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Abstract

This survey reviews the growing literature on Markovian and non-
Markovian models for modeling the dynamics of credit ratings. Credit
rating is a measure of the creditworthiness of a firm, i.e., it is an evalu-
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ation of its likelihood of default. The level of credit ratings varies with
respect to time due to random credit risk and thus need to be mod-
eled by an appropriate stochastic process. Models based on Markov
chains have been proposed in the literature and are widely used due to
mathematical simplicity. However, many empirical evidences suggest
the non-suitability of the Markov process to model rating dynamics. To
overcome the limitations of Markovian models, several non-Markovian
models based on semi-Markov process and Markov regenerative pro-
cesses have been proposed in the literature. In this article, we give a
review of the models proposed in the literature. Further, empirical ap-
plications on the real data are presented to compare various modeling
approaches.

Keywords: Credit Ratings, Markov process, semi-Markov process, Markov
regenerative process, Probability of default

1 Introduction

Banks and other financial institutions face various types of financial risks
namely market risk, operational risk and credit risk. The credit risk, also
known as risk of default, has become one of the most important issue in mod-
ern financial world. It is the risk faced by the lender that arises from a bor-
rower who may not be able to repay the loan at maturity. Credit risk analysis
consists of finding the default probability of the borrower and study various
problems related to the pricing of derivatives, to the pricing of risky bonds
etc. There are two categories of credit risk models namely structural models
(also known as firm-value models) and reduced form models (also known as
intensity based models). The first category of models is pioneered by Merton
[2] who considered the total firm value of the firm and defines default when
the firm value falls below a default barrier at maturity. This basic model has
further been extended by incorporating many other factors like stochastic de-
fault barriers, variability in the interest rates etc. In conclusion, these models
provide a mechanism of default in terms of the relation between the firm value
(assets) and the liabilities at any time t.
On the other hand, the second class of models, known as intensity based mod-
els, does not specify the mechanism of default, i.e., how default occurs, but
models it as a first jump time of a counting process. These models were in-
troduced by Jarrow and Turnbull [15] and extended by Lando [18], and Duffie
and Singleton [4]. This class of models has become very popular among the
practitioners due to mathematical tractability and to the fact that they do not
need specific knowledge of the company’s value but they rely only on the mod-
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eling of the probability of default. A comprehensive treatement of Markovian
models of credit rating dynamics is given in Trueck and Rachev [23].

As already pointed out, essentially, credit risk modeling consists of computing
the probability of default of a firm going into debt. In order to compute the
default probability, various parameters associated with the firm, for instance
its credit rating or its asset value, can be used. Credit ratings is one of the most
important parameter associated with the firm that quantifies the risk associ-
ated with the firm. Credit ratings are issued to a firm by various international
organizations like Moody’s, Fitch, Standard & Poor’s, etc. Higher the credit
rating, more credit worthy is the firm. Further, credit ratings serve as an im-
portant output to various market models of credit risk and their level changes
from time to time since the risk associated to a firm is dynamic. Therefore,
there is a need to model accurately the dynamics of credit ratings.

In this direction, Jarrow et al. [15] proposed a Markov chain model, called
migration models, in order to study the term structure of credit spreads and
model the dynamics of credit ratings. Many other articles implemented the
same approach to generate the transition probability matrices of the credit
ratings (Hu et al. [14], Nickell et al. [19]). However several articles (Nickell
et al. [19], Kavvathas [16], Lando and Skodeberg [18]) observed the empirical
behavior of the credit ratings and suggest that the Markov model is inappropri-
ate to model the credit rating dynamics. The main limitations of the Markov
models are

1. Downward momentum: It is observed that probability that the next
rating change will be a downward change given that the previous change
is also downward is high as compared to the other case.

2. Duration: The transition probability depends on the time spent by a
firm in a rating since its assignement. The time spent does not follow
exponential distribution which is the case in Markov chains.

3. Time non-homogeneity: It is observed that the rating dynamics at two
different points of time are different and hence in order to model credit
ratings, a time non-homogenous framework is required. In general, tran-
sition probabilities varies with the state of the economy (i.e. recession
or economic expansion).

4. Ageing effect: It means that the rating migrations depend on the total
length of time since the firm received its first credit rating.

To overcome these limitations of the Markovian setup, D’Amico et al. [7]
proposed a time homogeneous semi-Markov model to model the credit rating
dynamics and considered this setup as a reliability problem. They suggested
that the semi-Markov framework permits to overcome the constraints of the
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Markov models. Later, D’Amico et al. [11] considered non-homogeneous in
time semi-Markov models with initial and final backward and forward pro-
cesses to study the effect of times after last transition and before the next
transition on the transition probabilities. Further, in order to address the
ageing effect, D’Amico et al. [10] proposed a discrete time non-homogeneous
semi Markov model with an age index to model the credit rating dynamics.
In order to address the downward rating momentum, D’Amico et al. [8] ap-
plied semi-Markov processes (SMP) with an extended state space to account
for downward rating momentum. Vasileiou and Vassiliou [25] proposed an in-
homogeneous semi-Markov model for the term structure of credit risk spreads
and later Vassiliou and Vasileiou [26] studied the asymptotic behaviour of the
survival probabilities in an inhomogeneous semi-Markov model for the migra-
tion process in credit risk. Fuzzy semi-Markovian based models of credit rating
dynamics were provided by Vassiliou and Vasileiou [24]. The book by D’Amico
et al. [6] contains a comprehensive treatment of todays state of the art in semi-
Markov models of credit rating dynamics.
Recently, Pasricha et al. [20] proposed a more general class of models based
on Markov regenerative process (MRGP) to study the downward rating mo-
mentum and duration effect. This class of MRGP is a generalization of the
semi-Markov processes. They argued that since rating momentum exists only
in downward direction, Markov property is satisfied only when there is a mi-
gration from a given rating to a better rating (i.e, upward movement). This
behavior of the ratings can be modeled by MRGP.
The originality of this study is that it represents the first literature review
on non-Markovian credit rating dynamics. This survey presents non-Markov
credit rating models in an short but yet accessible form reviewing Markov
chains, semi-Markov processes and Markov regenerative processes as they are
applied to the credit risk problem. We discuss how the different models may
overcome the limitations of the Markov chain based models. An empirical
study on the real data obtained from S&P compares the performance of the
various models in the literature and also compare them with the real behavior
of credit ratings.
The rest of the paper is as follows: Section 2 gives a description of Markov
chain model for rating dynamics and their generalization obtained by intro-
ducing semi-Markov processes and markov regenerative processes. Section 3
discusses how to apply the above models and some results based on an appli-
cation to real credit rating data. Section 4 concludes the paper.
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2 Materials and Methods

In this section we are going to introduce the meaning of credit ratings and to
discuss different stochastic models used for describing the dynamic of credit
ratings.
The credit ratings issued to a firm by a rating agency gives the creditworthiness
of the firm i.e., its capacity to repay the debt. In practice, there are the
following ratings given by Standard and Poor’s rating agency:

S = {AAA,AA,A,BBB,BB,B,CCC,D}.

The bonds having rating above BB are investment grade bonds whereas those
having BB or below BB are speculative bonds and state D corresponds to
default. Consider a firm that starts in some rating i ∈ S. Since, the cred-
itworthiness of the firm changes over time, the level of rating changes too.
Therefore, it needs to be modeled by using an appropriate stochastic process.
Different choices are possible, they are reviewed in next subsections.

2.1 Markov Chain Models

Let {X(t), t ≥ 0} be the stochastic process where X(t) represents the rating
of the firm at time t. We can observe that this is a discrete state continuous
time stochastic process. Jarrow et al. [15] considered the credit rating process
{X(t), t ≥ 0} to be a continuous-time Markov chain. The generator matrix
describing the process dynamic can be obtained from the historical data and
hence the default probabilities of different credit ratings can be obtained as
well as other financial indicators, see e.g. WeiBbach and Mollenhauer [27] and
D’Amico [5].
To better understand limitations of the Markov chain model it is worth to
introduce it in a more rigorous way. Let P(t) = {pij(t)}i,j∈S be the transition
probability function of the markov chain. The elements of this matrix are
defined as follows:

pij(t) := P{X(t) = j|X(0) = i}.
The transition probability matrix can be obtained for any time t ≥ 0 by
computing the matrix exponential on the generator matrix A:

P(t) = etA =
∞∑
k=0

Aktk

k!
.

The elements {aij}i,j∈S of the generator matrix A express the force of transition
departing from any state i and arriving to any state j, i.e.

A = lim
r→0

P(r)−P(0)

r
.
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In literature, several empirical evidences suggest that Markov process is not
appropriate for credit rating modeling. There are four main issues on the
unsuitability of the Markov processes for the credit rating evolution namely
downward momentum, duration effect, time non-homogeneity, ageing effect. In
order to overcome these limitations of Markov models, D’Amico et al. proposed
a series of articles based on semi-Markov processes. In the next section, we
will briefly discuss these articles.

2.2 Semi-Markov Models

2.2.1 Time Homogeneous semi-Markov Model

D’Amico et al. [7] proposed a semi-Markov model to overcome these issues.
We give a brief overview of semi-Markov credit rating model proposed by
D’Amico et al. [7]. First, we give the definition of Markov renewal sequence.
A sequence of the random variables {(Xn, Tn), n = 0, 1, . . .} is called a Markov
renewal sequence if

1. T0 = 0, Tn+1 ≥ Tn; Xn ∈ S = {0, 1, 2, . . .}

2. ∀ n ≥ 0,
P{Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i, Tn, Xn−1, Tn−1, . . . , X0, T0}
= P{Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i} (Markov property)
= P{X1 = j, T1 − T0 ≤ t | X0 = i} (time homogenity)

The kernel Q(t) = [Qi,j(t)] associated with the process is defined by

Qij(t) = P{Xn+1 = j, Tn+1 − Tn ≤ t|Xn = i}, i, j ∈ S, t ≥ 0.

and it follows that
pij = lim

t→∞
Qij(t), i, j ∈ S.

where P = [pij]i,j∈S is the one-step transition probability matrix of the em-
bedded Markov chain with state space S.

We define the probability that the process will leave state i, i ∈ S in time t,

Hi(t) = P{Tn+1 − Tn ≤ t | Xn = i}.

It can be observed that
Hi(t) =

∑
j∈S

Qij(t).

Next, we define the distribution function of the waiting time in each state i,
given that the next state is known:

Gij(t) = P{Tn+1 − Tn ≤ t|Xn = i,Xn+1 = i}, i, j ∈ S, t ≥ 0.
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These probabilities can be obtained as follows

Gij(t) =

{
Qij(t)

pij
if pij 6= 0

1 if pij = 0
.

The main difference between a continuous-time Markov chain and a SMP is in
the distribution functions Gij(t). In a Markov environment this distribution
function has to be a cumulative distribution function of negative exponential.
On the other hand, in the semi-Markov case the distribution functions Gij(t)
can be of cumulative distribution function of any general distribution. Thus,
SMP accounts for the effect of duration inside a rating class.

Now, we can define the homogeneous semi-Markov process {Z(t), t ≥ 0}, which
represents, for each waiting time, the state occupied by the process, i.e.,

Z(t) = XN(t) where N(t) = max{n : Tn ≤ t}.

The transition probabilities for {Z(t), t ≥ 0} are defined by

φij(t) = P{Z(t) = j | Z(0) = i}, i, j ∈ S, t ≥ 0.

We collect them in a matrix of function: Φ(t) = (φi,j(t))i,j∈S.

They can be obtained by solving the Markov renewal equation

Φ(t) = E(t) + (Q ∗Φ)(t),

or

φij(t) = δij(1−Hi(t)) +
∑
γ∈S

∫ t

0

φγj(t− y)dQiγ(y), i, j ∈ S. (1)

where δij represents Kronecker delta, E(t) = [Eij(t)]i,j∈S is a diagonal matrix
defined as

Eij(t) =

{
1−Hi(t) if i = j

0 if i 6= j
.

The credit rating of a firm gives its reliability degree or credit worthiness. For
example, in the case of Standard & Poor’s, there are the eight different classes
of rating and so the set of states S can be denoted by

S = {AAA,AA,A,BBB,BB,B,CCC,D}.

The credit risk problem can be positioned in the reliability environment with
states {1, 2, . . . , 8} with 1 representing AAA and 8 representing the default
state, i.e., state D. Considering this idea, D’Amico et al. [7] proposed semi-
Markov based modeling approach for credit rating dynamics since it will ad-
dress the limitation of Markov model which says that the time spent inside a
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rating is an exponential distribution. In the credit risk environment, the first
part of equation (3) can be interpreted as the probability that the rating orga-
nization does not give a new rating evaluation till time t. In the second part
of above equation, Qiγ(y) represents the probability that firm will get a rating
γ in time y and then firm will migrate to rating j in time (t− y) following one
of the possible paths.

2.2.2 Duration Dependent semi-Markov Models

D’Amico et al. [11, 10, 9] proposed a series of papers in order to com-
pletely study the effect of duration inside a rating on the transition probabil-
ities within a non-homogeneous semi-Markov model. In order to introduce a
non-homogeneous semi-Markov model we need to consider a non-homogeneous
semi-Markov kernel, Q(s, t). The elements of the kernel gives the joint prob-
ability of visiting with next transition within time t rating class j given that
the rating occupied at current time s is equal to i, in formula

Qij(s, t) = P{Xn+1 = j, Tn+1 ≤ t | Xn = i, Tn = s}. (2)

Relation (2) shows that the probability to migrate from state i at time s to
state j at time t depends also on the time s and not only on the state i
as it was for the homogeneous model. In turn, all probabilities defined in
the homogeneous case can be analogously defined considering an explicitly
dependence on the current time s. In particular the transition probabilities
for the non-homogeneous semi-markov process Z(t) := XN(t) are defined by

φij(s, t) = P{Z(t) = j | Z(s) = i}, i, j ∈ S, 0 ≤ s ≤ t.

We collect them in a matrix of function: Φ(s, t) = (φi,j(s, t))i,j∈S. Thus, the
transition probability function will satisfy a non-homogeneous Markov Renewal
equation:

Φ(s, t) = E(s, t) + (Q ∗Φ)(s, t),

or

φij(s, t) = δij(1−
∑
k∈S

Qik(s, t)) +
∑
γ∈S

∫ t

0

φγj(y, t)dQiγ(s, y), i, j ∈ S. (3)

where δij represents Kronecker delta, E(s, t) = [Eij(s, t)]i,j∈S is a diagonal
matrix defined as

Eij(s, t) =

{
1−

∑
k∈S Qik(s, t) if i = j

0 if i 6= j
.
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The effect of the duration inside a state on the transition probabilities can
explicitly be considered by means of the probabilities of being in rating j at
time t given that firm had rating i at time s, but it entered in this state at time
l and remained in state i until time s, without any other transition, i.e., have
an age of s − l. The recurrence time processes gives complete information of
duration inside a state and hence, gives more accurate estimates of transition
probabilities.
D’Amico et al. [11, 10, 9] proposed a semi-Markov process (SMP) model by
taking into account the recurrence times, thus addressing the ageing effect in
credit rating dynamics. The non-homogeneity of the model addresses the issue
of time dependence of rating evaluation. In the sequel, we give a brief overview
of duration dependent non-homogeneous semi-Markov models.

We first define recurrence time processes. Let {N(t), t ≥ 0} be a renewal
process with renewal epochs as {T1, T2, . . .}. Define

B(t) = t− TN(t), (4)

F (t) = TN(t)+1 − t. (5)

Here, B(t) represents the time elapsed since the most recent renewal at or
before time t. It is called age process or backward recurrence time process.
Similarly, F (t) represents time from t until first renewal after t. It is called
residual process or forward recurrence time process. We can define the age
process and residual process at initial and final time for time non-homogeneous
SMP since it effects the transition probabilities of {Z(t), t ≥ 0}. Define the
transition probabilities considering recurrence times as follows

φBFij (s; ã, t, b̃) = P (Z(t) = j, B(t) ≤ t− ã, F (t) ≤ b̃− t | Z(s) = i, TN(s) = s).
(6)

These probabilities can be obtained as follows:
Theorem 1: For i, j ∈ S and for s < ã < t < b̃, we have

φBFij (s; ã, t, b̃) = δij1{ã=s}(Hi(s, b̃)−Hi(s, t))

+
∑
m∈S

∫ t

s

φBFmj (θ; ã, t, b̃)dQim(s, θ). (7)

Next, we define a SMP with recurrence times (age and residual life) both at
initial and final times.
Definition 2: For i, j ∈ S and for a < s < b < ã < t < b̃ such that
1 − Hi(a, b) > 0, define the following transition probabilities with age and
residual life at initial and final time
bfφBFij (a, s, b; ã, t, b̃) = P (Z(t) = j, B(t) ≤ t− ã, F (t) ≤ b̃− t | Z(s) = i, B(s) =
s− a, F (s) > b− s).
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These probabilities can be obtained as follows:
Theorem 2: For i, j ∈ S and for a < s < b < ã < t < b̃ such that 1−Hi(a, b) >
0, we have

bfφBFij (a, s, b; ã, t, b̃) = δij1{ã=a}
(Hi(a, b̃)−Hi(a, t))

1−Hi(a, b)

+
∑
m∈S

∫ t

b

φBFmj (θ; ã, t, b̃)
dQim(a, θ)

1−Hi(a, b)
, (8)

where φBFmj (θ; ã, t, b̃) can be obtained from Equation (7). Relation (8) expresses
the probability of being in rating class j at time t with elapsed time in this
rank less or equal than t − ã and residual life in this lower than b̃ − t given
that the entrance in the rating Z(s) = i was at time a and the next transition
after time s was at a time greater than b. These duration dependent transition
probabilities allow us to understand how the transition probabilities among
rating classes are perturbed by imposing some constraints on the duration of
occupancy of the ratings at starting time s and arriving time t of evaluation.

2.2.3 Semi-Markov Model with Extended State Space

In order to take into account the downward problem, D’Amico et al. [8] in-
troduced a modified semi-Markov model by extending the state space. This
extended state space permits a method for obtaining a model that describes
simultaneously the duration problem, the dependence of the rating evaluation
on the chronological time and the downward effect.

They introduced another six states so that the state space becomes

S = {AAA,AA,AA−, A,A−, BBB,BBB−, BB,BB−, B,B−, CCC,CCC−, D}.

For example, the state BBB is divided into BBB and BBB−. The firm will
receive a rating assignement equal to BBB if it made a transition from a lower
rating rank while, on the other hand, it will be in the class BBB− if it arrived
in this rating from a better rating (a downward transition). Any one of the
first 13 states can be considered as a state where the firm is still able to repay
its debt and the last one is the only bad state denoting the default of the firm.
Then, the Equations (7), (8) can be solved considering the extended state
space. The different probability values of φBFij (s; ã, t, b̃) and bfφBFij (a, s, b; ã, t, b̃)
solves the downward problem considering at the same time the other non-
Markovian effects.
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2.3 Markov Regenerative Model

A major limitation of the above advanced technique consisting in the extension
of the state space is as follows: the number of parameters (i.e., the transition
probabilities) to be estimated increases, however, the credit rating data in
some cases could not be enough to estimate a larger number of parameters.
A possible solution is to combine various rating categories to lower the num-
ber of parameters so that the available data can be used for the estimation.
Therefore, due to limited data availability, extending the state space is not
always an appropriate choice to address the downward rating momentum. To
overcome this limitation, Pasricha et al. [20] proposed a more general class of
models based on Markov regenerative process (MRGP) to study the downward
rating momentum and duration effect.

In this section, a Markov regenerative process (MRGP) is described briefly
followed by the credit rating model based on MRGP. Let {Xn, n = 0, 1, . . .}
be a sequence of random variables with state space S. Let {N(t), t ≥ 0} be a
counting process generated by the sequence {Tn, n = 0, 1, . . .}. The stochastic
process {Z(t), t ≥ 0} where

Z(t) := XN(t), t ≥ 0,

is called an MRGP if

1. There exists S
′ ⊂ S such that {Xn, n = 0, 1, . . .} is a time homogeneous

Markov chain with the state space S
′
.

2. ∀n ≥ 0, i, j ∈ S ′, we have

P{Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i, Tn, Xn−1, Tn−1 . . . , X0, T0} =

P{Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i} = (Markov property)

P{X1 = j, T1 ≤ t | X0 = i} time homogeneity.

3. P{Z(Tn + t) = j | Xn = i} = P{Z(t) = j | X0 = i},

From the above definition, one can easily observe that every SMP is an MRGP
and both the stochastic processes allow an arbitrary distribution for the so-
journ times unlike the exponential sojourn time in Markov environment. Fur-
ther, Figure 1 presents the sample paths of an MRGP and an SMP. The main
difference between these two processes can be seen by observing their sample
paths and comparing the sequence Tn of regeneration time points to the se-
quence obtained from the state transition instants of the process. Since not
every transition in an MRGP is a regeneration point, one can address the
downward rating momentum by considering the rating upgrade as a regenera-
tion time epoch and hence in between two regenerations (i.e., rating upgrades),
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the Markov property is not satisfied. In other words, we can say that the un-
derlying process {Z(t), t ≥ 0} does not satisfy the Markovian property at the
time instants when the firm faces a rating downgrade. Hence, the regenera-
tion instances Tn exactly corresponds to the times of entering state i from a
state j such that j < i and the state of the process can change between the
regeneration time points Tn and Tn+1 due to rating downgrades. Therefore, an
MRGP gives an appropriate choice to model the dynamics of credit ratings.

(a) semi-Markov process

(b) Markov regenerative process

Figure 1: Sample path of a semi-Markov process (SMP) and a Markov regen-
erative process (MRGP)

In order to obtain the transition probabilities of the process {Z(t), t ≥ 0},
we define the global kernel, K(t) and the local kernel, E(t). Here, the global
kernel describes the dynamics of the process immediately after the next regen-
erative time epoch (i.e., a rating upgrade in credit rating application). On the
other hand, the local kernel explains the dynamics of the process between two
regeneration epochs (i.e., can address the downward rating momentum).

1. Global Kernel: The global kernel K(t) = [Kij(t)]i,j∈S′ associated with
the process is defined as

Kij(t) = P{Z(T1) = j, T1 ≤ t|Z(0) = i}, i, j ∈ S ′, t ≥ 0.
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One can observe that the one-step transition probabilities P = [pij]i,j∈S′

of the embedded Markov chain can be obtained as follows

pij = lim
t→∞

Kij(t), i, j ∈ S ′
.

2. Local Kernel: The local kernel E(t) = [Eij(t)]i∈S′ ,j∈S is defined as
follows

Eij(t) = P{Z(t) = j, T1 > t|Z0 = i}, i ∈ S ′
, j ∈ S, t ≥ 0

Further, the transition probabilities for the process {Z(t), t ≥ 0} are defined
by

Vij(t) = P{Z(t) = j | Z(0) = i}, i ∈ S ′
, j ∈ S, t ≥ 0.

These can be obtained by solving the generalized Markov renewal equation
[17]

Vij(t) = Eij(t) +
∑
γ∈S′

∫ t

0

Vγj(t− y)dKiγ(y), i ∈ S ′
, j ∈ S. (9)

In credit rating dynamics framework, we can understand first term in Equation
(9) as the probability of a firm facing a rating downgrade before any rating
upgrade given it started in a rating category i at time 0. On the other hand,
the second term in Equation (9) as the probability that the firm will upgrade
to rating γ in time y and then it will migrate to rating j in the remaining
time t − y following some trajectory. In order to apply MRGP to model the
dynamics of the credit ratings, we need to obtain the global and local kernel
in credit ratings framework. From Pasricha et al. [20], we give the global and
local kernel in the framework of credit rating modeling.

The global kernel K(t) = [Kij(t)]i,j∈S′ can be obtained as follows

Kij(t) = P (Z(T1) = j, T1 ≤ t | Z(0) = i) =

{
Gij(t) · pij if pij 6= 0

0 if pij = 0
.

For each i ∈ S ′
, Eij(t), j ∈ S of the MRGP describes the behavior of rating

evolution between two regeneration epochs as to how the rating moves to a
lower rating before going to upper rating and is given by

Eij(t) =

{
0 if i > j

φ
(i)
ij (t)× (1−

∑
k∈S′ Kik(t)) if i ≤ j

.

where φ
(i)
ij (t) are the transition probabilities of the subordinated SMP which

accounts for the downward momentum. For initial state i at time 0, the tran-
sition probabilities φ

(i)
ij (t) can be obtained solving renewal equation in semi-

Markov framework by considering a process with state space {i, i + 1, . . . , 8}
with only possible transitions to be downward transitions.
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3 Results and Discussion

In this section, we present the computational analysis of the proposed model
on real data of Standard and Poor’s rating agency. In order to show the appli-
cability of non-Markov credit rating models, we first describe the methodology
to estimate the model parameters. Finally, we present an application of the
real data and compare the default distribution obtained using Markov and
non-Markov models.

3.1 Parameter Estimation

In case of continuous time-homogeneous Markov models, the only parameter
need to be estimated is the generator matrix of the Markov process, see e.g.
Albert (1962) [1] and more recently Sadek and Limnios (2005) [21]. On the
other hand, for time homogeneous non-Markov models, we need to estimate
Gij(t), i, j ∈ S along with the transition probability matrix P of the embedded
Markov chain {Xn}. Similarly, for time non-homogeneous models, the param-
eters that need to be estimated are P(s) and Gij(s, t), j ∈ S for different
initial times s and final times t. The methodology proposed in the articles
considered in this review paper is as follows:

(a) Estimation of P(s): For a fixed s, using the credit rating history at time
s, the number of transitions from i to j with next jump are collected
and assigned to a frequency matrix. Then, by normalizing the obtained
frequency matrix, the probabilities pij(s), i, j ∈ S are calculated. The
procedure is repeated for each s ∈ [0, T ].

(b) Estimation of Gij(s, t), j ∈ S: For fixed s and t, in order to estimate
the distribution functions of time spent inside a rating i given the next
rating is j before time t, the following steps are followed:

(i) Firstly, identify those transitions which have initial rating i at time
s and final rating j before time t, i.e., in a time duration of t− s.

(ii) For all the identified transitions, the number of time points (i.e.
quarters) are calculated and a histogram is plotted to identify the
most closely fit distribution.

(iii) Then, parameters of best fit distributions are estimated using max-
imum likelihood estimation.

(iv) Further, apply the Kolmogorov-Sminrov test (KS test) to statisti-
cally test the best fit distribution.
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For the duration dependent models, a similar methodology is used by taking
the recurrence times into account.

3.2 Applicability on the Real Data

We consider the quarterly credit rating history since 1985 to 2015 issued by
Standard & Poor’s to the long term issuers. Following the procedure mentioned
above, we find that the best fit distribution for the time spent inside a rating
given the next rating is Webiull distribution. For the calculations, R software
has been used. The estimated one-step transition probability matrix is given
in Matrix 1.

Matrix 1. 1 year transition probability matrix P



AAA AA A BBB BB B CCC D

AAA 0.9726 0.0259 0.0010 0.0002 0.0002 0.0000 0.0002 0.0000
AA 0.0013 0.9760 0.0217 0.0008 0.0001 0.0000 0.0000 0.0001
A 0.0002 0.0052 0.9814 0.0124 0.0005 0.0001 0.0001 0.0000

BBB 0.0000 0.0004 0.0088 0.9787 0.0106 0.0010 0.0002 0.0003
BB 0.0001 0.0003 0.0005 0.0131 0.9612 0.0223 0.0017 0.0008
B 0.0000 0.0001 0.0004 0.0004 0.0146 0.9619 0.0192 0.0034

CCC 0.0001 0.0000 0.0006 0.0009 0.0017 0.0481 0.8780 0.0706
D 0 0 0 0 0 0 0 1



Further, in order to compare the different non-Markov models with the real
data, we compare the default probabilities given by S&P for (1981-2014) with
those obtained by the non-Markov models. We consider the average cumulative
default rates by ratings given in “Annual Global Corporate Default Study And
Rating Transitions (2014)” by Standard and Poor’s. Considering the average
transition matrix given in the report for the period of (1981-2014), we obtain
the default distribution of a firm using both the models namely MRGP and
SMP. For the comparison purposes, we fixed the required parameters, i.e.,
Gij(t) and pij for all the models. The results are compared with the real
data in the report and the results obtained by implement MRGP and SMP
model for each rating category at time 0. Figure 1 presents the results, i.e.,
the default distribution on the log scale. From the figure, we observe that the
results obtained from MRGP gives a better fit as compared to the SMP model.
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Figure 2: Distribution function of first time of default given initial rating
(1981-2014)

4 Conclusion

This survey reviews, for the first time ever, the growing literature on non-
Markov models based on semi-Markov process and Markov regenerative pro-
cess to model the dynamics of credit ratings. Various models of credit rating
dynamics proposed in the literature are discussed. Further, the estimation
procedure for various parameters of these models is presented with an appli-
cation on the real data.
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