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Abstract

A comprehensive characterization of the novel class of anti-tetrachiral cellular solids, both consider-

ing the static and the dynamic response, is provided in the paper.

The heterogeneous material is characterized by a periodic microstructure made of equi-spaced rings

each interconnected by four ligaments. In the most general case, rings and ligaments are surrounded

by a softer matrix and the rings can be filled by a different material.

First, the first order linear elastic homogenized constitutive response is estimated resorting to two

different microstructural models: a discrete model, in which the ligaments are modeled as beams and

the presence of the matrix is neglected and the equivalent elastic properties are evaluated through

a simplified analytical approach, and a more detailed continuous model, where the actual proper-

ties of matrix, ligaments and rings, varying in the 2D domain, are considered and the first order

computational homogenization is adopted. Special attention is given to the dependence of the 2D

overall Cauchy-type elastic constants on the mechanical and geometrical parameters characterizing

the microstructure. The results, indeed, show the existence of large variations in the linear elastic

constants and degree of anisotropy. A comparison with available experimental results confirms the

validity of the analytical and numerical approaches adopted.

Finally, the rigorous Floquet-Bloch approach is applied to the Periodic Cell of the cellular solid to

evaluate the dispersion of propagation waves along the orthotropic axes in the framework of elastic-

ity and to detect band gaps characterizing the material. A numerical approach, based on the first

order computational homogenization, is also adopted and the rigorous and approximate solutions are

compared.
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1. Introduction

Auxetic materials exhibit peculiar properties related to a zero or negative Poisson’s ratio: they

expand laterally when subjected to stretching and contract laterally when compressed, as explained

in (Lakes, 1987, 1991; Prawoto, 2012; Sigmund et al., 1998). This unusual behavior is mostly ob-

tained in man-made materials (Greaves et al., 2011), even though it is possible to find in nature some

auxetic materials.

Examples are cellular materials, honeycomb structures and networks (Smith et al., 2000), sandwich

core materials adopted in marine, automotive and aerospace lightweight structures (Alderson et al.,

2010), as well as origami structures (Schenk and Guest, 2013). The main advantages observed are

related to an increase of the shear modulus, fracture toughness (due to an increase of the energy

absorption under static and dynamic loading), high acoustic damping and indentation resistance, as

reported in (Lakes, 1993; Dirrenberger et al., 2013).

Focusing on periodic cellular lattice structures (Cadman et al., 2013), different topologies can be

described. Among others, the chiral topology, (Prall and Lakes, 1996), is typical of periodic honey-

comb structures made of rings inter-connected by tangent straight ligaments. In this case, the overall

auxetic behavior is obtained thanks to a special deformation mechanism characterized by winding

ligaments onto the nodes: when an in-plane stress is applied, the ligaments remain tangent to the

nodes and a change of area without change of shape is observed.

Recent studies (Gaspar et al., 2005; Scarpa et al., 2007; Grima et al., 2008; Dos Reis and Ganghoffer,

2012; Chen et al., 2013; Gatt et al., 2013; Ma et al., 2013; Cauchi and Grima, 2014) pointed out

that the out-of-plane stiffness properties can be regulated by varying the internal geometry, i.e. the

relative position between nodes and the number and position of ligaments. Trichiral, tetrachiral and

hexachiral honeycombs (Alderson et al., 2010), are examples of different chiral tessellations which

owe their name to the number of ligaments (3,4 and 6, respectively) tangentially attached to each

ring.

Also ”anti-chiral” systems have been designed in which the same side of the ligaments is connected

to adjacent ring, so that the nearest-neighboring rings are characterized by opposite chirality.

The paper by (Prall and Lakes, 1996) marked the beginning of the study of the mechanical response

of hexachiral structures in the framework of linear elasticity. Subsequent developments involved the
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analysis of damage processes (Bettini et al., 2010), and of free wave propagation (Spadoni et al.,

2009). Furthermore, the phononic properties of the tetrachiral and anti-tetrachiral periodic cell were

investigated by (Tee et al., 2010; Ma et al., 2013) who adopted the Floquet-Bloch approach via a FE

analysis. A very interesting property of cellular lattice structures is, indeed, the capability of acting

as filters, attenuating elastic waves over certain frequency bands.

Noteworthy is also the contribution by (Dirrenberger et al., 2011, 2013) in the analysis of the overall

elastic properties of chiral and anti-chiral cellular solids. The classical homogenization approach is

adopted, through a finite element discretization of the periodic cell. This approach has been extended

by (Dirrenberger et al., 2012), to the analysis of the elasto-plastic response of hexachiral ductile ma-

terials.

Recently, (Bacigalupo and Gambarotta, 2014a) performed the homogenization of auxetic cellular

solids, having periodic hexachiral and tetrachiral microstructure, by means of two different tech-

niques. The first approach is based on the representation of the cellular solid as a beam-lattice

homogenized as a micropolar continuum. The second approach is developed to analyze periodic cells

conceived as a two-dimensional domain consisting of deformable portions such as the ring, the liga-

ments and a possibly embedded matrix. It results that the beam-lattice models are able to describe

in detail the dependence of the elastic overall moduli on the geometry of the microstructure and on

the length of the ligaments. Nevertheless, these models provide accurate results only for very slender

ligaments, a circumstance that does not seem to occur in samples commonly used in experiments

where the effective length of the ligament is not easy to identify. Furthermore, this model neglects

the presence of the material filling the gaps between the ligaments and within the rings. The choice

of an equivalent local or non-local continuum model at the macroscale (based on a FE description of

the periodic cell) turns out, therefore, to be the most adequate.

Various approaches are available in literature for the homogenization of periodic composite materials.

The global response of the homogenized material can be obtained via computational or asymptotic

homogenization techniques resorting to different continuum models, both classical (Miehe, 2002)

and enhanced, i.e. Cosserat (Forest and Sab, 1998; Forest, 2002; Trovalusci et al., 2009; De Bellis

and Addessi, 2011; Addessi et al., 2013) or second order (Kouznetsova et al., 2004; Bacigalupo and

Gambarotta, 2010, 2013; Bacca et al., 2013a,b; Bacigalupo, 2014). The advantages of adopting an

enhanced continuum model are mainly due to the presence of length scale parameters in the consti-

tutive structure.

This paper is devoted to the study of a special type of chiral cellular solids, very promising for prac-

3
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tical applications, i.e. the so-called anti-tetrachiral, which differs from tetrachiral for the position of

the ligaments. A schematic of the internal arrangement is shown in Figure 1. In the most general

case the ligaments are surrounded by a softer matrix. It is, also, assumed that the rings are made of

the same material of ligaments and may be filled with a different material. Experimental results per-

formed by (Alderson et al., 2010) showed that the anti-tetrachiral cellular solids exhibit pronounced

anisotropic behavior and a strong chirality, i.e. Poisson’s coefficients close to -1.

At the moment an in-depth characterization of this type of cellular solid is still lacking and a para-

metric study, aimed to describe both the static and the dynamic responses, can be a useful tool to

design the microstructure with tuned global properties.

The aim of this work is, therefore, to provide a complete characterization of the response of this

Figure 1: Schematic of anti-tetrachiral cellular material. Each equi-spaced ring is connected by four ligaments and

can be filled by a material (in red) different from the matrix (in light blue).

novel class of cellular solids, both involving the estimation of the equivalent elastic properties and

the detection of possible band-gaps.

Initially, the first order linear elastic homogenized constitutive response is estimated adopting two

different models for the description of the microscopic level: a discrete beam network model, i.e. a

simplified approach in which the ligaments are modeled as beams and the presence of the matrix

is neglected, and a continuous model, where the actual properties of matrix, ligaments and rings,

varying in the 2D domain, are reproduced in detail. Special attention is given to the dependence of

the 2D overall Cauchy-type elastic constants on the mechanical and geometrical parameters, char-

acterizing the microstructure. The results, indeed, show the existence of large variations in linear

elastic constants and degree of anisotropy. This is a key aspect to design materials with tailored

properties.

4
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The second part of the work focuses on the 2D elasto-dynamic dispersion analysis adopting the

Floquet-Bloch decomposition.

A Floquet-Bloch wave approach is, thus, applied to the periodic cell of the cellular solid to evaluate

the properties of the dispersion functions of waves propagating in different directions and to detect

band gaps characterizing the material as the mechanical parameters of the periodic cell vary (in

terms of ratio between Young’s moduli). The dispersive waves in anti-tetrachiral cellular solids are

analyzed along the orthotropic axes.

The paper is organized as follows: in Section 2 the geometry of the periodic anti-tetrachiral lat-

tice is briefly described; in Section 3 the static modeling is addressed by resorting to two different

microstructural models: the beam lattice model 3.1 and the first order continuous model 3.2. The

numerical results and the comparison between the different approaches are reported in 3.3 and it

is emphasized that, despite the strong simplifying assumptions of the beam lattice model, this ap-

proach gives reasonable results, comparable with those of the richer model, at least when the matrix

is neglected. In Section 4 the dynamic properties of the anti-tetrachiral lattice are studied. A further

numerical investigation is performed on the flexural wave propagation properties. A Floquet–Bloch

approach is applied to the periodic cell and the dispersion functions for waves along the orthotropic

axes are evaluated as the ratio between Young’s moduli of the constituents vary. Finally, in Section

5 some concluding remarks are reported.

2. Anti-tetrachiral cellular solid

The geometry of the periodic cell is schematically reported in Figure 2. Four rings of radius R

are centered at the corners of an ideal square of side L and are interconnected by tangent ligaments.

Rings and ligaments have the same width t and are possibly filled with a soft matrix. Linear elastic

isotropic behavior is assumed for all the constituents.

In the following, a generic microscopic material point x = x1e1 + x2e2 is referred to a system of

coordinates with origin at point O and orthogonal base (e1, e2). The macroscopic material point is

referred to as X = {X1 X2}T and the periodic cell is selected such that X = 0 coincides with its

geometric center.

3. Linear elastic homogenized properties evaluation

Consistently with the well established homogenization approaches, two scales of interest are con-

sidered: a macro-scale, the structural one, in which the material is studied as a homogenized medium

5
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Figure 2: Geometry of the anti-tetrachiral cellular solid: a) periodic cell; b) detail of one ring and the attached

ligaments.

and a micro-scale where all the information regarding the mechanical and geometric properties of

the constituents are described in detail.

In what follows the alternative models adopted at the microscopic level to estimate the first order

homogenized linear elastic constitutive response of anti-tetrachiral cellular solids are presented and

discussed in Sections 3.1 and 3.2.

3.1. Discrete model: periodic beam network

A discrete model is considered, where the ligaments are modeled as elastic Euler-Bernoulli beams

undergoing small deformations and interconnected by perfectly rigid nodes, i.e. rings filled by the

same material, as in (Alderson et al., 2010; Scarpa et al., 2007; Chen et al., 2013). No matrix, filling

the rings and the gaps between ligaments, is taken into account in this approximation.

Consistently with the homogenization techniques, it is assumed that the homogenized first order

constitutive response of the beam network can be obtained by solving a properly defined Boundary

Value Problem (BVP) on a single Periodic Cell, representative of the anti-tetrachiral cellular solid

and undergoing periodic boundary conditions.

In Figure 3 a schematic of the Periodic Cell is reported. The periodic portion consists of four beams

of length L and eight beams of length L/2 connected by four rigid elements arranged in a cross-

configuration reproducing the effect of the rigid rings (the length of each arm of the cross is R). The

system, therefore, includes twelve nodes, each characterized by two translational degrees of freedom

6
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u1, u2 aligned with the global horizontal and vertical directions, respectively, and a rotational degree

of freedom, φ. Periodicity conditions hold between corresponding nodes on the edges of the Periodic

Figure 3: Schematic of the periodic cell adopted in the beam lattice model. Four internal and eight external nodes

are considered. Dashed portions of the beams are not included in the cell.

Cell (5-6; 7-8; 9-11; 10-12).

A one to one correspondence is established between a macroscopic point X = {X1, X2}T of the first

order homogenized continuum, characterized by the displacement components U1(X) and U2(X),

and the Periodic Cell, that is a portion of the actual material, referred as the microscopic level.

At the microscopic level, the translational components of the displacement field of a point P of the

beam network can be expressed by means of the following standard additive decomposition into

assigned terms u∗

i (X,x) (i=1,2), depending on macroscopic parameters, and unknown perturbation

terms ũi(X,x) (i=1,2) related to the local solution of the BVP, as:

ui(X,x) = u∗

i (X,x) + ũi(X,x) with i = 1, 2 (1)

where the dual dependence on the macroscopic X and the microscopic x coordinates is explicitly

stated.

In Eq. (1), u∗

i (X,x) are linear polynomial functions depending on the macro-displacement Ui(X)

and macro-strain components Eij(X), as:

u∗

i (X,x) = Ui(X) + Eij(X)xj with i, j = 1, 2 (2)

7
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Figure 4: Generic beam element endowed with local reference frame.

where Eij = sym(∂Ui/∂Xj), and the symbol sym(·) represents the symmetric part of (·).
The perturbation terms ũi(X,x) are obtained as:

ũi(X,x) = Λ1
ipq(x)Epq(X) (3)

with Λ1
ipq(x) being perturbation functions, solution of the BVP with periodic boundary conditions.

In Figure 4 a generic beam is reported endowed with a local reference frame y = {y1, y2}, aligned
with the beam axis. The local displacement degrees of freedom are defined as v1(X,x), v2(X,x) and

φ(X,x). The portions of the rigid crosses pertaining to the considered beam are drawn in red. The

rotation of a generic point can be expressed with respect to the local displacement components as:

φ(X,x) =
∂v2(X,x)

∂y1
(4)

while with respect to the global displacement components it is defined as:

φ(X,x) = Q2jQ1p
∂uj(X,x)

∂xp

(5)

where the rotation tensor Q is:

Q (ϑ) =


 cosϑ sinϑ

−sinϑ cosϑ


 (6)

ϑ being the angle shown in Figure 4.

Also the φ component can be split into an assigned and a perturbation term:

φ∗(X,x) = Q2jQ1pδjtδpqEtq(X) (7)

and

φ̃(X,x) = Q2jQ1p

∂Λ1
jtq(x)

∂xp

Etq(X) (8)

8
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The discrete system of beams can be solved resorting to the displacement method and the main

steps are described below. Rigid-end offset, modeling the cross rigid elements, are considered. For

the sake of brevity, in what follows the explicit dependence of functions on X and x will be omitted.

The basic relations for the beam system ranging from the definition of the degrees of freedom of the

generic beam nodes until the determination of the element stiffness matrix and the vector of nodal

forces are reported in Appendix A.

The assembling procedure of the global stiffness matrixK and nodal force vector b is, thus, performed

and the global system of governing equations in compact form results as:

Kw = b (9)

where w is the vector collecting the displacements u1, u2 and the rotation φ of all the nodes of the

beam network. By making explicit a distinction between internal I and external E nodes (I are

nodes 1-2-3-4 and E are 5-6-7-8-9-10-11-12 in Figure 3), the system in Eq.(9) becomes:


 KII KIE

KEI KEE







wI

wE



 =





bI

bE



 (10)

where it is assumed that no external forces acting on the internal nodes arise, i.e. bI = 0. By

applying the static condensation method, the system in (10) can be expressed as a function of only

the degrees of freedom relative to the external nodes and it results:

K̃wE = bE with K̃ =
(
KEE −KEIK

−1
II KIE

)
(11)

According to Figure 3, the external boundary of the periodic cell can be divided into the edges

parallel to axis x1 and x2 defined as Γ1 and Γ2, respectively.

Kinematic and static periodic boundary conditions arise between corresponding pairs of points on

the edges Γ−

1 (nodes 9-10) and Γ+
1 (nodes 11-12), and Γ−

2 (nodes 5-7) and Γ+
2 (nodes 6-8). The Eqq.

(11) can be, thus, rewritten as:




K̃Γ+

1
Γ+

1
K̃Γ+

1
Γ−

1
K̃Γ+

1
Γ+

2
K̃Γ+

1
Γ−

2

K̃Γ−

1
Γ+

1
K̃Γ−

1
Γ−

1
K̃Γ−

1
Γ+

2
K̃Γ−

1
Γ−

2

K̃Γ+

2
Γ+

1
K̃Γ+

2
Γ−

1
K̃Γ+

2
Γ+

2
K̃Γ+

2
Γ−

2

K̃Γ−

2
Γ+

1
K̃Γ−

2
Γ−

1
K̃Γ−

2
Γ+

2
K̃Γ−

2
Γ−

2








w
Γ+

1

E

w
Γ−

1

E

w
Γ+

2

E

w
Γ−

2

E





=





b
Γ+

1

E

b
Γ−

1

E

b
Γ+

2

E

b
Γ−

2

E





(12)

and the kinematic and static periodic boundary conditions are defined according to the following

relations between corresponding pairs of points on the edges:

9
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• Kinematic BCS:

w
Γ+

1

E −w
Γ−

1

E = ∆1

w
Γ+

2

E −w
Γ−

2

E = ∆2

(13)

with

∆1 =





E11d1

E21d1

0

E11d1

E21d1

0





and ∆2 =





E12d2

E22d2

0

E12d2

E22d2

0





(14)

• Static BCS:

b
Γ+

1

E + b
Γ−

1

E = 0

b
Γ+

2

E + b
Γ−

2

E = 0
(15)

By substituting the kinematic and static boundary conditions into Eq. (12), in compact form it

results: 


I −I 0 0

0 0 I −I

A1 A2 A3 A4

A5 A6 A7 A8








w
Γ+

1

E

w
Γ−

1

E

w
Γ+

2

E

w
Γ−

2

E





=





∆1

∆2

0

0





(16)

where I and 0 are 6 × 6 identity and zero matrices, respectively; the other submatrices are defined

as: A1 =
(
K̃Γ+

1
Γ+

1
− K̃Γ−

1
Γ+

1

)
, A2 =

(
K̃Γ+

1
Γ−

1
− K̃Γ−

1
Γ−

1

)
,

A3 =
(
K̃Γ+

1
Γ+

2
− K̃Γ−

1
Γ+

2

)
,A4 =

(
K̃Γ+

1
Γ−

2
− K̃Γ−

1
Γ−

2

)
,A5 =

(
K̃Γ+

2
Γ+

1
− K̃Γ−

2
Γ+

1

)
,A6 =

(
K̃Γ+

2
Γ−

1
− K̃Γ−

2
Γ−

1

)
,

A7 =
(
K̃Γ+

2
Γ+

2
− K̃Γ−

2
Γ+

2

)
, A8 =

(
K̃Γ+

2
Γ−

2
− K̃Γ−

2
Γ−

2

)
. With straightforward manipulations of the last

two equations in (16), it is possible to express the displacements w
Γ−

1

E and w
Γ−

2

E in terms of w
Γ+

1

E and

w
Γ+

2

E as:

w
Γ−

1

E = RΓ−

1
Γ+

1
w

Γ+

1

E +RΓ−

1
Γ+

2
w

Γ+

2

E

w
Γ−

2

E = RΓ−

2
Γ+

1
w

Γ+

1

E +RΓ−

2
Γ+

2
w

Γ+

2

E

(17)

where the matrices are RΓ−

1
Γ+

1
= A−1

2

[
A4

(
A8 −A5A

−1
2 A4

)
−1 (

A5 −A5A
−1
2 A1

)
−A1

]
,

RΓ−

1
Γ+

2
= A−1

2

[
A4

(
A8 −A5A

−1
2 A4

)
−1 (

A7 −A5A
−1
2

)
−A3

]
, RΓ−

2
Γ+

1
= −

(
A8 −A5A

−1
2 A4

)
−1

[
A5 −A5A

−1
2 A1

]
and RΓ−

2
Γ+

2
= −

(
A8 −A5A

−1
2 A4

)
−1 [

A7 −A5A
−1
2

]
. By substitutions of Eqq.

(17) in the first two equations of (16), it results:

w
Γ+

1

E = H−1
1 (∆1 +H2∆2)

w
Γ+

2

E = H−1
3 (H4∆1 +H5∆2)

(18)
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with H1 =
(
I−RΓ−

1
Γ+

1

)
−RΓ−

1
Γ+

2

(
I−RΓ−

2
Γ+

2

)
−1

RΓ−

2
Γ+

2
; H2 = RΓ−

1
Γ+

2

(
I−RΓ−

2
Γ+

2

)
;

H3 = I−RΓ−

2
Γ+

2
; H4 = RΓ−

2
Γ+

1
H1−1; H5 = I−RΓ−

2
Γ+

1
H−1

1 RΓ+

1
Γ−

2

(
I−RΓ−

2
Γ+

2

)
.

At this point, the classical homogenized elasticity matrix can be evaluated adopting the Hill-Mandel

macro-homogeneity condition, i.e. the equality between the strain energy at the both the macroscopic

scale EM and the microscopic scale Em(∆1,∆2):

EM = Em(∆1,∆2) (19)

with

EM =
1

2
AETCE and Em(∆1,∆2) =

1

2
bT
EwE (20)

where A is the area of the Periodic Cell. The unknown terms in Eq. (19) are the components of C

(reported in Eq. (20)). They can be evaluated according to the following steps: i) find wE via Eqq.

(18) and (17); ii) obtain bE adopting Eq. (12); iii) in Em, Eq. (20), explicit the dependence of ∆1

and ∆2 on the macro-strain components via Eq. (14). In this way a quadratic form in terms of the

macro-strain components is obtained; iv) evaluate the components of C adopting Eq. (19).

The considered beam model is very simplified and it is noteworthy that more reliable results can be

obtained if the length of the beam is modeled more accurately. A possible way forward would be

to consider slightly longer beam lengths (including in the length also the thickness t of the ring),

following the examples of (Chen et al., 2013) which proposed a beam lattice model where the axial

stiffness was neglected.

It is noteworthy that for the anti-tetrachiral geometry, the micropolar homogenization model pro-

posed by (Scarpa et al., 2007; Bacigalupo and Gambarotta, 2014a) seems difficult to apply due to the

lack of a central ring on which all the ligaments converge. Therefore, the alternative model, already

presented, has been conceived to estimate the overall constitutive first order constants.

3.2. Continuous model: Cauchy-type model

The standard first order computational homogenization, as in Guedes and Kikuchi (1990); Ghosh

et al. (1996); Miehe (2002), is here adopted, through the FE elastic analysis, to evaluate the ef-

fective elastic properties of cellular solids characterized by anti-tetrachiral lattice microstructure.

The Cauchy model is used at both scales. Accordingly, at the typical macroscopic material point

X = {X1, X2}T the displacement vector U = {U1, U2}T is defined and the strain vector is derived by

11
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applying the kinematic operator, resulting as:

E =





E11

E22

√
2E12





= D





U1

U2



 withD (X) =




•,1 0

0 •,2
√
2 •,2

√
2 •,1


 (21)

The constitutive equations at the macro-level, in the tensorial representation, take the form :




Σ11

Σ22
√
2Σ12





= C





E11

E22
√
2E12





withC (X) =




C1111 C1122 0

C1122 C2222 0

0 0 2C1212


 (22)

where Σ12 is the shear stress and C is the overall elasticity tensor.

At the micro-level, the corresponding strain ε and stress σ measures together with the elasticity

matrix c are defined in a similar way as in Eqq.(21) and (22).

The classical first order multi-scale scheme is defined in the framework of a strain driven approach.

The vector E is, thus, used as input quantity for the periodic cell and a properly defined Boundary

Value Problem (BVP) is solved with periodic boundary conditions (PBCs). The displacement field

solution of the BVP at the typical point x = {x1, x2}T of the periodic cell can be defined as the

superposition of two fields, resulting in the same expression already presented in Eq. (1) and is here

reported in compact form for the sake of clarity:

u (X,x) = u∗ (X,x) + ũ (X,x) (23)

where u∗ (X,x) = E (X)x is an assigned field depending on the macro-strain tensor and ũ (X,x) is

a periodic perturbation field arising from the presence of heterogeneities.

The PBCs are imposed between corresponding points x+ and x− belonging to opposite edges of the

periodic cells, see Figure 5, leading to the following constraint relations:

• Vertices of the periodic cell:

ui (X,x) = E (X)xi i = 1, .., 4

• Points on the edges:

u+ (X,x)− u− (X,x) = E (X)∆x with ∆x = x+ − x−

The macroscopic stress Σ (X) and strain E (X) measures are linked to the respective microscopic

ones, σ (x) and ε (x), through the following spatial averages:

Σ (X) = 〈σ (X,x)〉ω , E (X) = 〈ε (X,x)〉ω (24)

12
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Figure 5: Periodic Boundary conditions: corresponding points x+ and x
− on the edges of the periodic cell. The origin

of the reference frame is placed in the geometric center of the Periodic Cell.

where the brackets 〈·〉ω = 1
2

∫
ω
(·) dω denote the average over the area ω of the periodic cell.

It is possible to express the mean value of the microscopic strain energy of the periodic cell

Em = ω
2

〈
ε (X,x)T c (x) ε (X,x)

〉
ω
in terms of the macroscopic strain E (X) as:

ε (X,x) = B (x)E (X) (25)

where B (x) is a localization matrix depending on the periodic field solution of the BVP at the

periodic cell level with PBCs.

Likewise, at the macroscopic level the strain energy EM at a typical point X of the homogenized

continuum can be clearly stated as a function of the macroscopic strain vector resulting in:

EM =
1

2
E (X)T C (X)E (X)A (26)

where A is the area of the Periodic Cell. By exploiting the the Hill-Mandel macro-homogeneity

condition, establishing that EM = Em, the classical homogenized elasticity matrix can be evaluated

as:

C (X) = 〈B (x)T c (x)B (x)〉ω (27)

It is noteworthy that in Eqq. (24) and (27) the perturbation terms of the displacements do not

influence the homogenized values since are characterized by zero averages in the Periodic Cell domain.

Let (a1, a2) be the standard basis (e1, e2) rotated by the counterclockwise angle ϑ about an axis

through the origin. An interesting and comprehensive description of the elastic homogenized response

13
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can be obtained by evaluating Ehom (ϑ) and νhom (ϑ) obtained for tension along the direction identified

by the unit vector a1 inclined at an angle ϑ with respect to the reference unit vector e1. The elastic

compliance tensor can be defined as D = C−1 and the compliance in the new rotated frame system

Dϑ is a fourth order tensor whose generic component obeys the following transformation law:

Dϑ
ijkl = QimQjnQkoQlpDmnop. (28)

where the rotation tensor Q (ϑ), describing the rotation of a1 with respect to e1, has the same

representation as in Eq. (6).

The resulting elastic moduli as a function of ϑ is equal to:

Ehom (ϑ) =
1

Dϑ
1111

(29)

where, exploiting the material symmetries of the anti-tetrachiral cellular solid, it results:

Dϑ
1111 = D1111cosϑ

4 + 2(D1122 + 2D1212)cosϑ
2sinϑ2 +D2222sinϑ

4 (30)

while the Poisson’s ratio can be evaluated as:

νhom (ϑ) = −Dϑ
1122

Dϑ
1111

(31)

with

Dϑ
1122 = (D1111 +D2222 − 4D1212)cosϑ

2sinϑ2 +D1122(cosϑ
4 + sinϑ4) (32)

3.3. Numerical investigation

The effective elastic constants of the anti-tetrachiral lattice are evaluated via numerical tests

carried out considering different mechanical and geometrical parameters.

First, the results obtained adopting the discrete beam lattice model and the continuous model are

compared. The geometric configuration of the lattice is shown in Figure 3 where a periodic cell is

reported. The radius of the ring is R = 5 mm, the distance between the centers of two neighboring

rings is L = 25 mm and the constant thickness of the ligaments is t = 1.5mm. In order to adequately

exploit the capabilities of both models, it is assumed that: i) rigid nodes are considered in the discrete

model while in the continuous model the rings are filled with a material characterized by the same

elastic properties of the ligaments, Er/Ei = 1; ii) no matrix between the ligaments is considered,

Em/Ei = 0. The elastic parameters are Young’s Modulus Ei = 1.6 GPa and Poisson ratio νi = 0.36

of the ligaments. For the solid model, plane stress conditions are considered with an out-of-plane

14
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thickness equal to 1 mm.

In Figure 6(a) the elastic modulus Ehom, normalized by Eort
hom = Σ11/E11(= Σ22/E22), versus the

inclination angle ϑ is shown for the beam lattice model (green line) and for the solid model (red

line). Similarly, νhom is reported in blue line (beam lattice model) and in black line (solid model).

A strongly anisotropic behavior is observed with pronounced variations in the elastic properties as

the ϑ slightly varies. Moreover, it is remarkable that the material exhibit auxeticity only for given

ranges of ϑ. The results are in satisfactory agreement. This confirms the reliability of the beam

lattice model, at least for the cases where the matrix can be neglected.

A further comparison is carried out as the ratio L/R varies. In Table 1 the values of the effective

constants C1111, C2222, C1122 and C1212 together with those of the correspondent Young’s modulus

Eort
hom and Poisson ratio νort

hom = −E22/E11(= −E11/E22), associated with a state of uniaxial tensile

stress along the orthotropic axes (i.e. evaluated adopting Eqq. (32) and (31) with ϑ = 0, respectively)

are reported for L/R ranging between 3 and 10. The beam lattice model is considered in this case.

In Table 2 the same results of Table 1 are collected in the case of the continuous model. It is

noteworthy that the beam lattice model tends to underestimate Eort
hom, and, at the same time, to

slightly overestimate νort
hom. The Poisson’s ratio are almost constant with variations in the third

decimal place. In Figures 6(b), (c) and (d), Ehom/E
ort
hom, Ehom/Ei and νhom versus ϑ are reported,

respectively. The green lines refer to L/R = 3, the red lines to L/R = 5 and the blue line to L/R = 10,

both for the beam lattice model (dashed lines) and the solid model (solid lines). In Figure 6(d) it

emerges that, as L/R decreases, the curves are lowered and for L/R = 10 the Poisson’s ratio is

negative for each ϑ. For the same case, in which the matrix between the ligaments is neglected, a

L/R C1111 C2222 C1122 C1212 Eort
hom νort

hom

3 120.89 120.89 -119.11 2.40 3.55 -0.99

4 90.67 90.67 -89.33 1.01 2.66 -0.99

5 72.54 72.54 -71.46 0.52 2.13 -0.99

6 60.45 60.45 -59.55 0.30 1.77 -0.99

8 45.34 45.34 -44.67 0.13 1.33 -0.99

10 36.27 36.27 -35.73 0.06 1.06 -0.99

Table 1: Beam lattice model. Effective elastic constants [MPa] for different values of L/R.

direct comparison with the experimental results presented in (Alderson et al., 2010) is performed. In

Table 3 the values of Eort
hom and νort

hom obtained adopting both the models presented in Sections (3.1) and

15
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Figure 6: Comparison between beam lattice model and solid model. a) Ehom/Eort

hom
versus ϑ for beam lattice model

(green) and solid model (red). νhom versus ϑ for beam lattice model (blue) and solid model (black); (b)Ehom/Eort

hom

versus ϑ; (c)Ehom/Ei versus ϑ ; (d)νhom versus ϑ. In (b), (c) and (d) dashed lines are referred to beam lattice model

and solid lines to solid model and green lines represent L/R = 3, red lines L/R = 5 and blue lines L/R = 10.

L/R C1111 C2222 C1122 C1212 Eort
hom νort

hom

3 88.48 88.48 -85.80 2.94 5.28 -0.97

4 64.64 64.64 -62.82 0.83 3.59 -0.97

5 50.88 50.88 -49.51 0.35 2.69 -0.97

6 42.24 42.24 -40.99 0.18 2.46 -0.97

8 31.38 31.38 -30.40 0.06 1.93 -0.97

10 24.96 24.96 -24.15 0.03 1.60 -0.97

Table 2: Solid model: Em/Ei = 0. Effective elastic constants [MPa] for different values of L/R.
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(3.2) are compared against the experimental data. The geometric ratio considered is L/R = 5. The

numerical results are satisfactory. The beam lattice model, despite its strong simplifying assumptions,

predicts the auxeticity of the material and estimates very well the Poisson’s ratio, while the Young’s

modulus is underestimated of about 30%. Slightly more accurate results could be achieved if the

length of the beams were redefined as in (Scarpa et al., 2007), where also the the thickness t (see

Figure 3 ) is included in the length of the rigid ends. Adopting the continuous model, instead, both

moduli are in good agreement with experimental results and the percentage difference in terms of

Young’s moduli drops to about 10 %. The observed differences are likely due to the difficulty of

obtaining reliable experimental results in such an anisotropic material, since slightest variations in

the specimen inclination in the testing machine strongly affect the results.

Case Eort
hom νort

hom

Experimental (Alderson et al., 2010) 3.11 -0.98

Beam Lattice 2.13 -0.99

Solid 2.69 -0.97

Table 3: Em/Ei = 0 and L/R = 5. Comparison between experimental (Experimental) results obtained by (Alderson

et al., 2010), beam lattice model (Beam Lattice) and Solid model (Solid) results.

Figure 7: Em/Ei = 0 and L/R = 5. Comparison between anti-tetrachiral (red lines) and tetrachiral (blue lines)

cellular solids. a) Ehom/Ei versus ϑ; (b) νhom versus ϑ. The results have been obtained adopting different beam

lattice models: the model presented in Section 3.1 in the case of the anti-tetrachiral geometry and the model proposed

in (Bacigalupo and Gambarotta, 2014a) in the case of the tetrachiral geometry.

In order to highlight the specificity of the studied class of micro-structures, it can be interesting

to compare the responses of anti-tetrachiral and tetrachiral cellular solids in terms of homogenized

17
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elastic moduli. Considering the same material properties and geometric parameters already chosen

in the case presented in Table 3, two different beam lattice models are adopted: the model presented

in Section 3.1 in the case of the anti-tetrachiral geometry and the model proposed in (Bacigalupo and

Gambarotta, 2014a) for the tetrachiral geometry. To be noted is that, since in the models the length

of the ligaments is assumed to be equal, due to the different geometrical arrangement, the distance

between the centers of the rings is slightly lower in the tetrachiral cellular solid. In Figures 7(a)

and (b) Ehom/Ei and νhom versus ϑ are plotted, respectively. The red lines correspond to the anti-

tetrachiral geometry, while the blue lines correspond to the tetrachiral geometry. It stands to reason

that both geometries display an anisotropic behavior (more evident in the tetrachiral cellular solid)

and are characterized by different material symmetries. The maximum values of Ehom are greater

(for a broad range of ϑ) in the case of the centrosymmetric tetrachiral geometry, however it appears

that the orthotropic anti-tetrachiral geometry shows a more pronounced auxeticity. Although this

example is not meant to be exhaustive, it qualitatively outlines some inherent features of the studied

material, that could be crucial in the design of architectured materials with required performances.

At this point, the influence of the elastic matrix between the ligaments on the effective elastic

constants of the anti-tetrachiral cellular solids is investigated. For this reason, in the following only

the results obtained adopting the computational homogenization technique are shown.

The initial geometric configuration of the lattice is shown in Figure 3. Also in this case, R = 5mm and

L = 25mm and a constant thickness of all portions of inclusions (rings and ligaments) t = 1.5mm are

considered. The elastic parameters are Young’s Modulus Ei = 1.6 GPa and Poisson ratio νi = 0.36

for the ligaments and Em/Ei = 10−3 and νm = νi for the matrix (filling the space between ligaments).

In what follows Er is referred to the Young’s modulus of the material possibly filling the rings.

First of all the effect of variations of geometric parameters has been investigated. For this purpose,

the ratio between the distance L and the radius R varies, while all the other parameters are left

unchanged. It is assumed that Er/Em = 1.

In Table 4, C1111, C2222, C1122 and C1212 together with Eort
hom and νort

hom, are reported for L/R between

3 and 10. It is noteworthy that in all the considered cases the material exhibits auxetic features with

negative Poisson’s ratio whose absolute value reaches its maximum for L/R = 5 and decreases as

L/R increases. It stands to reason that the matrix has a strong effect in reducing the auxeticity of

the material.

In Figure 8(a) a Cartesian diagram showing the trend of Ehom normalized with respect to the max-

imum value Eort
hom is plotted versus ϑ. Due to the symmetry only the values for 0 ≤ ϑ ≤ π/2 are
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L/R C1111 C2222 C1122 C1212 Eort
hom νort

hom

3 37.68 37.68 -26.44 2.63 19.11 -0.70

4 32.91 32.91 -24.26 1.46 15.02 -0.74

5 29.97 29.97 -22.04 0.29 13.76 -0.74

6 27.54 27.54 -19.87 0.90 13.20 -0.72

8 22.62 22.62 -15.37 0.74 12.18 -0.68

10 20.05 20.05 -12.92 0.69 11.72 -0.64

Table 4: Solid model: Em/Ei = 10−3. Effective elastic constants [MPa] for different values of L/R. It is assumed

that Er/Em = 1.

Figure 8: Solid model. (a) Ehom/Eort

hom
versus ϑ; (b)Ehom/Ei versus ϑ; (c)νhom versus ϑ. Red line (L/R = 3); blue

line (L/R = 5); black line (L/R = 8); green line (L/R = 10). It is assumed that Er/Em = 1.
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shown. The red line corresponds to L/R = 3, the blue line to L/R = 5, the black line to L/R = 8

and, finally, the green line to L/R = 10. Qualitatively the trends are similar and, as the ratio L/R

increases, the curves are characterized by lower values of the minimum corresponding to ϑ = π/4.

From a certain point on (L/R = 8) the curves overlap each other, giving rise to a response indepen-

dent on the geometric parameter.

Figure 8(b) shows Ehom normalized with respect to the Young’s modulus of the ligaments Ei plotted

versus ϑ, while, Figure 8(c), shows the variation of the Poisson’s ratio νhom with ϑ. The colors of

the curves have the same meanings as in Figure 8(a). Figure 8(c) reveals that there are values of ϑ

for which there is a transition from auxetic to non auxetic behavior of the material. Lower values of

L/R are characterized by broader ranges of auxetic behaviors.

Moreover, the effect of the elastic properties of the matrix are examined. Considering the geometry

in Figure 3, the effective parameters are evaluated for different values of Em/Ei (with Er/Em = 1)

and the results are collected in Table 5. It emerges that the first case analyzed, i.e. Em/Ei = 0,

Em/Ei C1111 C2222 C1122 C1212 Eort
hom νort

hom

0 23.97 23.97 -22.59 0.28 2.67 -0.94

1 · 10−3 29.97 29.97 -22.04 0.29 13.76 -0.74

1 · 10−2 65.41 65.41 -12.05 7.90 63.19 -0.18

1 · 10−1 287.65 287.65 75.02 71.26 268.08 0.26

2 · 10−1 486.93 486.93 153.92 137.75 438.27 0.32

5 · 10−1 1026.13 1026.13 361.59 321.35 898.71 0.35

Table 5: Solid model. Effective elastic constants [MPa] for different values of Em/Ei. It is assumed that Er = Em.

is characterized by the most pronounced auxeticity with a value of νort
hom = −0.94. In the other

cases, in which a matrix between the ligaments is accounted for, a clear decrease of such property is

detected as Em/Ei increases, up to the case Em/Ei = 1 · 10−1 where the material loses its auxeticity

properties. These results suggest that, for a fixed geometry of the cellular solid, different properties

can be tuned by varying the properties of the matrix filling the inclusions (i.e. ligaments and rings).

In Figure 9(a) the case with Em/Ei = 1 · 10−3 is considered: the red line is Ehom/E
ort
hom and the

black line is νhom versus ϑ (0 ≤ ϑ ≤ 2π). In Figure 9(b) and (c) Ehom/E
ort
hom and νhom are plotted for

different ratios Em/Ei versus ϑ, respectively. The red line corresponds to Em/Ei = 0, the blue line to

Em/Ei = 1 · 10−2, the black line to Em/Ei = 1 · 10−1 and, finally, the green line to Em/Ei = 5 · 10−1.

A further parametric study concerns the influence of the Young’s modulus of the portion of matrix
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Figure 9: Solid model.(a) Case Em/Ei = 10−3. Red line: Ehom/Eort

hom
versus ϑ; black line: νhom versus ϑ;

(b)Ehom/Eort

hom
versus ϑ; (c)νhom versus ϑ. In (b) and (c): red line (Er/Ei = 0); blue line (Er/Ei = 1 · 10−2);

black line (Er/Ei = 1 · 10−1); green line (Er/Ei = 5 · 10−1). It is assumed that Er = Em.
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possibly included in the ring (Er) on the global elastic parameters. In Table 6 the values of the effec-

Er/Ei C1111 C2222 C1122 C1212 Eort
hom νort

hom

1 · 10−3 29.97 29.97 -22.04 0.29 13.76 -0.74

1 · 10−2 32.43 32.43 -24.50 1.09 13.93 -0.76

1 · 10−1 44.05 44.05 -36.06 1.16 14.53 -0.82

2 · 10−1 48.48 48.48 -40.45 1.18 14.73 -0.83

5 · 10−1 52.88 52.88 -44.80 1.20 14.92 -0.84

1 55.01 55.01 -46.90 1.21 15.01 -0.85

Table 6: Effective elastic constants [MPa] for different values of Er with Em/Ei = 10−3.

tive constants are reported, showing that in all cases the Poisson’s ratio is negative and its absolute

value grows as Er grows, for a fixed value of Em/Ei = 10−3. In Figure 10(a) Ehom versus 0 ≤ ϑ ≤ 2π

is drawn in red line, while νhom versus ϑ in black line in the case of Er/Ei = 1. In Figure 10(b),

instead, Ehom/E
ort
hom versus 0 ≤ ϑ ≤ π is shown for two values of Er/Ei (Er/Ei = 1 · 10−3 red line;

Er/Ei = 1 green line). The two curves are almost overlapping each other. Figure 10(c), showing

νhom versus ϑ for the same two values of Er/Ei (Er/Ei = 1 · 10−3 red line; Er/Ei = 1 green line),

highlights very low differences between the two curves and, in particular, the red curve is slightly

moved upwards.

The results show the existence of large variations in linear elastic constants and degree of anisotropy,

which can be achieved by changing the lattice geometry parameters.
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Figure 10: Solid model.(a) Case Em/Ei = 10−3 and Er/Ei = 1. Red line: Ehom/Eort

hom
versus ϑ; black line: νhom

versus ϑ; (b)Ehom/Eort

hom
versus ϑ; (c)νhom versus ϑ. In (b) and (c): red line (Er/Ei = 1·10−3); green line (Er/Ei = 1).
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4. Dynamic properties of composite materials

The dispersion properties of the periodic anti-tetrachiral cellular solid are investigated adopting

the rigorous Floquet-Bloch theory. The exact wave dispersion relations (in terms of frequency versus

wave number) for harmonic propagating waves are, indeed, derived through the solution of a well-

posed spectral problem for wave dispersion in undamped media.

The details of the BVP defined on the Periodic Cell, with ad-hoc boundary conditions, are reported

in the following.

The starting point of the rigorous Floquet-Bloch approach is the set of partial differential equations

describing the dynamic balance at the microscopic level, i.e.:

div (σ (x, t)) = ρ (x) ü (x, t)− f (x, t) (33)

where σ (x, t) is the stress tensor of a material point x at time t; ρ (x) is the the mass density;

ü (x, t) is the acceleration evaluated as second derivative with respect to time of the microscopic

displacement vector u (x, t) and f (x, t) is the body force vector.

The stress tensor can be expressed by the elastic constitutive equation σ (x, t) = c (x) ε (x, t) and

the strain tensor, in turn, by exploiting the compatibility equations ε (x, t) = sym∇u (x, t).

The Floquet-Bloch approach consists in solving the spectral problem, obtained by the Fourier trans-

form in t of Equation (33), and defined as:

div (c (x)∇û (x)) + ω2ρ (x) û (x) = 0 (34)

where the constitutive fourth order tensor has the property that c (x)Z = c (x) symZ,∀ Z; ω is the

unknown angular frequency and û (x) is the displacement field in the frequency space. The equations

of motion and the wave equation are, thus, specialized to the case of centro-symmetric periodic

cells and orthotropic material at the macro-scale, conditions that are suitable to the material here

analyzed.

The problem expressed in Eq. (34) must satisfy proper boundary conditions (BCs) on the Periodic

Cell. Due to the periodicity of the medium, the following quasi-periodic BCs are imposed:

û (x+) = ei(k∆x)û (x−)

σ̂ (x+)n+ = −ei(k∆x)
σ̂ (x−)n−

(35)

where k = km is the wave vector, with k being the wave number (only the real part is considered,

since an undamped medium is taken into account); m is the unit vector of propagation; n is the

outward normal unit vector (n+ and n− are defined on the right/top and on the left/bottom edges,
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respectively) at x+ and x− on the Periodic Cell boundary (see Figure 5), ∆x = x+ − x− and σ̂ (x)

is the stress tensor in the frequency space (σ̂ = cε̂).

The solution of the Floquet-Bloch problem is obtained by using a FE model of the Periodic Cell

implemented in the Structural Mechanics Module, COMSOL 4.3 (COMSOL Multiphysics R©, 2012).

This approach, thus, involves the solution of a fine-scale problem that can be computationally bur-

densome.

A valuable alternative, that works fine in the case of low frequency elastic wave propagation (i.e. in

the long wavelength limit), is the use of an equivalent homogeneous model to describe the actual het-

erogeneous medium. Here a classical (Cauchy) homogenized continuum is considered, that provides

reliable results when the size of the heterogeneities is negligible in comparison with the structural

size.

It has been shown that, considering a higher order homogenized continuum (Nemat-Nasser et al.,

2011; Bacigalupo and Gambarotta, 2014b), the dispersion curve provides a good estimation of the

acoustic branch of the Floquet-Bloch spectrum, i.e. the lowest branch of the spectrum, for a wide

range of wavelengths. When a Cauchy continuum is, instead, considered as the homogenized medium,

a linear relation between the angular frequency and the wave number holds, leading to non-dispersive

waves characterized by constant phase velocities.

In the first order case, the equations of motion for the homogenized continuum, without body forces

and taking into account the compatibility and the linear elastic constitutive equations, result as:

div (C∇U) = ρMÜ (36)

where C is the elastic homogenized constitutive fourth order tensor, ρM = 〈ρ (x)〉ω is the density

of the medium averaged over the RVE, U is the macroscopic displacement field in the homogenized

medium. After inserting the harmonic wave solution in Eq. (36), the algebraic spectral problem

(Brillouin, 1946) representing an eigenvalue problem, is obtained as:


 Q2

11 − ρM ĉ2 Q2
12

Q2
21 Q2

22 − ρM ĉ2







Û1

Û2



 =





0

0



 , (37)

where Q2
ip = Cir1pr2mr1mr2 are the components of the acoustical first order tensor (m being the unit

wave normal corresponding to the direction of k), Cir1pr2 are the components of the classical overall

elastic fourth order tensor, Eq. (27), Û is the macroscopic displacement field in the frequency space,

and c the eigenvalue having the meaning of wave phase velocity.

For any wave direction vector m, the eigenvalues ĉ2ς (ς = 1, 2) are the square of the wave velocity in
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the first order homogenized continuum. The corresponding eigenvectors, whose components are Û ς
p

and correspond to the Fourier transform of the macroscopic displacements in the first order homog-

enized continuum, identify the directions of polarization of the wave.

In order to define dimensionless quantities, the velocity of propagation ĉ∗β is defined as to ĉ∗β =

1
2

(
ĉ1β + ĉ2β

)
, with ĉ1β and ĉ2β being the square roots of the eigenvalues ĉ2ς (ς = 1, 2) solution of the

eigenvalue problem for m = aβ, defining the generic direction of wave propagation.

In the case aβ coincides with the orthotropic directions of the material, i.e. e1 or e2, the wave

velocities become cαβ =
√
Cβαβα/ρM , being for (α = β) the velocity of the compressional waves and

for (α 6= β) the velocity of the shear waves along direction eβ in the classical equivalent continuum

(α, β = 1, 2 ), for more details see (Bacigalupo and Gambarotta, 2014b).

As an example, a specific anti-tetrachiral cellular solid is considered. The geometry is the same

described in Figure 2 with R = 5 mm, t = 1.5 mm and L = 25 mm. The elastic parameters of

the ligaments are Young’s Modulus Ei = 1.6 GPa and Poisson ratio νi = 0.36, the mass density is

ρi = 1565 kg/m3.

The influence of auxetic properties on the Floquet-Bloch spectrum is here analyzed, both with and

without the presence of the matrix between the ligaments.

In particular, the relation between microstructural properties, which are evaluated in terms of Young’s

modulus ratio (Em/Ei; Er/Ei) of ligaments and matrix, and the existence, the position and the fre-

quency range of band gaps is investigated.

The values of the dimensionless angular frequency ωdβ/2πĉ
∗

ς , expressed in terms of the dimensionless

wave-number kdβ (with β = 1, 2 and d1 = d2 = L), are shown in the following figures.

First, the case with no matrix filling the gaps between ligaments (Em/Ei = 0) is considered and

Er = Em, i.e. the rings are empty.

The eigenvalues of the system for waves propagating in the e2 direction are: ĉ12 = 33.63 m/s and

ĉ22 = 308.95 m/s. In this case the reference velocity of propagation is ĉ∗2 = 171.29 m/s. If, instead,

the waves propagate in the e1 direction, it results ĉ11 = 308.95 m/s, ĉ21 = 33.63 m/s and ĉ∗1 = 171.29

m/s. Finally, in the case of waves propagating in a3 direction, with a3 =
√
2/2e1 +

√
2/2e2 the

values are ĉ31 = 304.48 m/s, ĉ32 = 62.23 m/s and ĉ∗3 = 183.36 m/s.

In Figure 11 the dispersion curves in the Brillouin zone are reported for this case adopting the

Floquet-Bloch approach.

In Figure 11(a) the shear waves (red lines) and compressional waves (blue lines) are shown sepa-
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rately for waves propagating in both the orthotropic directions e1 and e2. It is clear that, by virtue

of material symmetry, the overall behavior is the same in both e1 and e2 directions. In Figure 11(b),

instead, the waves in a3 direction are show.

In Figure 11(a), considering the global behavior, i.e. the composition of shear and compressional

waves, no band gaps are recognized. If, instead, the dispersion functions related to the shear and

compressional waves in direction e1 (and e2) are considered separately, i.e. red and blue curves, in

both cases a band gap is evident: the width is about the same but in the case of compressional waves

(blue curve) the frequency band gap is shifted upward (it appears for higher values of ωdβ/2πĉ
∗

β).

In the case of waves in a3 direction (Figure 11(b)), instead, the global behavior shows a frequency

band gap characterized by a width of about ∆ω = 0.1 2πĉ∗β/dβ, with ĉ∗β = ĉ∗3 and dβ = d3 = 2
√
2L.

Figure 11: Em/Ei = 0 and Er = Em. Dispersion curves in the Brillouin zone.(a) waves in e1 and e2 directions: shear

waves (red) and compressional waves (blue). The partial band gaps are highlighted with dotted rectangles. ; (b)waves

in a3 direction. The full band gap is highlighted with the gray rectangle.

In Figure 12 the dispersion curves associated with shear and compressional waves propagating

along the orthotropic axes are represented comparing for each case the results obtained adopting

the Floquet-Bloch approach (solid lines), corresponding to a zoom of the Figure 11(a), and the first

order homogenization theory (dotted lines). The red curves correspond to shear waves, while the

blue curves to compressional waves.

It stands to reason that the first order homogenization theory is able to satisfactorily reproduce

the lowest (acoustic) branch of the Bloch spectrum for a wide range of wavelengths. This model,

indeed, only describes non-dispersive waves characterized by a linear dependence between the angular

frequency ω and the wave-number k (and then between the dimensionless counterparts, i.e ωdβ/2πĉ
∗

β

and kdβ respectively).
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At this point, the same case as before is analyzed (Em/Ei = 0) in which the rings are filled with the

Figure 12: Em/Ei = 0 and Er = Em. Shear (red) and compressional (blue) dispersion curves along the orthotropic

axes. Comparison between the Floquet-Bloch approach (solid lines) and the first order computational homogenization

theory (dotted lines).

same material as the ligaments, Er/Ei = 1. In this case, the eigenvalues for waves propagating in

the e2 direction are: ĉ12 = 31.74 m/s and ĉ22 = 382.66 m/s, with a reference velocity of propagation

equal to ĉ∗2 = 207.20 m/s. For waves propagating, instead, in the e1 direction, it results ĉ11 = 382.66

m/s, ĉ21 = 31.74 m/s and ĉ∗1 = 207.20 m/s. Considering, instead, waves in a3 direction the values

are ĉ31 = 380.08 m/s, ĉ32 = 54.58 m/s and ĉ∗3 = 217.33 m/s. For this case, in Figures 13 and 14 the

same graphs presented in Figures 11 and 12 are shown.

Moreover, the case in which the microstructure is characterized by the presence of both the ligaments

Figure 13: Em/Ei = 0 and Er/Ei = 1. Dispersion curves in the Brillouin zone.(a) waves in e1 and e2 directions:

shear waves (red) and compressional waves (blue). The partial band gap for shear waves is highlighted with the dotted

rectangle; (b)waves in a3 direction. The full band gap is highlighted with the gray rectangle.

and the matrix is considered taking Em/Ei = 1 · 10−2 and Er/Em = 1. The Poisson’s ratio and the
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Figure 14: Em/Ei = 0 and Er/Ei = 1. Shear (red) and compressional (blue) dispersion curves along the orthotropic

axes. Comparison between the Floquet-Bloch approach (solid lines) and the first order computational homogenization

theory (dotted lines).

mass density of the matrix are the same of the ligaments, that is νm = 0.36 and ρm = 1565 kg/m3.

If the waves propagate in the e2 direction, the eigenvalues are: ĉ
1
2 = 71.05 m/s and ĉ22 = 204.44 m/s.

In this case the reference velocity of propagation is ĉ∗2 = 137.74 m/s. If, instead, the waves propagate

in the e1 direction, it results ĉ11 = 204.44 m/s, ĉ21 = 71.05 m/s and ĉ∗1 = 137.74 m/s. In the case of

waves propagating in a3 direction the values are ĉ31 = 401.75 m/s, ĉ23 = 260.64 m/s and ĉ∗3 = 331.19

m/s. For this case, in Figures 15 and 16 the same graphs presented in Figures 11 and 12 are shown.

Finally, the case with Em/Ei = 1 · 10−1 (Er/Em = 1) is taken into account. For waves propagating

Figure 15: Em/Ei = 1 ·10−2 and Er/Em = 1. Dispersion curves in the Brillouin zone.(a) waves in e1 and e2 directions:

shear waves (red) and compressional waves (blue); (b)waves in a3 direction. The band gap is highlighted with the

gray rectangle.

in the e2 direction, the eigenvalues are: ĉ12 = 213.39 m/s and ĉ22 = 428.72 m/s. In this case the

reference velocity of propagation is ĉ∗2 = 321.05 m/s. For waves propagating in the e1 direction,

instead, the corresponding values are ĉ11 = 428.72 m/s, ĉ21 = 213.39 m/s and ĉ∗1 = 321.05 m/s.
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Figure 16: Em/Ei = 1 · 10−2 and Er/Em = 1. Shear (red) and compressional (blue) dispersion curves along the

orthotropic axes. Comparison between the Floquet-Bloch approach (solid lines) and the first order computational

homogenization theory (dotted lines).

Lastly, in the case of waves propagating in a3 direction the values are ĉ31 = 401.75 m/s, ĉ32 = 260.64

m/s and ĉ∗3 = 331.19 m/s. For this case, in Figures 17 and 18 the same graphs presented in Figures

11 and 12 are shown. Considering Figure 18, it emerges that in this case the acoustic branches are

almost linear and the first order homogenization model provides results in a very good agreement

with the expected ones.

It is interesting to compare the results obtained in the dimensionless space for the three cases

Figure 17: Em/Ei = 1 ·10−1 and Er/Em = 1. Dispersion curves in the Brillouin zone.(a) waves in e1 and e2 directions:

shear waves (red) and compressional waves (blue); (b)waves in a3 direction. The band gap is highlighted with the

gray rectangle.

examined (Em/Ei = 0, Em/Ei = 1 · 10−2 and Em/Ei = 1 · 10−1) in terms of dispersion curves in

the Brillouin zone for waves propagating in the a3 direction and represented in Figures 11(b), 15(b)

and 17(b), respectively. It results that, as Em/Ei increases, a two-fold trend is recognized: the

band gap is found for higher values of the angular frequency and its band width tends to decrease.
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Figure 18: Em/Ei = 1 · 10−1 and Er/Em = 1. Shear (red) and compressional (blue) dispersion curves along the

orthotropic axes. Comparison between the Floquet-Bloch approach (solid lines) and the first order computational

homogenization theory (dotted lines).

These circumstances suggest that, also in the dynamic response, the presence of the matrix and its

properties, compared to the properties of the ligaments, strongly affect the global behavior of the

anti-tetrachiral cellular solid. Therefore, a rational design of such a material cannot neglect these

features.

Finally, in order to highlight further qualitative aspects of the studied class of microstructures,

it seems useful to relate the auxetic character of the material with the existence of band gaps. By

comparing the curves in Figure 8(c) with the plots in Figures 11, 15 and 17, it appears that maximum

auxeticity occurs along the orthotropic axis of the materials (ϑ = κπ/2, κ = 0,1,2...), while the full

band gaps arise for waves propagating in a3 direction, that is for ϑ = π/4. Moreover, the presence

of the matrix material seems to have the dual effect of reducing both the auxeticity and the width

of band gaps.

5. Final Remarks

The characterization of the novel class of anti-tetrachiral cellular solids has been tackled, both

investigating the static and the dynamic response.

First the first order homogenized constitutive response has been investigated in static modeling.

Two different models have been considered at the microscopic scale: a beam lattice model (Section

3.1), where the actual solid has been replaced by a discrete system of interconnected beams and the

presence of the matrix has been neglected, and a continuous model in which the overall constitutive

response has been evaluated adopting the first order computational homogenization technique.

In the case where no matrix filling the gaps between ligaments is considered, the comparison of the

results obtained with the two models has been carried out. It has been emphasized that, despite
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the strong simplifying assumptions of the beam lattice model, this approach gives reasonable results,

comparable with those of the richer model, at least when the matrix is neglected. Both models are

able to satisfactorily reproduce the experimental results reported in (Alderson et al., 2010), especially

concerning the accurate estimation of the Poisson’s ratio.

Besides, a direct comparison, in terms of elastic moduli, between the anti-tetrachiral and the tetra-

chiral geometry suggests that the anti-tetrachiral cellular solid shows more a pronounced auxeticity,

at least for the set of geometrical and material properties chosen in the example.

A further parametric study has been performed via the first order computational homogenization

technique. The influence of mechanical and geometric parameters of the Periodic Cell on the 2D

overall elastic moduli has been, indeed, investigated.

First, the influence of the ratio L/R between the distance and the radius of rings is considered. It

can be noted from the plot of Ehom and νhom versus θ that below a certain value of L/R (namely

L/R=8) the response is strongly affected by the geometric parameter, while above it is basically

independent on L/R. Moreover, it emerges that the auxeticity of the material by the presence of

the matrix between the ligaments. It results, indeed, that the case with Em/Ei = 0 is characterized

by the most pronounced auxeticity, for a fixed geometry of the cellular solid. In the other cases, in

which a matrix between the ligaments is accounted for, a clear decrease of such property is detected

as Em/Ei increases, up to the a given ratio Em/Ei beyond which the material loses its auxeticity

properties.

Furthermore, the influence of the Young’s modulus of the material possibly filling the rings (Er) is

analyzed. Although very low differences are found between the two considered cases (Er/Ei=10−3

and Er/Ei=1), a rigid ring seems to increase the auxeticity of the material. The last part of the

paper is devoted to the dynamic modeling and a further numerical investigation is performed on the

flexural wave propagation properties. Also in this case two approaches are considered: a Floquet–

Bloch wave approach and the first order computational homogenization are applied to the periodic

cell of the cellular solid to evaluate the dispersion characteristics and phase constant surfaces as the

geometric parameters of the periodic cell vary.

The analysis of the results in terms of dispersion curves in the Brillouin zone, examined in the di-

mensionless space, suggest that, also in the dynamic response, the presence of the matrix and its

properties, compared to the properties of the ligaments, qualitatively influence the the global behav-

ior of the anti-tetrachiral cellular solid. A two-fold trend is, indeed, recognized: the full band gap is

found for higher values of the angular frequency and its band width tends to decrease.
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It is noteworthy that the derivation of the analytical solution for the spectral band gaps can give

useful information for the design of new complex auxetic materials which behave like elastic wave

filters.

It also can be remarked that the first order homogenization theory, describing non-dispersive waves

characterized by a a linear dependence between angular frequency and wave number, is able to sat-

isfactorily reproduce the acoustic branch of the Bloch spectrum for a wide range of wavelengths.

Finally, relating the auxetic character of the material with the existence of band gaps, it is possible

to highlight further qualitative aspects of the studied class of microstructures. It emerges, in fact,

that maximum auxeticity occurs along the orthotropic axis of the materials (ϑ = κπ/2, κ=0,1,2...),

while the full band gaps arise for waves propagating in a3 direction, that is for ϑ = π/4. Moreover,

the presence of the matrix material seems to have the dual effect of reducing the auxeticity and the

width of band gaps.

Appendix A

In what follows, the same matrix representation as in (Addessi et al., 2014), is chosen. For the

generic element represented in Figure 4, the displacements of the end nodes h and k are expressed

in the basic local reference system by the following vector:

vel = {vh1 vh2 φh vk1 vk2 φk}T (38)

while in the global reference system, as:

w̄el = {ūh
1 ūh

2 φ̄h ū1
k ūk

2 φ̄k}T (39)

and the relation between them is the orthogonal rotation matrix Rel, that is:

vel = Relw̄el with Rel =




cosϑ sinϑ 0 0 0 0

−sinϑ cosϑ 0 0 0 0

0 0 1 0 0 0

0 0 0 cosϑ sinϑ 0

0 0 0 −sinϑ cosϑ 0

0 0 0 0 0 1




(40)

The resulting strain components are an axial elongation δ and two nodal deformational rotations

χh and χk (in the case of a simple supported beam chosen as fictitious isostatic system):

ε
el = {δ χh χk}T (41)
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The compatibility equations results as:

ε
el = Delvel (42)

where the matrix Del is:

Del =




−1 0 0 1 0 0

0 1/Lel 1 0 −1/Lel 0

0 1/Lel 0 0 −1/Lel 1


 (43)

where Lel is the length of the beam element. The stress components work conjugated with ε
el are:

σ
el = {N Mh Mk}T (44)

and the equilibrium equations relating the resulting stresses with the vector of the internal forces Pel
I

are:

DelT
σ

el = −Pel
I (45)

Linear elastic behavior is assumed as:

σ
el = Eel

ε
el (46)

where

Eel =




EAel/Lel 0 0

0 4EJel/Lel 2EJel/Lel

0 2EJel/Lel 4EJel/Lel


 (47)

being E the Young’s modulus, Ael the area of the transversal section of the element and Jel the

momentum of inertia. The element stiffness matrix expressed in the basic global reference system is:

kel = RelTDelTEelDelRel (48)

and the nodal force vector at the end nodes of the generic beam element results as:

b̄el = RelTPel
I (49)

Rigid offset aligned with the global reference system are considered to account for the rigid crosses,

see Figure 19.

By denoting with f el the nodal force vector at the end nodes of the rigid offsets, the following

relation holds:

bel = BT b̄el (50)

where

BT =


 BT

h 0

0 BT
k


 (51)
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Figure 19: Rigid offset to account for rings in the anti-tetrachiral lattice.

with

BT
h =




1 0 0

0 1 0

−ly2h ly1h 1


 , BT

k =




1 0 0

0 1 0

−ly2k ly1k 1


 (52)

and 0 denotes the 3 × 3 null matrix; ly1h(k) and ly2h(k) represent the rigid offset lengths at the end

h(k) parallel and orthogonal to the beam axis, respectively. These lengths are equal to the radius R

of the ring of the anti-tetrachiral cellular solid, see Figure 2.

By exploiting the virtual work equivalence, the transformation rule between the nodal displacement

degrees of freedom defined at the end nodes of the beam ūel and at the end nodes of the rigid offsets

uel (in the global reference frame) are deduced as:

w̄el = Bwel (53)

Thus, the overall element stiffness matrix, accounting for the effect of the rigid offset, is:

Kel = BelTkelBel (54)
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