conditional previsions based on Hausdorff outer
measures has been introduced in Doria (2010, 2012) and it is proven to satisfy the
disintegration property and to be fully conglomerable on every non-null partition
(Doria 2017).

The problem to determine if a random variable is a maximal and a Bayes random
variable in a given class is related to problem to verify if the coherent upper conditional
prevision verifies the disintegration property.

Let Ω be a non-empty set and let B be a partition of Ω; disintegration property for
linear prevision P requires that P(X) = P(P(X |B)) and it has been studied in Sei-
denfeld et al. (1998); for coherent lower and upper previsions it has been investigated
in Miranda et al. (2012) and Doria (2017).

For example in multi-criteria decision problem denoted by Ω the set of criteria,
the elements of a partition B can represent clusters or macro-criteria—which are
representative of the general objectives of the decision problem, as goals to pursue
through the implementation of specific policies—and the elements in each B are the
criteria.

To compare the random variables or the alternatives with respect to all criteria the
disintegration property of the upper and lower conditional previsions can be applied
to calculate P(X |Ω) and P(X |Ω) and to determine the maximal and/or the Bayes
random variable with respect all criteria.

In Walley (1991) different preference orderings are defined with respect to lower
and upper coherent previsions.

For each B ∈ B let P(·|B) and P(·|B) respectively a lower coherent conditional
prevision and its conjugate upper coherent conditional prevision defined on the class
L(B) of all random variables on B and let K be a sub-class of L(B).

For each B ∈ B a strict order �∗, (i.e. a complete antisymmetric and transitive
binary relation) is defined with respect to a coherent lower conditional prevision and
a weak order �∗, (i.e. a complete reflexive and transitive binary relation) is defined
with respect to a coherent upper conditional prevision.

A random variable Xi is admissible in K under P(·|B) if no random variable
X j ∈ K with i �= j is preferable to Xi with respect to �∗.

An admissible random variable Xi in K is maximal under P(·|B) if it is preferable
to X j according to�∗ for all X j ∈ K , so also the coherent upper conditional prevision
is involved to determine a maximal random variable in a class K .
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A Bayes random variable under a coherent lower conditional prevision is a random
variable which is maximal under a linear prevision on the class of all random variables
defined on B.

Let μ be a submodular coherent upper conditional prevision on ℘(B) and let
P(·|B) be the coherent upper conditional prevision represented as Choquet integral
with respect to μ and let P(·|B) its conjugate coherent lower prevision.

In this paper, sufficient conditions which assure that an admissible random variable
is maximal if and only if it is a Bayes random variable are given. It is proven that:

• If K is a comonotonic class of random variables then Xi is maximal under P(·|B)

if and only if it is a Bayes.
• If K is a class of random variables such that the class C = {

Xi − X j : X j ∈ K
}

is a comonotonic class, Xi is maximal under P(·|B) if and only if it is a Bayes
random variable.

• If K is a class containing only two random variables then Xi is maximal under
P(·|B) if and only if it is a Bayes random variable.

• Let μ be a submodular coherent upper conditional probability on S ⊂ ℘(B). If K
is a class containing μ-upper measurable random variables, then Xi is maximal
under a P(·|B) if and only if it is a Bayes random variable.

2 Orderings represented by coherent lower and upper conditional
previsions

Let Ω be a non empty set and let B be an arbitrary partition of Ω . A bounded random
variable is a function X : Ω → 
 and L(Ω) is the class of all bounded random
variables definedonΩ .A randomvariable isB-measurable, ormeasurablewith respect
to a partition B if it is constant on the set B ∈ B. For every B ∈ B denote by X |B the
restriction of X to B and by sup(X |B) the supremum value that X assumes on B. Let
L(B) be the class of all bounded random variables X |B. Denote by IA the indicator
function of any event A ∈ ℘(B), i.e. IA(ω) = 1 if ω ∈ A and IA(ω) = 0 if ω ∈ Ac.

A preference ordering is a binary comparison between random variables.

Definition 1 A preference ordering � on the class L(B) of random variables defined
on B is represented by a functional Γ if and only if

Xi |B � X j |B ⇔ Γ (Xi |B) > Γ (X j |B)

and
Xi |B ≈ X j |B ⇔ Γ (Xi |B) = Γ (X j |B)

Let B = {ω1, . . . , ωn} and let μ be a probability on ℘(B); a classical linear
functional on L(B) to represent a preference ordering is the weighted sum Γ (X) =∑n

i=1 X(ωi )μ(ωi ).
Nevertheless not all preference orderings can be represented by a linear functional.

Example 1 LetΩ be a non empty set,B = {B1, B2} and let μ be a probability measure
defined on the field generated by B. Let consider the class K = {X1, X2, X3} of
bounded B-measurable random variables defined on Ω by
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Random variables B1 B2

X1 0.3 0.3
X2 0.7 0.0
X3 0.0 0.7

The preference ordering X1 � X2 and X2 ≈ X3 cannot be represented by the
linear functional Γ = ∫

Xdμ since there exists no probability measure μ such that
the following system has solution:

{
X1 � X2
X2 ≈ X3

⇔
{
0.3μ(B1) + 0.3μ(B2) > 0.7μ(B1) + 0.0μ(B2)

0.7μ(B1) + 0.0μ(B2) = 0.0μ(B1) + 0.7μ(B)2.

In the next sections (see Examples 5 and 8) it is shown that the given ordering is
represented by a coherent lower conditional prevision defined as the Choquet integral
with respect to a coherent lower conditional probabilityμ such thatμ(B1) = μ(B2) =
0.

Example 2 Let X1 and X2 be the random variables defined as in Example 1 than the
preference ordering X1 � X2 can be represented by a linear functional, since

X1 � X2 ⇔ 0.3μ(B1) + 0.3μ(B2) > 0.7μ(B1) + 0.0μ(B2)

and the system has solution for all pair (μ(B1), μ(B2))withμ(B1) < 3
7 andμ(B2) =

1 − μ(B1).

In Theorem 2 a sufficient condition is given such that a preference ordering repre-
sented by a coherent upper conditional prevision defined as the Choquet integral with
respect to a submodular coherent upper probability can also be represented by a linear
coherent prevision.

The previous examples put in evidence the necessity to introduce non-linear func-
tionals to represent preference orderings, to investigate equivalent random variables
and to manage null-events.

2.1 Coherent upper conditional previsions and their Choquet integral
representation

For every B ∈ B coherent upper conditional previsions P(·|B) are functionals defined
on L(B) (Walley 1991, 1981).

Definition 2 Coherent upper conditional previsions are functionals P(·|B) defined on
L(B), such that the following conditions hold for every X and Y in L(B) and every
strictly positive constant λ:

1. P(X |B) ≤ sup(X |B);
2. P(λX |B) = λP(X |B) (positive homogeneity);
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3. P(X + Y )|B) ≤ P(X |B) + P(Y |B) (subadditivity);
4. P(IB |B) = 1.

Definition 3 Given partition B and a random variable X ∈ L(Ω) a coherent upper
conditional prevision P(X |B) is a random variable on Ω equal to P(X |B) if ω ∈ B.

A coherent upper conditional prevision is continuous frombelow if for an increasing
sequence Xn of random variables converging to X we have limn→∞P(Xn|B) =
P(X |B).

Suppose that P(X |B) is a coherent upper conditional prevision on L(B) then its
conjugate coherent lower conditional prevision is defined by P(X |B) = −P(−X |B).
Let K be a linear space contained in L(B); if for every X belonging to K we have
P(X |B) = P(X |B) = P(X |B) then P(X |B) is called a coherent linear conditional
prevision (de Finetti 1972, 1974; Regazzini 1985, 1987) and it is a linear, positive
and positively homogenous functional on L(B).

The unconditional coherent upper prevision P = P(·|Ω) is obtained as a particular
case when the conditioning event is Ω . Coherent upper conditional probabilities are
obtained when only 0-1 valued random variables are considered.

An upper prevision is a real-valued function defined on some class of bounded
random variables K . A necessary and sufficient condition for an upper prevision P
to be coherent is to be the upper envelope of linear previsions, i.e. there is a class M
of linear previsions such that P =sup{P : P ∈ M} (Walley 1991, 3.3.3). Let P be an
upper prevision on an arbitrary domain K such that the class of all linear previsions
dominated by P , is non-empty. The maximal extension of P to L(B), denoted by E ,
is called (Walley 1991, 3.1.1) the natural extension of P . Moreover P is coherent on
K if and only if its natural extension E agrees with P on K .

A coherent upper conditional probability μB on ℘(B) is

(a) submodular or 2-alternating if μ(A ∪ E) + μ(A ∩ E) ≤ μ(A) + μ(E) for every
A, E ∈ ℘(B);

(b) continuous from below if limi→∞ μ(Ai ) = μ(limi→∞ Ai ) for any increasing
sequence of sets {Ai }, with Ai ∈ ℘(B).

A coherent upper conditional prevision P : L(B) → 
 can be represented as
Choquet integral with respect to a coherent upper conditional probability μ on ℘(B)

if P(X) = ∫
Xdμ ∀X ∈ L(B).

A necessary and sufficient condition (Doria 2014, Proposition 1) for the represen-
tation of a coherent upper conditional prevision on L(B) as Choquet integral with
respect to a coherent upper conditional probability μ is that μ is submodular. Then
P(IA) = ∫

IAdμ = μ(A). For every x ∈ 
 let {X > x} = {ω ∈ B : X(ω) > x}.
The decreasing distribution function of X with respect to μ is the function

Gμ,X (x) = μ {X > x} .

It is unique except on a set with measure μ equal to zero. If μ is continuous from
below then

Gμ,X (x) = μ {X > x} = μ {X ≥ x} .
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Since X is a bounded random variable thus there exist a constant k such that X̃ =
X + k ≥ 0 and Gμ,X̃ (x) = Gμ,X (x − k) for every real number x (Denneberg 1994,
Proposition 4.1).

The Choquet integral (Denneberg 1994) of a bounded random variable X with
respect to μ is defined by

∫
Xdμ =

∫ +∞

0
Gμ,X̃ (x)dx =

∫ +∞

0
Ĝμ,X̃ (y)dy

When a coherent upper probability is defined on a class S properly contained in
℘(B) then a measurability condition for the random variable X is required to define
the Choquet integral.

Definition 4 (Denneberg 1994p. 49)LetμB be a coherent upper probability defined on
a class S containing the empty set and properly contained in ℘(B) and let μ∗

B(A) and
μ∗
B
(A) be its outer and inner measures; a random variable X is upper μ-measurable

if μ∗
B({X > x}) = μ∗

B
({X > x}) except on a countable set. A random variable X is

lower μ-measurable if -X is upper μ-measurable. X is (upper, lower) S-measurable
if it is (upper, lower) μ-measurable for any monotone set function on S. X is upper
S-measurable if the class of upper level sets {{X ≥ x} x ∈ 
} is contained in S. If
S is a σ -field and the class of upper level sets of X and −X belong to S then X
is S-measurable, that is the inverse image X−1(A) = {ω ∈ B : X(ω) ∈ A} of every
Borelian set A, belongs to S.

For a μB-upper measurable X the Choquet integral is defined by

∫ Cho

B
XdμB =

∫ Cho

B
Xdμ∗

B =
∫ Cho

B
Xdμ∗

B
.

If Ω is finite and μ is defined on a field S, denote by A1, . . . , An the atoms of S,
which are the minimal elements of S − �. If the atoms Ai are enumerated so that
xi = X(Ai ) are in descending order, i.e. x1 ≥ x2 ≥ · · · ≥ xn and xn+1 = 0 the
Choquet integral with respect to μ is given by

∫
Xdμ =

∑n

i=1
(xi − xi+1)μ(Si )

where Si = A1 ∪ A2 · · · ∪ Ai .

3 Maximal random variables and Bayes random variables

In this section, sufficient conditions are given to assure that a random variable is
maximal if and only if it is a Bayes random variable. A strict order �∗ with respect to
a coherent lower conditional prevision and a weak order �∗ with respect to a coherent
upper conditional prevision are considered to defined the maximal and the Bayes
random variables.
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3.1 Strict order with respect to a coherent lower prevision

Definition 5 Xi and X j are equivalent given B with respect to P , i.e. Xi |B ≈∗ X j |B
given B if and only if

P(Xi |B) = P(X j |B).

A strict order on L(B) is an antisymmetric and transitive binary relation on L(B).
Let Xi and X j be two random variables belonging to L(B).

A strict ordering, induced by a coherent lower conditional prevision P(·|B) can be
defined on the class of random variables belonging to L(B) (Walley (Section 3.8.1)):

Definition 6 We say that the random variable Xi |B is preferable to X j |B given B with
respect to P(·|B) , i.e. Xi �∗ X j given B if and only if

P((Xi − X j )|B) > 0 or X ≥ Y and X �= Y (1)

Some information can be lost when a strict preference order is defined by P since
P does not contain any information about which gambles, with P(X) = 0 are really
desirable.

3.2 Weak order with respect to a coherent upper conditional prevision

A weak order on L(B) is a complete reflexive and transitive binary relation on L(B).

Definition 7 Xi and X j are equivalent given B with respect to P , i.e. Xi |B ≈∗ X j |B
given B if and only if

P(Xi |B) = P(X j |B).

Definition 8 We say that Xi is preferable to X j given B , i.e. Xi �∗ X j in B if and
only if P((Xi − X j )|B) > 0 and Xi and X j are indifferent given B, i.e. Xi ≈ X j in
B if and only if P((Xi − X j )|B) = P((X j − Xi )|B) = 0.

Definition 9 A random variable Xi |B ∈ K is inadmissible in K given B if there is
X j |B ∈ K such that X j |B �∗ Xi |B with j �= i . Otherwise Xi |B is admissibile in K .

In Walley (section 3.9.4) the following definitions are given.

Definition 10 An admissible random variable Xi |B ∈ K is maximal in K given B
under the coherent lower prevision P(·)|B if P(Xi − X j )|B ≥ 0 ∀X j |B ∈ K

If P(·|B) is a linear prevision, the maximal random variables belonging to L(B)

under P(·|B) are the admissible random variables Xi |B which satisfy P(Xi |B) ≥
P(X j |B) for all X j |B ∈ K . Any random variable which maximizes P(X j |B) over
X j |B ∈ K is called a Bayes random variable under P(·|B).

A Bayes random variable under a coherent lower conditional prevision is a random
variable which is maximal under a linear prevision on the class of all random variables
defined on B.
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Definition 11 An admissible random variable Xi |B is defined to be a Bayes random
variable under a coherent lower prevision P when, for each X j |B ∈ K there is
P ∈ M(P) such that P(Xi |B) ≥ P(X j |B) ∀X j |B ∈ K .

If Xi is maximal under some P ∈ M(P) then P(Xi ) ≥ P(X j ) ∀ X j ∈ K so
P(Xi − X j ) ≥ P(X − Y ) = P(X) − P(Y ) ≥ 0 so X is maximal under P .

Therefore, a Bayes random variable under a coherent lower prevision P is maximal
under P but the converse is not true. The maximality theorem (Walley 3.9.5) claims
that the converse holds if K is a convex subset of L(Ω).

In the next theorems, sufficient conditions are given such that a random variable is
maximal in a class K if and only it is a Bayes random variable in K .

Definition 12 Two random variables X and Y ∈ L(B) are comonotonic if,

(X(ω1) − X(ω2))(Y (ω1) − Y (ω2)) ≥ 0∀ω1, ω2 ∈ B.

A class C of random variables is comonotonic if and only if each pair of functions
in C is comonotonic.

Theorem 1 Let K ⊂ L(B) be a class of comonotonic random variables and et μ be a
submodular coherent upper conditional probability defined on ℘(B) and let P(·|B)

a coherent upper conditional prevision defined as the Choquet integral with respect
to μ. Then a random variable X is maximal in K with respect to the ordering � in
Definition 1 represented by P(·|B) if and only it is a Bayes random variable in K .

Proof Since K is a comonotonic class of random variables and μ is submodular then
by Denneberg (1994, Proposition 10.1) there exists an additive measure α on ℘(B)

such that the Choquet integral with respect to μ is equal to the Choquet integral with
respect to α and so Xi is a maximal random variable in K with respect to the ordering
� if and only if it is a Bayes random variable in K under a linear prevision.

P(Xi ) ≥ P(X j ) ⇔
∫

Xidμ ≥
∫

X jdμ∀X j ∈ K ⇔
∫

Xidα ≥
∫

X jdα∀X j ∈ K .

�
Theorem 2 Let K ⊂ L(B) be a class of random variables and let Xi ∈ K, such that
the class C = {

Xi − X j : X j ∈ K
}
is a comonotonic class. Let μ be a submodular

coherent upper conditional probability defined on ℘(B) and let P(·|B) a coherent
upper conditional prevision defined as the Choquet integral with respect toμ. Then the
random variable Xi is maximal in K under the conjugate lower conditional prevision
P(·|B) if and only it is a Bayes random variable in K .

Proof Let Xi be a maximal random variable in K under P(·) . The coherent upper
conditional probability μ defined on ℘(B) is submodular and since the class C is
comonotonic then by Denneberg (1994, Proposition 10.1) there exists an additive
measure α on ℘(B) such that

∫
(Xi − X j )dμ =

∫
(Xi − X j )dα∀X j ∈ K .
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Thus

Xi is maximal ∈ K under P(·|B) ⇔ P((Xi − X j )|B) ≥ 0∀X j ∈ K ⇔
⇔

∫

B
(Xi − X j )dμ ≥ 0 ⇔

∫
(Xi − X j )dα ≥ 0 ⇔

∫
Xidα ≥

∫
X jdα.

Therefore, Xi is maximal in K under the linear prevision P(X |B) = ∫
B Xdα, that is

Xi is a Bayes random variable in K . �
Example 3 Let K be a class of random variables, k j ∈ 
 and let Xi inK a max-
imal random variable such that Xi − X j = k j for all X j ∈ K . Thus the class
C = {

Xi − X j : X j ∈ K
}
is a comonotonic class since contains only constants. By

Theorem 3 we have yhat Xi is a Bayes random variable in K .

Theorem 3 Let K = {X1, X2} be a class containing only two random variables of
L(B). Letμ be a submodular coherent upper conditional probability defined on℘(B)

and let P(·|B) a coherent upper conditional prevision defined as the Choquet integral
with respect to μ. Then a random variable Xi is maximal in K under the conjugate
lower conditional prevision P(·|B) if and only it is a Bayes random variable in K .

Proof Lets assume that X1 is a maximal random variable in K under P(·|B). The
coherent upper conditional probabilityμ defined on℘(B) is submodular and since any
constant c and any random variable are comonotonic thus the classC = {X1 − X2; c}
is comonotonic; then by Denneberg (1994, Proposition 10.1) there exists an additive
measure α on ℘(B) such that

∫
((X1 − X2)|B)dμ =

∫
((X1 − X2)|B)dα.

Thus

Xi is maximal in K under P(·|B) ⇔ P((X1 − X2)|B) ≥ 0 ⇔
⇔

∫

B
(X1 − X2)dμ ≥ 0 ⇔

∫
(X1 − X2)dα ≥ 0 ⇔

∫
X1dα ≥

∫
X2dα.

Therefore, X1 is maximal in K under the linear prevision P(X |B) = ∫
B Xdα, that is

X1 is a Bayes random variable in K . �
Theorem 4 Let μ be a submodular coherent upper probability defined on a class S
containing the empty set and properly contained in ℘(B) and let μ∗(A) and μ∗(A)

be its outer and inner measures; Let K ⊂ L(B) be a class of μ-upper measurable
random variables. Then a random variable Xi is maximal in K under the conjugate
lower conditional prevision P(·|B) if and only it is a Bayes random variable in K .

Proof By submodularity and coherence of μB there exists a linear prevision P such
that
∫

(Xi − X j )dμ∗ = P(Xi − X j ) ≤ P(Xi − X j ) ≤ P(Xi − X j ) =
∫

(Xi − X j )dμ
∗.

123



S. Doria

Let Xi ∈ K be an admissibile μ-upper random variable; thus by Definition 4

Xi is maximal in K under P(·|B) ⇔ P((Xi − X j )|B) ≥ 0∀X j ∈ K ⇔
⇔

∫

B
(Xi − X j )dμ =

∫
(Xi − X j )dμ

∗ =
∫

(Xi − X j )dμ
∗ ≥ 0∀X j ∈ K ⇔ .

So there exists a linear prevision P such that
Xi is maximal in K under P(·|B) ⇔
⇔ P(Xi − X j ) = P(Xi − X j ) = P(Xi − X j ) ≥ 0 ⇔
⇔ Xi is a Bayes random variable in K �

Example 4 Let B = {B1, B2, B3} and let {P1, P2, P3} be a class of additive probabil-
ities defined on B by P1(B1) = 0.5, P1(B2) = 0.4, P1(B3) = 0.1

P2(B1) = 0.3, P2(B2) = 0.55, P1(B3) = 0.15
P3(B1) = 0.3, P3(B2) = .4, P3(B3) = 0.3
Let μB be the coherent upper conditional probability defined by μB(A) =

max {P1(A); P2(A); P3(A)} ∀A ∈ ℘(B) and let μ
B
be the coherent upper condi-

tional probability defined by μ
B
(A) = min {P1(A); P2(A), P3(A)} ∀A ∈ ℘(B).

Let K = {X1, X2, X3} be the class of B-measurable random variables defined by:

Random variables B1 B2 B3

X1 8 5 7
X2 9 8 9
X3 5 3 7

If the lower conditional prevision is defined as Choquet integral with respect to μ
B

and the upper conditional prevision as the Choquet integral with respect to μB we
have

P(x2 − x1) = (3 − 2)(0, 3) + (2 − 1)(0, 7) + (1 − 0)(1) = 2, 1,

P(x3 − x1) = (0 + 2)(0, 1) + (−2 + 3)(0, 5) + (−3 − 0)(1) = −2, 3

P(X1 − X2) = (−1 + 2)(0, 3) + (−2 + 3)(0, 45) + (−3 − 0)(1) = −2, 25

P(X3 − X2) = (−2 + 4)(0, 1) + (−4 + 5)(0, 45) + (−5 − 0)(1) = −4, 35

P(X1 − X3) = (3 − 2)(0, 3) + (2 − 0)(0, 7) + (0 − 0)(1) = 1, 7

P(X2 − X3) = (5 − 4)(0, 4) + (4 − 2)(0, 7) + (2 − 0)(1) = 3, 8

then the random variable X1 and X3 are not admissible in K since

P((X2 − X1)) > 0 and P(X1 − X3) > 0P(X2 − X3) > 0.

The only admissible random variable in K is X2.
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4 Conglomerability and disintegration property of coherent lower
and upper conditional previsions

Let B and B ′ two sets of a partition B; if a random variable is maximal in the class K
under P(·|B) it could not to be maximal under P(·|B ′) so to determine if a random
variable is maximal in K under P(·|Ω) the disintegration property could be used to
aggregate preferences on different conditioning events B.

In Walley (1991, 6.8) full conglomerability is required as a rationality axiom for a
coherent lower prevision since it assures that it can be coherently extended to coher-
ent conditional previsions for any partition B of Ω . If the partition B represents an
experiment that could be performed it is necessary to update the unconditional upper
prevision after observing a set B of B. Conglomerability is based on the following
conglomerability principle: if a random variable X is B-desirable, i.e. we have a dis-
position to accept X for every set B in the partition B, then X is desirable. If there
is no coherent way of updating the initial prevision after learning the outcome of the
experiment the lower prevision, which represents our knowledge, is unreasonable.
If a coherent lower probability P is such that all the sets in the partition have zero
probability, then its minimal coherent conditional prevision extension is the lower
vacuous coherent conditional prevision. So to verify the existence of lower coherent
conditional previsions coherent with P is equivalent to verify the conglomerability for
all countable partition (Walley 1991, 6.8.2). A consequence is that a fully conglomer-
able coherent conditional previsions in the sense of Walley may fail the disintegration
property on a null partition.

In Walley an unconditional prevision is defined to be coherent with the coherent
conditional prevision if and only if the Conglomerative axiom and the Generalized
Bayes Rule are satisfied.

Linear conditional and unconditional previsions defined on the class of all bounded
random variables are coherent if and only if (Walley 1991, 6.5.7) they satisfy the
disintegration property introduced by Dubins (1975) which is a generalization to the
class of all bounded random variables of the conglomerative principle, introduced by
de Finetti (1974, p.99), de Finetti (1974) for probabilities.

Walley (1991, Section 6.3) discusses some consequences of the coherence of the
lower unconditional prevision P with the lower conditional prevision P(·|B).

Proposition 1 If P and P(·|B) defined on L(Ω) are coherent then the following con-
ditions hold for every X in L(Ω) and B ∈ B:

(i) P(X) ≤ P(P(X |B); P(X) ≤ supP(X |B)

and
(ii) P(X) ≥ P(P(X |B) ; P(X) ≥ infP(X |B)

If the random variable X is B-measurable, i.e. it is constant on the atoms of the
partition B, then P(X |B) = P(X |B) = X so that conditions i) and ii) are always
satisfied.

In some special cases coherence of P and P(·|B) can be characterized by simpler
conditions. In particular in Walley (1991, section 6.5.3 and section 6.5.7) it has been
proven that if P and P(·|B) are respectively linear unconditional and conditional
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previsions on the class of all bounded random variables and P(·|B) are separately
coherent, then P and P(·|B) are coherent if and only if the following conglomerative
property is satisfied P(X) = P(P(X |B)).

The notions of disintegrability and conglomerability given by Dubins (1975) can
be extended to coherent upper conditional previsions.

Definition 13 A coherent upper conditional prevision P(X |B) is disintegrable with
respect to a partition B if the following equality is satisfied for every bounded variable
X ∈ L(Ω)

P(X) = P(P(X |B)).

Definition 14 A coherent upper conditional prevision P(X |B) is defined to be con-
glomerative with respect to a partition B of Ω if the following condition is satisfied:
for every bounded variable X ∈ L(Ω)

P(X |B) ≥ 0 implies P(X) ≥ 0.

Remark 1 If a coherent upper conditional prevision is conglomerative with respect
to a partition then the compatibility of conditioned maximality and unconditioned
maximality is assured even if the disintegration property fails to be satisfied.

The following example shows that a coherent lower conditional prevision which is
coherent with an unconditional lower prevision may fail the disintegration property; it
is shown that a preference ordering can be represented by a coherent lower prevision
but it may be not represented by the conjugate coherent upper prevision.

Example 5 Let B and K = {X1, X2, X3} as in Example 1. The preference ordering
X1 � X2 and X2 ≈ X3 can be represented by the lower vacuous conditional prevision
defined by P(X |Ω) = inf {X(ω) : ω ∈ Ω} since

P(X1|Ω) = 0.3 and P(X2|Ω) = P(X3|Ω) = 0

but is not represented by the upper vacuous conditional prevision P(X |Ω) =
sup {X(ω) : ω ∈ Ω} because

P(X1|Ω) = 0.3 and P(X2|Ω) = P(X3|Ω) = 0.7.

The vacuous lower conditional prevision does not satisfy the disintegration property
on the class K since

P(P(X2|B)) = P(B1)P(X2|B1) + P(B2)P(X2|B2) = P(B1)0.7 + P(B2)0

P(P(X3|B)) = P(B1)P(X3|B1) + P(B2)P(X3|B2) = P(B1)0 + P(B2)0.7

so that

P(P(X2|B)) = P(X2) ⇔ P(B1) = 0 and P(P(X3|B)) = P(X3) ⇔ P(B2) = 0
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But if we assume P(B1) = P(B2) = 0 we have that

P(X1) = 0.3 �= 0 = P(B1)P(X1|B1) + P(B2)P(X1|B2).

5 Coherent upper conditional previsions defined as Choquet integral
with respect to Hausdorff outer measures

Examples of coherent upper and lower conditional previsions which satisfy Theo-
rems 2, 3, 4 of Sect. 3 are coherent lower and upper conditional previsions defined as
Choquet integral with respect to Hausdorff inner and outer measures.

A new model of coherent upper conditional previsions defined as Choquet integral
with respect to Hausdorff outer measures has been introduced in Doria (2007, 2008,
2011, 2012) because the Radon–Nikodym derivative, the mathematical tool to define
conditional expectation in the axiomatic approachmay be not used to define a coherent
conditional prevision. Coherent upper conditional previsions defined with respect to
Hausdorff outer measures are proven satisfy the disintegration property on every non-
null partition Doria (2017) and they are proven to be symmetric in the sense that they
are invariant with respect to equimeasurable random variables Doria (2014).

The applications of the model have been investigated in Doria (2015) and in Di
Cencio and Doria (2017).

5.1 Coherent conditional prevision and the Radon–Nikodym derivative

In the axiomatic approach (Billingsley 1986 Section 34) conditional expectation is
defined with respect to a σ -field of conditioning event by the Radon–Nikodym deriva-
tive.

Let F and G be two σ -field of subsets of Ω with G contained in F and let X be
an integral random variable. Let P be a probability measure on F; defined a measure
ν on G by ν(g) = ∫

G XdP . This measure is finite and absolutely continuous with
respect to P . Thus there exists a function, the Radon–Nikodym derivative denoted
by E[X |G]ω, defined on Ω , G-measurable, integrable and satisfying the functional
equation:

∫

G
E[X |G]ωdP =

∫

G
XdP with G ∈ G

This function is unique up to a set of P-measure zero and it is a version of the
conditional expected value.

The next theorem shows that every time the σ -field G is properly contained in
F and it contains all singletons of [0, 1]n then the conditional prevision defined by
the Radon–Nikodym derivative is not coherent. It occurs because one of the defining
property of the Radon–Nikodym derivative, that is to be measurable with respect to
the σ -field of the conditioning events contradicts the following necessary condition
for the coherence of a linear conditional prevision.

123



S. Doria

If for every B belongs to B P(X |B) are coherent linear previsions (Walley 1991,
p. 292) and X is B-measurable then P(X |B) = X . This necessary condition is not
satisfied if P(X |B) is defined by the Radon–Nikodym derivative.

Theorem 5 Let Ω = [0, 1]n and let F and G be two σ -field of subsets of Ω such that
G is properly contained in F and it contains all singletons of Ω . Let B be the partition
of singletons and let X be the indicator function of an event A belonging to F−G. If
we define the conditional prevision P(X |B) equal to the Radon–Nikodym derivative
with probability 1, that is

P(X |B) = E[X |G]ω

except on a subset N of [0, 1]n of P-measure zero, then the conditional prevision
P(X |B) is not coherent.

Proof If the equality P(X |B) = E[X |G]ω holds with probability 1, then the linear
conditional prevision P(X |B) is different from X , the indicator function of A; in fact
having fixed A ∈ F − G, the indicator function X is not G-measurable so it does
not satisfies a property of the Radon–Nikodym derivative and it cannot be assumed
as conditional expectation according to the axiomatic definition. Therefore the lin-
ear prevision P(X |B) does not satisfy the necessary condition for being coherent,
P(X |B) = P(X | {ω}) = X for every singleton {ω} of G. �

Example 6 Let Ω = [0, 1]n and let F and G be respectively the Lebesgue σ -field
and the Borel σ -field. Let B be the partition of singletons and let X be the indicator
function of an event belonging to F−G; if the linear conditional prevision is defined
by the Radon–Nikodym derivative, by Theorem 10 we have

P(X |B) = E[X |G]ω �= X

and so it is not coherent.

5.2 Coherent upper conditional previsions defined by Hausdorff outer measures
and their integral representations

As example of coherent upper and lower conditional previsions which satisfy the
results proven in the previous section we consider a new model of coherent upper
conditional prevision. In a metric space, coherent upper conditional previsions based
onHausdorff outermeasures are introduced and their properties have been studied. For
the definition of Hausdorff outer measure and its basic properties see Rogers (1970)
and Falconer (1986).

Let (Ω, d) be a metric space and let B be partition of Ω .
Let δ > 0 and let s be a non-negative number. The diameter of a non empty set U

of Ω is defined as |U | = sup {d(x, y) : x, y ∈ U } and if a subset A of Ω is such that
A ⊆ ⋃

i Ui and 0 < |Ui | ≤ δ for each i, the class {Ui } is called a δ-cover of A.
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The Hausdorff s-dimensional outer measure of A, denoted by hs(A), is defined on
℘(Ω), the class of all subsets of Ω , as

hs(A) = lim
δ→0

inf
∑+∞

i=1
|Ui |s .

where the infimum is over all δ-covers {Ui }.
A subset A of Ω is called measurable with respect to the outer measure hs if it

decomposes every subset of Ω additively, that is if hs(E) = hs(A ∩ E) + hs(E − A)

for all sets E ⊆ Ω .
Hausdorff s-dimensional outer measures are submodular, continuous from below

and their restriction on the Borel σ -field is countably additive.
The Hausdorff dimension of a set A, dimH (A), is defined as the unique value, such

that

hs(A) = +∞ if 0 ≤ s < dimH (A),

hs(A) = 0 if dimH (A) < s < +∞.

For every B ∈ B denote by s the Hausdorff dimension of B and let hs be the
Hausdorff s-dimensional Hausdorff outer measure associated to the coherent upper
conditional prevision. For every bounded random variable X a coherent upper condi-
tional prevision P(X |B) is definedby theChoquet integralwith respect to its associated
Hausdorff outer measure if the conditioning event has positive and finite Hausdorff
outer measure in its Hausdorff dimension. Otherwise if the conditioning event has
Hausdorff outer measure in its Hausdorff dimension equal to zero or infinity it is
defined by a 0–1 valued finitely, but not countably, additive probability.

Theorem 6 (Doria 2012, Theorem 3) Let (Ω, d) be a metric space and let B be a
partition of Ω . For every B ∈ B denote by s the Hausdorff dimension of the condi-
tioning event B and by hs the Hausdorff s-dimensional outer measure. Let m be a 0–1
valued finitely additive, but not countably additive, probability on ℘(B). Thus, for
each B ∈ B, the function defined on ℘(B) by

P(A|B) = hs(A ∩ B)

hs(B)
if 0 < hs(B) < +∞

and by

P(A|B) = m(A ∩ B) if hs(B) ∈ {0,+∞}

is a coherent upper conditional probability.

If B ∈ B is a set with positive and finite Hausdorff outer measure in its Hausdorff
dimension s the fuzzy measure μ∗

B defined for every A ∈ ℘(B) by μ∗
B(A) = hs (AB)

hs (B)
is a coherent upper conditional probability, which is submodular, continuous from
below and such that its restriction to the σ -field of all μ∗

B measurable sets is a Borel
regular countably additive probability.
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The coherent upper unconditional probability P = μ∗
Ω definedon℘(Ω) is obtained

for B equal to Ω .
In Doria (2012, Theorem 2) a new model of coherent upper conditional prevision

is given.

Theorem 7 Let (Ω, d) be a metric space and let B be a partition of Ω . For every
B ∈ B denote by s the Hausdorff dimension of the conditioning event B and by hs

the Hausdorff s-dimensional outer measure. Let m be a 0–1 valued finitely additive,
but not countably additive, probability on ℘(B). Then for each B ∈ B the functional
P(X |B) defined on L(B) by

P(X |B) = 1

hs(B)

∫

B
Xdhs if 0 < hs(B) < +∞

and by

P(X |B) = mB if hs(B) ∈ {0,+∞}

is a coherent upper conditional prevision.

When the conditioning event B hasHausdorff outermeasure in itsHausdorff dimen-
sion equal to zero or infinity, an additive conditional probability is coherent if and only
if it takes only 0–1 values. Because linear previsions on L(B) are uniquely determined
by their restrictions to events, the class of linear previsions on L(B)whose restrictions
to events take only the values 0 and 1 can be identified with the class of 0–1 valued
additive probability defined on all subsets of B (Walley 1991). In Theorem 6 and
Theorem 7 a different m is chosen for each B.

If the conditioning event B has positive and finite Hausdorff outer measure in its
Hausdorff dimension inDoria (2012) the functional P(X |B) is proven to bemonotone,
comonotonically additive, submodular and continuous from below.

The models of coherent upper conditional previsions and probabilities proposed
in Theorem 6 and in Theorem 7 satisfy the theorems given in the Section 3 when Ω

is a set with finite and positive Hausdorff measure in its Hausdorff dimension since
Hausdorff outer measures are submodular.

Example 7 Let (Ω, d) be a metric space where Ω is a set with positive and finite
Hausdorff outer measure in its Hausdorff dimension and let K be a class of random
variable such that it satisfies the condition given in Theorem 2 (or in Theorem 3 or in
Theorem 4). Then a random variable Xi is maximal in K under the conjugate of the
upper conditional prevision defined in Theorem 8 if and only if it is a Bayes random
variable

In the next theorem, it is proven that if a random variable is maximal under the
coherent lower conditional prevision which is the conjugate of the coherent upper
conditional prevision defined in Theorem 7 when the conditioning event has positive
and finite Hausdorff outer measure in its Hausdorff dimension then it is maximal with
respect to a functional representable as Choquet integral by any submodular monotone
set function which is continuous from below.
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Theorem 8 Let (Ω, d) be a metric space where Ω is a set with positive and finite
Hausdorff outer measure in its Hausdorff dimension, let B be a partition of Ω and let
K be a class of random variables on Ω . Let B ∈ B be a set with positive and finite
Hausdorff outer measure in its Hausdorff dimension and let P(·|B) be the coherent
upper conditional prevision defined in Theorem 7 and let P(·|B) its conjugate lower
conditional prevision. Then for every submodular monotone set function ν defined on
℘(B) which is continuous from below the following condition holds:

an admissible random variable Xi ∈ K is maximal in K under P(·|B)

⇔
∫

(Xi − X j )dν ≥ 0∀X j ∈ K

Proof Since B is a set with positive and finite Hausdorff outer measure in its Haus-
dorff dimension the coherent upper conditional prevision defined as in Theorem 7 is a
functional which is monotone, submodular, continuous from below and representable
by μ∗

B . By Proposition 13.5 of Denneberg (1994) all submodular monotone set func-
tions ν on ℘(B) which are continuous from below agree on the set system of weak
upper level sets with μ∗

B so that the Choquet integral with respect to μ∗
B is equal to

the Choquet integral with respect to ν. So
an admissible random variable Xi ∈ K is maximal in K under P(·|B) ⇔ ∫

(Xi −
X j )dμ∗

B ≥ 0 ∀X j ∈ K ⇔ ∫
(Xi − X j )dμ∗

B = ∫
(Xi − X j )dν ≥ 0 ∀X j ∈ K �

The given preference ordering in Example 1 can be represented by the lower
coherent prevision defined as Choquet integral with respect to the lower conditional
probability obtained as the minimum of the class of 0–1 valued probability defined on
B. By Theorem 6 these probabilities can be used to asses probability when the the set
Ω has Hausdorff outer measure in its Hausdorff dimension equal to zero or infinity.

Example 8 Let (Ω, d) be a metric space with Ω = N so that dimH (Ω) = 0
and h0 = (Ω) = +∞. Let B = {B1, B2} be the partition of Ω where
B1 = {p ∈ N : p = 2n; n ∈ N } and B2 = {d ∈ N : d = 2n − 1; n ∈ N } so that
dimH (B1) = dimH (B2) = 0 and h0(B1) = h0(B2) = +∞.

By Theorem 6 a class {P1, P2} of additive probabilities can be defined on B by

P1(B1) = 0, P1(B2) = 1 and P2(B1) = 1, P2(B2) = 0.

Let μB be the coherent upper conditional probability defined by
μB(A) = max {P1(A); P2(A)} ∀A ∈ ℘(B) and let μ

B
be the coherent upper

conditional probability defined by
μ
B
(A) = min {P1(A); P2(A)} ∀A ∈ ℘(B).

Let K = {X1, X2, X3} be the class of B-measurable random variables as in Exam-
ple 1:
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Random variables B1 B2

X1 0.3 0.3
X2 0.7 0.0
X3 0.0 0.7

if the lower conditional prevision is defined as Choquet integral with respect to
μ
B
and the upper conditional prevision as the Choquet integral with respect to μB

then each random variable Xi is admissible in K since P((Xi − X j )) < 0 for every
i, j ∈ {1, 2, 3} with i �= j and all the random variables Xi for i = 1, 2, 3 are maximal
in K with respect to P because

P((X1 − X3)) = 3

10
and P((X1 − X2)) = 3

10
,

P((X2 − X3)) = 7

10
and P((X2 − X1)) = 4

10
,

P((X3 − X1)) = 4

10
and P((X3 − X2)) = 7

10
.

X2 and X3 are not indifferent with respect P and with respect to P but they are
equivalent with respect to P and with respect to P since P(X2) = P(X3) = 0 and
P(X2) = P(X3) = 7

10 .
Moreover, the ordering X1 � X2 and X2 ≈ X3 considered in Example 1 can be

represented by P since P(X1) = 0.3 > 0 = P(X2) = P(X3).
But X1 not�∗ X2 with respect to P since P(X1−X2) < 0; nevertheless X1 �∗ X2

with respect to P since P(X1 − X2) > 0.
No random variable Xi for i = 1, 2, 3 is a Bayes random variable under P .

In Theorem 14 of Doria (2008) it has been proved that if the conditioning event
has positive and finite Hausdorff measure in its Hausdorff dimension then indifferent
random variable are equivalent with respect to the coherent upper prevision defined
in Theorem 7. Example 8 shows that if the conditioning event has Hausdorff outer
measure in its Hausdorff dimension equal to infinity the implication does not hold.

In Doria (2017) it has been proven that coherent upper conditional prevision defined
by Hausdorff outer measures as in Theorem 7 satisfy the disintegration property on
every non-null partition.

Definition 15 Denoted by t the Hausdorff dimension of Ω , a partition B is non-null
if the complement of the union of sets B ∈ B with positive ht -measure sure, has zero
ht -measure.

Therefore, if in Example 8 conditional previsions are defined by Theorem 7 we
obtain that the disintegration property holds since B is a non-null partition.
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Example 9 Let (Ω, d), B and K be as in Example 8. By Theorem 7 we can obtain

P(X1|B2) = 1, P(X1|B1) = 0, P(B1) = 0

and

P(X1|B3) = 1, P(X3|B2) = 0, P(B2) = 1

so that the disintegration property is satisfied and the ordering X1 � X1 and X2 ≈
X2 can be represented by the given coherent conditional prevision

P(X1|Ω) = P(B1)P(X1|B1) + P(B2)P(X1|B2) = 0 · 1 + 1 · 1 = 1

P(X2|Ω) = P(B1)P(X2|B1) + P(B2)P(X2|B2) = 0 · 1 + 1 · 0 = 0

P(X3|Ω) = P(B1)P(X3|B1) + P(B2)P(X3|B2) = 0 · 1 + 1 · 0 = 0.

6 Conclusions

Preference orderings represented by coherent lower previsions which asses null previ-
sions to the atoms of the partition are analyzed. In these cases coherent lower previsions
are fully conglomerable but may fail the disintegration property. It implies that a max-
imal random variable on an atom of a null partition is not a maximal random variable
on the setΩ . Examples of classes of random variables are given such that there are not
maximal random variables and Bayes random variables with respect to preferences
orderings defined by coherent lower and upper conditional previsions.
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