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One Sentence Summary: Existing functional brain imaging datasets were used to identify 
neural signatures that confirm pharmacological action and predict clinical efficacy of test 
compounds. 
 

Abstract:  



 

 

The therapeutic effects of centrally acting pharmaceuticals can manifest gradually and unreliably 
in patients, making the drug discovery process slow and expensive. Biological markers providing 
early evidence for clinical efficacy could help prioritize development of the more promising drug 
candidates. A potential source of such markers is functional magnetic resonance imaging (fMRI), 
a noninvasive imaging technique that can complement molecular imaging. fMRI has been used 
to characterize how drugs cause changes in brain activity. However, variation in study protocols 
and analysis techniques has made it difficult to identify consistent associations between subtle 
modulations of brain activity and clinical efficacy. In this work we present and validate a general 
protocol for functional imaging–based assessment of drug activity in the central nervous system. 
The protocol uses machine-learning methods and data from multiple published studies to identify 
reliable associations between drug-related activity modulations and drug efficacy, which can 
then be used to assess new data. A proof-of-concept version of this approach was developed and 
is shown here for analgesics (pain medication), and validated with 8 separate studies of analgesic 
compounds. Our results show that the systematic integration of multi-study data permits the 
generalized inferences required for drug discovery. Multi-study integrative strategies of this type 
could help optimize the drug discovery and validation pipeline. 

 

Introduction  

Central nervous system (CNS) drug failure rates are high throughout the drug-development 

cycle, with initial human trials a common point of failure (1, 2). Assessment of the therapeutic 

potential of CNS drug candidates in humans can be difficult and expensive, with efficacy 

unreliable, hard to measure, and slow to manifest. Ideally, ultimately unsuccessful drugs would 

fail earlier in the development process (before moving into patient trials). Biomarkers that 

prioritize candidate compounds prior to large-scale clinical trials have the potential to 

substantially improve the productivity and cost-effectiveness of drug development (1–3). 

Functional magnetic resonance imaging (fMRI) can image neural responses and their 

pharmacological modulation through the blood oxygen level–dependent (BOLD) contrast 

mechanism. fMRI is capable of characterizing the effects on the CNS of drugs associated with 

conditions such as chronic pain (3), schizophrenia (4), and obesity (5). In the area of pain, fMRI 

studies have identified specific reductions in pain responses with the analgesics remifentanil (6), 

alfentanil (7), and ketamine (8); gabapentin-induced changes in deactivations (9); and reductions 



 

 

in resting-state functional connectivity with opiates (10, 11). Neural correlates of many other 

clinically relevant aspects of CNS disease have been identified including clinical scores (12, 13), 

anxiety and fear (14), the placebo response (15), and sensitization (9). Importantly, fMRI has 

shown potential for distinguishing effective from non-effective compounds (16, 17), and for 

predicting the clinical effects of drugs (15, 18, 19).  These capabilities suggest that fMRI could 

provide a complementary, non-invasive adjunct to molecular imaging for drug discovery, 

detecting drug-related modulations of brain activity (referred to here as “pharmacodynamic 

action”) predictive of efficacious drug action (4, 5).  

Despite the promise of fMRI, progress towards standard, validated procedures for 

assessing the potential efficacy of new CNS compounds has been slow (17). In part, this is due to 

the difficulty of using fMRI to make inferences regarding the likelihood that a drug will be 

successful in a specific clinical domain (“clinical efficacy”). fMRI does not quantify 

physiological variables directly associated with drug action, so identifying evidence for the 

efficacy of compounds must be based upon empirically established associations between brain 

activity patterns and measurable clinical variables such as treatment outcome.  It is important 

that imaging methods are able to provide predictive capabilities beyond what can be obtained 

from clinical measures alone. Direct brain correlates of available behavioral and clinical 

measurements, which may be affected by factors unrelated to long-term efficacy, will not 

necessarily provide substantial additional predictive value for drug assessment. One approach 

that may provide complementary data is to identify common effects of existing compounds or 

treatments that have already been shown to be efficacious in clinical trials; this approach could 

identify brain activity modulations suggestive of efficacy that occur earlier or more reliably than 

changes in external clinical measures. 



 

 

RESULTS 

Study design and rationale 

We designed a procedure for performing imaging-based drug assessment, intended to detect 

drug-related modulation of brain activity (pharmacodynamic effects) and evidence that this 

modulation suggests clinical efficacy. We focused on defining a protocol for placebo-controlled 

crossover designs.  These low-cost studies, typically using 5-40 subjects, are widely used in 

pharmacological imaging, and have been proposed as a screening stage for CNS compounds 

prior to phase IIa clinical trials (1). We assumed that many aspects of experimental design would 

vary across studies, with study designs being optimized for specific clinical conditions and 

experimental questions. Our approach uses image-based mega-analysis (20) and multivariate 

pattern analysis (MVPA) methods (14, 20) to identify evidence for data and stimulus validity 

(i.e. quality assurance), pharmacodynamic modulation of brain activity, and evidence that these 

modulations suggest efficacy.  Detection of pharmacological effects and evidence for clinical 

efficacy was achieved by testing different algorithms trained to discriminate the effects of drug 

from placebo.  

 We tested a proof-of-concept implementation of the protocol on a set of 8 clinical fMRI 

datasets and 6 control datasets derived from the same studies [table 1, (6, 9, 18, 21–25)].  These 

studies investigated the effects of analgesic compounds on brain responses to painful stimuli. 

The assessment procedure was applied to each study individually, using data from the remaining 

studies to identify signatures of responses to pain and drug modulations.  

 

General fMRI drug assessment procedure and application to analgesic studies 



 

 

Our fMRI drug assessment protocol has three assessment stages, each addressing distinct 

questions: Quality assurance (Fig. 1A)—are the data and model of sufficient quality to identify 

the anticipated effects? Pharmacodynamic effect (Fig. 1B)—is the compound modulating brain 

activity? Evidence for clinical efficacy (Fig. 1C; fig. S1)—is there evidence for modulation of 

brain activity that has been shown to be associated with clinical efficacy? These assessment 

stages could be applied in a sequential manner using predefined decision rules.   

Quality assurance. Quality assurance (QA) is necessary to ensure that the acquired 

fMRI data and analysis strategies provide good prospects for identifying drug effects, should 

they exist.  QA should include a range of image quality and registration assessments as well as 

assessments of model validity and statistical procedures.  To assess drug-related modulations of 

responses, it is important that the modeled responses accurately reflect the processes of interest, 

such as pain.  In the proof-of-concept assessments of analgesics, we tested a QA assessment 

procedure that determined whether the pain responses recorded in the test study were similar to 

those in a set of existing studies (Fig. 1A).  A set of stimulus-response parameter maps from each 

study were generated using a general linear model (GLM) that included standardized regressors 

for the painful stimuli. A further GLM was used to model differences between responses in the 

test study compared to other studies. The QA assessment flagged a study as potentially 

problematic if it showed lower pain-related responses (across the combined drug and placebo 

sessions) compared to other studies in regions that consistently showed responses to painful 

stimuli (Supplementary Methods). 

Assessment of pharmacodynamic effects. Identifying evidence that a drug is 

modulating brain responses (“pharmacodynamic effect”) can increase confidence in a compound 

when moving forward to large-scale clinical trials (1, 2). Assessment of pharmacodynamic 



 

 

effects is particularly important where target engagement is questioned, dosing is uncertain, or 

the mode of action is poorly understood. Machine-learning classification methods can provide 

sensitive detection of subtle and spatially extended patterns of pharmacodynamic effects on brain 

responses.  The presence of a drug modulation can be assessed using cross-validation to quantify 

the reliability with which a classifier can distinguish drug from placebo sessions in held-out data 

(e.g., subjects not used in the training of the classifier) (Fig. 1B). The resulting prediction 

accuracies and associated p-values provide a simple measure for assessing the presence of drug 

effects.  

In our proof-of-concept application, a forced-choice support vector machine (SVM) was 

used for classification, using features derived from an Independent Component Analysis (ICA) 

based decomposition of the task response maps (26–29).  This classifier was trained to predict 

which of the sessions was associated with the test analgesic. A leave-one-subject-out cross-

validation scheme generated predictions for all subjects. Reliable identification of the drug 

session indicated evidence for a pharmacodynamic effect (Supplementary methods). 

Evidence for clinical efficacy. fMRI studies of the target disease, existing effective 

compounds, or brain systems targeted by the candidate compound, can provide indirect “proxy” 

evidence linking specific patterns of response modulations to increased likelihood of clinical 

efficacy for the test compound. The third stage of the drug assessment procedure consists of 

quantitative tests for such modulations. 

For our primary assessment for evidence of clinical efficacy with the proof-of-concept 

protocol for analgesic studies, we used an approach that aimed to identify a common signature of 

the effects of established compounds (Fig. 1C). Although different efficacious compounds will 



 

 

have varying modes of action, it is likely that many have commonalities in their action, or will 

produce similar modulations of downstream neural activity.  

A forced-choice SVM algorithm was trained to distinguish brain responses to pain in the 

presence of analgesics from responses during placebo, using data from a set of studies of 

established analgesics (Table 1, a to h). This classifier was tested on the target compound, to 

determine whether the effects of the target compound had similar enough action to the signature 

of analgesic action to be discriminated from placebo. This procedure was applied to parameter 

maps generated from individual subjects, producing prediction accuracies that could be 

compared to the results of the pharmacodynamic effect assessment.  

Preexisting efficacious compounds will not always be available for analysis. Evidence of 

efficacious drug action might also be obtained by training a classifier to identify modulations of 

brain responses associated with improvements in disease symptoms; for example, by training it 

to distinguish lower from higher pain levels (19). A second clinical efficacy assessment approach 

was tested where responses to different intensities of painful stimuli were used to train a 

classifier. This classifier was then tested for its ability to identify the drug condition as the lower 

pain state when compared to placebo (Supplementary methods, fig. S1). 

 

Datasets for proof-of-concept validation  

The proof-of-concept protocol was tested on eight placebo-controlled crossover fMRI studies of 

the effects of established analgesics on responses to pain (Table 1, a to h)(6, 9, 18, 21–25). All of 

the studies investigated how brain responses to short-lasting painful stimuli, such as brief laser 

pulses, were modulated by analgesics, in patients or healthy controls, with separate scanning 



 

 

sessions for the placebo and active drug conditions. The stimuli were always painful, but varied 

in their timing, location, and quality. Several studies involved multiple types or levels of painful 

stimuli (e.g. thermal, punctate, brush, squeeze) (table 1, b-e and g-h). The studies investigated 

analgesics from a variety of compound classes, and varied in the MRI scanners, disease states, 

dosing regimens, and numbers of subjects used (Table 1). Being capable of using heterogeneous 

datasets ensures that a high proportion of existing studies can be used to inform and validate 

assessments, and that assays can be developed in the context of evolving acquisition and 

experimental protocols.  

The protocol was tested for its robustness to false-positives using six datasets measuring 

effects not associated with analgesia (Table 1, i to n). Three of these control studies were 

generated from the test studies by replacing the active drug-session data with data from a second 

placebo or baseline session that had also been obtained in the study. Also assessed were control 

data where the painful stimuli were replaced with stimuli activating systems unrelated to 

analgesia, such as visual stimuli. We expected these data to be flagged in the QA assessment, as 

the stimulus responses were unlikely to resemble responses to painful stimuli.  

When the assessment protocol was applied to a study, the remaining analgesic studies were 

used as training data for QA and clinical efficacy assessments. Training sets excluded any 

studies assessing the same compound as the test study (so inferences would be valid for 

unstudied compounds), and studies that showed no evidence for pharmacodynamic effects. 

 

Decision rules for proof-of-concept assessments 



 

 

We defined some provisional decision rules to structure our proof-of-concept assessments. The 

choice of decision rules depends on the specific drug development context, taking into account 

existing evidence for the test compound, the promise of alternative compounds, and confidence 

in the imaging protocol.   

For QA, a test study was flagged as potentially problematic if the average pattern of pain 

responses deviated from those seen in other studies; specifically, if it showed significantly lower 

responses to pain compared to those seen in the set of existing studies, in areas showing 

consistent responses in the other studies.  If a study was flagged, we assessed data and modeling 

to determine the source of the discrepancy. For the drug effect and efficacy assessments, 

compounds were flagged as showing positive evidence for a drug effect if the whole-brain 

response maps measured in drug sessions could be discriminated from placebo using a classifier 

(Supplementary methods) at a rate greater than P=0.05 chance level (one-sided binomial test).  

As even modest evidence for a drug effect can provide substantial value to decision-making, 

discrimination at P-values ranging from 0.05 to 0.20 were given a qualified positive flag. We 

gave a study an overall “Go” outcome if it passed all of the decision stages, and a “Qualified Go” 

outcome if there was some evidence of pharmacodynamic effects or clinically efficacious action 

(Fig. 1C).  

Anomalous stimulus responses identified by multi-study QA assessment. One study, of 

pregabalin (Table 2, b)(24), initially failed the QA component of the proof of concept 

assessment, showing no positive responses to pain (fig. S1C).  Average time courses in key pain 

brain regions were generated using anatomical ROIs  (see “Validation of prediction methods”) 

and average responses from all subjects and sessions were extracted (n = 23, fig. S1B).  

Investigation of time-courses of the fMRI BOLD pain-related responses determined that BOLD 



 

 

pain responses were much briefer than modeled in the GLM (fig. S2, A and B).  The data were 

re-analyzed using a GLM using an additional component modeling a transient response to the 

onset of the painful stimulus, which corrected this modeling error (fig. S2, C and D). Diagnosing 

and updating the modeling in this way did not introduce biases into the drug assessment, as the 

average pain responses across conditions were orthogonal to the drug effect.   

 

 

Proof of concept fMRI protocol consistently identified pharmacodynamic effects of 

analgesics  

The results of applying the proof-of-concept procedure to the fMRI test datasets (Table 1) are 

shown in Table 2. Moderate to strong evidence for an analgesic drug like effect was identified 

for all analgesic compounds, while all control assessments of placebo conditions identified no 

evidence. 

All analgesic studies consistently identified a pain response.  Regions that consistently 

responded to the painful stimuli included insula, cingulate, and sensory cortices (Fig. 2A).  The 

control assessments involving innocuous auditory or visual stimuli were flagged as producing 

responses that did not correspond to pain responses. 

All but one of the tested analgesic fMRI studies showed evidence for a pharmacodynamic 

effect. In the successful drug assessments, analgesics were distinguished from placebo at rates 

ranging from 70 to 92%. When these studies were analyzed in individual GLM mapping 

analyses (with responses to pain in drug sessions subtracted from responses in placebo sessions), 

reduced brain responses during the drug sessions were evident in many studies, but the locations 



 

 

of significant clusters were not consistent, indicating that standard spatial localization analyses 

did not have the sensitivity to identify consistent effects (fig. S3). The study assessing the effects 

of tramadol on the brain responses to pain of post-traumatic neuropathic pain (PTNP) patients 

(Table 2, d), showed no evidence of a pharmacodynamic effect in the classification and GLM 

analysis. No pharmacodynamic effects were identified in the control studies where a second 

placebo replaced the drug condition, [Table 2, (i-j)] (6, 18). Remifentanil and naproxen 

modulated responses to visual and auditory stimuli [Table 2, (l-n)](21, 22).  

 

Identification of evidence of clinically efficacious (analgesic) effects 

The assessment for clinical efficacy found moderate to strong evidence for an analgesic-like 

effect on responses for all but one of the analgesic studies [Table 2, (a-h)].  Successful 

identification of analgesic sessions ranged from 57% to 83%, tending to be equal or less than 

study-specific pharmacodynamic prediction accuracies, except for tramadol.  Despite modulating 

pain ratings and responses, THC was not reliably discriminated from placebo by the clinical 

efficacy assessment, with accuracy of only 57% (ci: 36-76%). THC has a dissociative effect on 

pain perception, so may not produce the low-level modulations of pain responses produced by 

other analgesics. When sessions involving analgesic compounds were replaced by placebo or 

baseline sessions, prediction accuracies for the efficacy assessment algorithm were at chance 

levels [Table 2, (l and m)]. The algorithm also did not consistently identify the drug modulation 

of responses to non-painful visual and auditory stimuli as signs of potential efficacy [Table 2, (l-

n)].  

Examination of the weights of a linear SVM classifier trained to discriminate drug from 

placebo sessions across all analgesic studies identified a pattern of positive and negative 



 

 

weightings driving predictions. Negative weights, which would tend to correspond to weaker (or 

more negative) responses in the drug condition, were present in established pain regions, 

including the insula and anterior cingulate cortex. The negative areas matched reductions in 

activation identified in a mixed-effects GLM meta-analysis across all studies (Fig. 2B), and 

patterns of the effects of analgesics reported in past studies (3, 19, 20).  These regions, 

previously associated with analgesia and pain perception, are likely to have a variety of functions 

reflecting the multidimensional pain experience, along with attention, mood and salience (30). 

There were also areas with positive weights, including the default mode network and temporal 

and occipital cortices (Fig. 2C).  

 

Using a single established analgesic provides a less reliable test for evidence of analgesic 

clinical efficacy   

To determine whether approaches using existing compounds could be effective when only a 

limited number of studies of efficacious compounds were available, we investigated the 

performance of algorithms trained on just one study to identify other analgesics (Fig. 3). These 

assessments were less reliable, producing a maximum mean accuracy of 68% (Naproxen) 

compared to a mean accuracy of 74% when classifiers were trained on all remaining studies.  

Assessments using the THC study as training data performed particularly poorly, matching the 

poor performance of the clinical efficacy assessment when applied to this study. Transfer of 

discrimination capabilities across studies was good: for both compounds tested in two studies 

(pregabalin, remifentanil), training on one of the two studies, and testing on the second, produced 

high drug-placebo discrimination rates (minimum accuracy 74%, p < 0.02) (Fig. 3). 

 



 

 

Testing for clinical efficacy using signatures derived from modulation of stimulus intensity 

We tested a second approach to clinical efficacy assessment, which used fMRI signatures 

generated from the same study, associated with a lessening of clinical symptoms. For instance, a 

classifier was trained to distinguish responses to allodynic stimuli from the less painful non-

allodynic stimuli.  This classifier was tested for its ability to distinguish responses to allodynic 

stimuli measured in drug and placebo sessions. This approach was less reliable than the multi-

study strategy, although successful discrimination was achieved in studies showing strong 

pharmacodynamic effects [Table 3, (a,e,f)]. For several studies [Table 3, (d and h)], responses to 

the different stimulus levels could themselves not be reliably distinguished, rendering this 

approach impracticable. Some studies involved additional somatosensory stimuli that were less 

clinically relevant, such as mild thermal pain or pressure to non-allodynic regions of the skin. 

Drug-related modulations were not as reliably detected when using these stimuli, with no 

significant effect observed in four of eight assessments for pharmacodynamic effect (table S1). 

 

Relation of imaging-based assessments to subject-reported pain ratings 

Seven of the fMRI studies also measured pain self-reports [Table 1, (b to h)], with five 

identifying a significant average reduction in ratings of painful stimuli in the analgesic sessions 

(studies b, d,e,g, h). Two studies involving pregabalin and remifentanil [Table 1, (c and f)](21, 

25) showed evidence for drug action in the imaging data but not in the behavioral measures.  

Although the stimuli and pain-rating procedures used in these studies were not always optimized 

to detect changes in clinical pain, these results suggest that fMRI may be capable of providing 

information beyond what is available from behavioral measures. 



 

 

Image-based was superior to co-ordinate based mega-analyses and region-of-interest 

analyses 

We used an image-based mega-analytic approach to identify evidence of clinical efficacy (20).  

We compared this to the widely used co-ordinate–based meta-analytic methods, which combine 

peak-activation co-ordinates across research reports to identify reliably activating regions (20, 

29). These approaches have the benefit of using information that is typically avaialble in research 

reports, but lack sensitivity for effects that are modest and spatially extended.  Here, there were 

no areas where significant effects were observed in more than five of the eight studies (paired t-

test, cluster-corrected for multiple comparisons; table S2), so this approach identified no 

consistent drug effects. Assessments using signals derived from a set of anatomically defined 

pain-related regions-of-interest (ROIs) were also less reliable than the image-based assessments 

using MVPA, with the procedure failing for pregabalin and tramadol studies (table S2) 

 

DISCUSSION 

Early-stage testing of candidate CNS compounds has often been inadequate. Accomplishing the 

‘Three Pillars of Survival’—exposure at the site of action, target binding and expression of 

functional pharmacological activity—has been associated with greater likelihood of candidate 

success (2). fMRI has the potential to non-invasively and cost-effectively identify 

pharmacological activity (the third pillar), but integration of imaging methodologies into drug 

development decision-making is a challenge (5, 17).  Here, we have demonstrated and validated 

an fMRI-based assessment protocol, using published datasets, that was able to identify moderate 

to strong evidence for drug effects for all clinically proven analgesics, with no false-positives for 

control data. These results suggest that the fMRI can be of immediate value to analgesic  drug 



 

 

discovery.  Our protocol provides a framework for the refinement of experimental and analytic 

methods. The framework can used with existing data sets, making it useful for rapid, early-stage 

drug assessment. 

With its ability to characterize activity across multiple brain networks, fMRI  has the 

potential to provide predictors for drug candidates targeting a variety of aspects of clinical 

efficacy, (2, 3). We have demonstrated an approach that identifies predictors from sets of 

compounds with established efficacy, using the fact that the efficacy of these compounds has 

been validated through clinical trials. Even if some of the neural processes underlying response 

commonalities across these compounds may not be directly associated with disease symptoms, 

these secondary features can still be predictive of efficacy.  

One concern with assessments using signatures derived from established compounds is that 

they will overlook compounds with novel or different modes of action.  This is a possibility for 

any biomarker not directly linked to basic clinical outcomes.  If a candidate compound is 

expected to have a substantially different mode of action, it would be prudent to include 

alternative efficacy assessments, for example approaches using correlates of clinical symptoms, 

such as pain. Our approach using signatures obtained by identifying correlates of variations in 

painful stimulus intensities performed poorly in some studies (table S1). For at least one 

compound, the assessment failed because there were no detectable differences in responses to the 

different stimulus levels in the training data. An alternative approach could be to identify a 

general marker of pain levels across multiple studies.  This marker could potentially be a more 

reliable marker of efficacy than pain reports in populations where pain reports are unreliable 

(19). Defining and testing multiple approaches to identifying evidence for efficacious action will 

maximize the information that can be obtained from brain-imaging studies. 



 

 

The prospects of fMRI-based assessments will vary across drug classes, and should be 

carefully assessed during experimental design.  When an fMRI assessment protocol is 

implemented, decision rules will need to take into account the level of confidence in the test 

compound and the requirements of  the specific drug discovery context.  Decision rules might 

focus on rejecting compounds showing no evidence of pharmacodynamic effects, or accelerating 

compounds showing promising effects (1).  The potential for false-positives should be 

considered, as brain areas responsive to pain and analgesia are associated with a variety of other 

functions that will be modulated by numerous compounds (30, 31). Drugs may modify a variety 

of physiological variables that can confound imaging signals.   

Owing to the difficulty of obtaining good control datasets, the present assessment relied on 

the assumption that non-efficacious compounds will not consistently show effects similar to 

efficacious compounds. Incorporating non-efficacious compounds and other modulations of 

stimuli into classifier training will increase the specificity of these signatures, and enable better 

testing of protocols. Placebo effects may also present confounds to drug assessment, as they can 

reflect active brain processes providing symptom relief and may overlap and interact with the 

processes affected by drugs.  As drugs were contrasted against placebo in the present work our 

results do not preclude the possibility that placebo effects were present. Approaches that can 

detect and account for placebo effects will enhance assessments. 

The use of multi-study protocols for drug assessment and other applications will inform 

experimental design choices.  For example, we found that clinically relevant stimuli enabled 

more reliable identification of drug effects.  Additionally, we found that acute dosage studies 

tended to be more sensitive than studies where subjects received the compound for an extended 

period prior to scanning.  fMRI scanning for acute-dosage studies was undertaken at peak drug 



 

 

concentrations. In contrast, chronic-dosage studies involved scanning at lower steady state 

concentrations of drugs and involved patients with clinical pain conditions that are less reliably 

simulated by experimental stimuli. Altered brain responses under drug conditions may also 

normalize over extended dosage periods. MVPA methods need to be refined for the multi-study 

context. Approaches that into account the covariance structure of samples, variations in SNR 

across subjects and studies, and multiple modes of efficacious drug action, are likely to be 

beneficial. Classifiers that provide probabilistic estimates of the presence of a drug will be 

valuable, and potentially capable of identifying drug effects in smaller samples. 

Obtaining the data necessary for image-based multi-study analyses can be a challenge, as 

these data are not typically made available when results are published. The present work required 

the collection of studies from several laboratories, and extensive vetting and standardization of 

data formats.  However, the sensitivity achieved by image-based MVPA methods means that the 

multi-study approach can be implemented using smaller sets of studies.  Crucially, they could be 

applied to a series of studies from a single research group (19, 26). The collation of datasets will 

also be aided by new tools that automate the generation and transfer of raw and processed data 

(27).  

Our protocol could be used with other CNS imaging modalities, such as positron 

emission spectroscopy (PET), and electroencephalography (EEG), and even related 

physiological and behavioral measures. The protocol will be relevant whenever neural or 

behavioral correlates of the disease are non-specific or complex, and when complex multivariate 

or multi-modal data needs to be translated into validated decision procedures.  It may be possible 

to identify correspondences between fMRI and other neuroimaging techniques that directly 

measure brain metabolite concentrations or receptor occupancies.  This strategy has recently 



 

 

been demonstrated in a study targeting reward-related mechanisms relevant to addiction, which 

characterized the effects of two opioid antagonists using [11C]-carfentanil PET and fMRI (5).  

Beyond drug development, the quantitative integration of existing data into analyses of 

new imaging studies can expand the range of inferences that can be made and help to structure 

and refine neuroimaging-based research.  Multi-study approaches are important for many 

potential translational applications, such as prediction of drug response, disease state or disease 

progression, where extensive validation of biomarkers is essential to ensure sensitivity and 

specificity (15, 19).  These strategies can contribute to the identification and stratification of 

disease mechanisms, particularly in areas such as neuropsychiatry where the underlying 

pathophysiological processes are unclear and optimal imaging paradigms remain under 

investigation. 

 

Materials and Methods 

Study design  

To determine whether fMRI can provide informative assessments of drug candidates, we tested 

our protocol on eight investigations of analgesics. We focused on analgesics because studies of 

analgesics are relatively common, enabling us to collate enough datasets published in the 

literature and on www.ClinicalTrials.gov to test multi-study methods.  Analgesics are relevant to 

a variety of disease conditions and are a major target of drug discovery efforts.  Our primary 

endpoint was the proportion of test analgesic datasets for which the proof-of-concept drug 

assessment procedure found evidence for analgesic drug action at the predefined rate, along with 

the proportion of false positives.  We expected that for the protocol to be useful, at least 6 of 8 



 

 

compounds should be identified as showing some evidence for drug effects, with no more than 

one false positive in the control data. Analysis methods were specified prior to any data analysis.  

Data acquisition and pre-processing of the individual studies were blinded. Unblinding of 

condition labels was necessary to generate cross-validated prediction accuracies.  

 

Analgesic study datasets 

We identified seven placebo-controlled randomized crossover fMRI studies investigating the 

effects of analgesics on pain responses (Table 1)(6, 9, 18, 21–25). One study assessed two 

compounds (Table 1, c and d). Overall, the studies investigated the effects of six distinct 

analgesics on pain responses (two compounds were studied twice).  Sample sizes of the 

individual studies ranged between 12 and 23 subjects, depending on specific experimental 

requirements. Studies were designed and acquired independently at the collaborating research 

groups and were combined after an agreement to share datasets.   

The studies (Table 1) consisted of: (a) a study of gabapentin’s effects on painful stimuli 

applied to hyperalgesic (capsaicin induced) and non-allodynic body surfaces directed by I. T. and 

the PAIN group at FMRIB Centre, University of Oxford (9); (b) a comparison of pregabalin and 

placebo in fibromyalgia patients directed by R. E. H. and co-workers at the University of 

Michigan Chronic Pain and Fatigue Research Centre (24); (c, d) a comparison of pregabalin, 

tramadol, and placebo for post-traumatic neuropathic pain (PTNP) directed by I. T. and the 

PAIN group at FMRIB (data published online under 

http://clinicaltrials.gov/show/NCT00610155(25); information provided in Methods); (e) a study 

of remifentanil, assessing punctate and thermal stimuli directed by I. T. and the PAIN group at 

FMRIB (6, 18); (f) a study of the effects of remifentanil on LASER pain and a number of non-



 

 

painful stimuli run by R. W. and co-workers at FMRIB (21); (g) a study assessing the effects of 

tetrahydrocannabinol (THC) on painful stimuli to a region sensitized with capsaicin directed by 

I. T. at FMRIB (23); (h) a comparison of naproxen and placebo for osteoarthritis by M. A. H. 

and colleagues at the Institute of Psychiatry, Kings College London(22).  Studies were 

performed according to relevant institutional guidelines.  Informed consent was obtained from all 

study participants. 

 Four studies investigated subjects diagnosed with clinical conditions presenting with 

pain as the predominant symptom (Table 1, studies b to d, and h). These studies used daily 

dosing lasting a period of 1 to 2 weeks prior to the scanning session. The other four studies 

(Table 1; a, e to g) administered analgesics to healthy subjects immediately prior to the imaging 

session. Pain reports were recorded in some studies, and could include rating of the pain intensity 

of individual trials, sessions, or of ongoing clinical pain. This variability in measurements is 

typical for imaging studies, where there are many experimental design options and relatively few 

studies.   

Several assessments of control data with no analgesic effect were performed to determine 

how the procedure would perform with inadequate data or ineffective drugs (Table 1). Studies 

that assessed the effects of drugs that do not reduce pain were not available as such studies are 

rare.     

The datasets were pre-processed and analyzed using GLMs, described in Supplementary 

Methods, to produce trial, session and study-level parameter and variance maps reflecting 

responses to painful stimuli during placebo or drug conditions.  These maps were the primary 

inputs to the drug-assessment procedure.   

 



 

 

Additional experimental methods for pregabalin and tramadol experiment 

This experiment investigated the effects of pregabalin (study c) and tramadol (study d) on brain 

responses to painful stimuli in patients with post-traumatic neuropathic pain (PTNP) (Table 1).  

It was a double-blinded crossover study with pregabalin (titrated to 150 mg BID) tramadol SR 

(titrated to 200 mg BID), and placebo, in randomized order. The study was approved by the 

Oxford Research Ethics Committee C (08/H0606/5) and registered with the ClinicalTrials.gov 

(NCT00610155), where study details, behavioral outcomes, and ROI-based FMRI outcomes are 

provided (http://clinicaltrials.gov/show/NCT00610155).  

The study assessed twenty-one patients with PTNP, with 16 completing the study.  

Inclusion criteria for the study included: 1). a diagnosis of neuropathic pain for a duration of at 

least three months; 2). dynamic mechanical allodynia (DMA) with an intensity of no less than 4 

on the 11 point Numerical Rating Scale (NRS); 3). an average NRS pain intensity of at least 3 

over the previous week.  The site of DMA varied across subjects, with lateralization balanced 

across the study.   

Imaging sessions occurred at the end of each 7 day dosage period, and were followed by a 

7 day washout period. Imaging sessions included FMRI scans recording brain responses to the 

delivery of 15 Somedic brush stimuli to affected areas (DMAa) and control areas (DMAc). 

These brush stimuli lasted approximately five seconds, with a mean inter-stimulus period of 40 

seconds.  Subjects were asked to score the average pain intensity of each stimulus type, which 

were given in separate blocks. An 11-point NRS was used, with 0 corresponding to “no pain” 

and 10 corresponding to “worst pain possible”.  A present Pain Intensity (PPI) score (ongoing 

background pain at the beginning of the scanning session) was also recorded. BOLD fMRI data 

acquisition is described in Supplementary Methods. 



 

 

 

Validation of prediction methods  

To determine the value of the multi-study approach for reliable signatures of efficacy, we 

compared it to how well algorithms trained on individual studies could identify analgesics in 

other studies. To assess the value of the multivariate prediction strategy, we examined the ability 

of ROIs to identify efficacious action. The ROIs consisted of the posterior, medial, and anterior 

insula cortices; anterior and posterior cingulate cortices; nucleus accumbens; nucleus 

cuneiformis; amygdala; caudate; hippocampus; precuneus cortex; putamen; rostral ventromedial 

medulla; primary and secondary sensory cortices; and sensory thalamus. The ROIs were defined 

from T1 MR anatomical images, by experts in functional brain anatomy (K. W., I. T.). The ROI 

data were analyzed in an identical manner to the ICA components derived from the whole-brain 

data. 

 

Statistical analysis  

The drug-action assessment produced a study prediction accuracy rate through a leave-one-

subject-out cross-validation procedure. As the algorithm for the drug efficacy assessment was 

trained on other studies, the same trained algorithm was applied to all subjects. Probabilities that 

the resulting discrimination accuracies for each study were produced by chance were calculated 

(binomial test), along with 90% Wilson-score confidence intervals for the mean accuracy. Owing 

to the differences in these tests, a study can show a confidence interval encompassing 0.5, while 

still being p<0.05 for the hypothesis that discrimination was at chance level.   



 

 

The multi-level GLM analyses of the BOLD fMRI data produced T-statistic images 

reflecting the voxel-wise statistical strength of the stimulus-related BOLD signal responses to 

painful stimuli (one-sided, one-group t-test) or the effects of drugs on these responses (drug – 

placebo, within subject: paired one-sided, two-group t-test). These analyses used temporal 

autocorrelation correction and outlier detection to ensure model validity (32, 33). The resulting 

maps were transformed into Z-statistic images and thresholded (correcting for multiple 

comparisons) using FSL FEAT (33). A cluster forming threshold of Z=2.3 was first applied. 

Then, a cluster extent threshold was defined, based on Gaussian Random Field theory, 

identifying clusters with a significance level of p<0.05 (34). 
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Fig. S1. Alternative clinical efficacy procedure.   
Fig. S2. Modeling of pain responses in the pregabalin study (b) (24).   

Fig. S3. Summary of significant effects in individual study placebo vs. drug pain response 
contrasts for individual analgesic studies in Table 2. 

Table S1. Results of procedure applied to analgesic studies when experimental stimuli with 
lower clinical relevance are used.  

Table S2. Outcome of the analgesic assessment protocol when using inputs derived from a set of 
pain-related ROIs. 
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Figure captions 

Fig. 1. Protocol for assessing candidate CNS compounds using fMRI. Top row shows the 
general protocol. Bottom row shows a schematic of the proof-of-concept analgesic assessment 
protocol. (A) Quality-assurance. Prior to the assessment of drug effects, quality-assurance 



 

 

procedures test that the experimental protocol, preprocessing, and modeling identify expected 
brain responses. A comparison was performed between the effects of the painful stimulus in the 
test study and effects consistently observed in studies using similar stimuli. A study with lower 
responses in relevant brain areas was flagged as potentially problematic (t-test, corrected for 
multiple comparisons). (B) Test for pharmacodynamic effect. This stage tests whether the 
compound reliably modulates brain activity. Consistent modulation of brain responses is 
evidence for a pharmacodynamic effect. In the proof-of-concept procedure, a pharmacodynamic 
effect was flagged if an algorithm could be trained to distinguish drug from placebo responses in 
held-out subjects. (C) Test for evidence of clinical efficacy. The final stage tests whether 
observed modulations of responses correspond to established signs of efficacious action. The 
proof-of-concept approach determined whether a classifier trained to detect the effects of 
established analgesics could identify the test compound.  

 

 

 
Fig. 2. Multi-study effect maps. (A) Thresholded z-statistic maps of a mixed effects analysis of 
the average pain response across all 8 studies in Table 1. Red corresponds to brain regions 
showing significant response to the painful stimuli (one-group t-test for nonzero response, 
p<0.05, cluster-corrected). (B) Mixed effects analysis of modulation of pain responses by 
analgesics across all 8 analgesic studies in Table 1. Blue corresponds to regions showing a 
significantly reduced response to the painful stimuli in the analgesic sessions (paired two-group 
t-test, p<0.05, cluster-corrected). (C) Weight map of the SVM trained across all 8 studies in 
Table 1 (arbitrary threshold). Red corresponds to positive weights; blue, to negative weights. 



 

 

 
 

Fig. 3. Identifying evidence for clinical efficacy using data from a single training study.  
Classifiers trained to discriminate a single analgesic from placebo were tested on other studies to 
determine the extent to which discriminative capabilities transferred.  “All” corresponds to the 
training set comprising of all other studies, excluding studies of the same compound. The 
diagonal corresponds to within-study prediction rates measured using leave-one-subject-out 
cross-validation. The ‘All’ row shows the prediction accuracies for predictors trained on multiple 
studies (Fig. 2). The “mean” column shows the average performance of each training dataset 
when applied to other studies. Black boxes indicate discrimination was not greater than 0.5. 
 



 

 



 

 

Table 1. Analgesic and control study experimental parameters. Overview of 8 studies used in 
the testing and validation of our drug assessment procedure. Studies (c) and (d) were acquired in 
the same experiment and were separated in all assessments. PTNP, post-traumatic neuropathic 
pain; N/R, not recorded; N/A, not applicable; BID, bis in diem (in two divided doses per day); 
BPC, blood plasma concentration; VAS, visual analogue scale. 



 

 

 
 

 
Study Drug (reference/ 

clinicaltrials.gov id) 

Patient 

condition 

n 

subjects 

Scanner Dose Stimuli n 

trials 

Pain 

score 

Analgesic drug study assessments 

a Gabapentin (9) Healthy 12 3T Varian  1800 mg oral (taken 

2 h prior) 

Punctate to 

hyperalgesic skin 

20 N/R 

b Pregabalin  (24) Fibromyalgia 23 3T GE 225 mg/day oral (7 

days daily dosoing)  

Thumb squeeze 6 Yes 

c Pregabalin (25) 

(NCT00610155) 

PTNP 16 3T TIM Trio 150mg oral BID (7 

days daily dosing) 

Brush-evoked 

allodynia 

15 No 

d Tramadol (25) 

(NCT00610155) 

PTNP 16 3T TIM Trio 200mg oral BID (7 

days daily dosing) 

Brush evoked 

allodynia 

15 Yes 

e Remifentanil (6, 18) Healthy 22 3T Varian 2 ng/ml BPC i.v.  Punctate and thermal 10 Yes 

f Remifentanil  (21)  Healthy 12 3T Varian 1.5 ng/ml BPC i.v Laser 50 No 

g Tetrahydrocannabinol 

(23) 

Healthy 14 3T Varian 15 mg oral (taken 2 h 

prior) 

Punctate to 

hyperalgesic skin 

20 Yes 

h Naproxen(22)  Osteoarthritis 19 3T GE HDx 220 mg oral (taken 1 

h prior) 

Key turn 15 Yes 

Control study assessments 

i 2nd Placebo (Study b)  Fibromyalgia 23 3T GE N/A Thumb squeeze 6 No 

j 2nd Placebo (Study e)  Healthy 22 3T Varian N/A Punctate and thermal 10 No 

k 2nd Placebo (Study f)  Healthy 12 3T Varian N/A LASER 50 No 

l Remifentanil (Study f)  Healthy 12 3T Varian 1.5 ng/ml BPC 

infusion 

Flash 50 N/A 

m Remifentanil (Study f)  Healthy 12 3T GE 1.5 ng/ml BPC 

infusion 

Brief tone 50 N/A 



 

 

n Naproxen (Study h)  Osteoarthritis 19 3T GE HDx 220 mg (1 h) Visual stimulus 15 N/A 

 
 
Table 2. Results of the proof-of-concept drug assessment protocol applied to analgesic and 
control studies. QA identified the percentage of voxels showing responses that were 
significantly lower than responses in regions consistently responding to similar stimuli in the 
other studies (unpaired t-test, corrected for multiple comparisons). The pharmacodynamic effect 
assessment determined whether the stimulus responses associated with the test compound could 
be distinguished from those associated with placebo, evidence of a drug effect.  The clinical 
efficacy assessment tested whether studies of established compounds identified patterns of 
effects that could be used to distinguish the test compound from placebo. Accuracies give the 
proportion of subjects for which the test compound session was correctly identified.  P-values 
indicate the probability of achieving this accuracy or better given no drug effect (binomial test, 
chance = 50%). Sample sizes correspond to the number of subjects reported in Table 1. 90% 
Wilson-score confidence intervals are also shown.  Colors indicate whether compounds passed a 
specific assessment phase based on the predefined decision rules (Fig. 1): green – pass; yellow – 
provisional pass; red – fail; gray – problem with QA, reassess.  



 

 

 

Table 2 

 
Study Test compound QA Pharmacodynamic effect  Clinical efficacy Decision 

Area of reduced 

response (%) 

Accuracy (range) P Accuracy 

(range) 

P  

 Analgesic drug study assessments  

a Gabapentin  0  92% (70-100) 0.0002 83% (60-94) 0.003 Go  

b Pregabalin   0  	
   70% (52-83) 0.017 61% (44-76) 0.105 Go 

c Pregabalin   0  81% (61-92) 0.002 69% (42-79) 0.038 Go 

d Tramadol   0  56% (36-74) 0.22 75% (55-74) 0.01 Go (Q) 

e Remifentanil    0  86% (70-94) 0.000 82% (65-92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            0.000 Go 

f Remifentanil  0  83% (60-94) 0.003 75% (51-90) 0.003 Go 

g Tetrahydrocannabinol 

(THC) 

0  71% (49-86) 0.028 57% (36-76) 0.22 Go (Q) 

h Naproxen   0  73% (55-83) 0.01 73% (55-83) 0.01 Go 

   Control study assessments  

i Placebo (Study b)  0  52% (22-54) 0.339 48% (32-64) 0.5 Stop 

j Placebo (Study e)  0  27% (15-45) 0.97 45% (29-62) 0.584 Stop 

k Baseline (Study f)  0  58% (36-78) 0.194 33% (16-57) 0.806 Stop 

l Visual stimulus (Study f)  79 74% (51-90) 0.019 33% (16-57) 0.019 Reassess 

m Auditory stimulus (Study f)    6  100% (82-100) 0.000 58%(36-78) 0.194 Reassess 

n Visual stimulus (Study h)  48  73% (55-87) 0.009 47% (30-65) 0.5 Reassess 

 



 

 

 
Table 3. Comparison of efficacy assessments. Comparison of the clinical efficacy assessment 
shown in Table 2 with an alternative clinical efficacy assessment not requiring multi-study data. 
This assessment tested for a “normalization” of responses to disease-related stimuli in the drug 
condition. A classifier was trained to discriminate between the effects of different levels of a 
disease-related stimulus (e.g. different levels of alloydynia). Then, this classifier was tested for 
its ability to discriminate responses from drug and placebo sessions. Evidence for efficacy was 
identified if responses in the drug condition were consistently identified as responses associated 
with lower stimulus intensity. P values indicate the probability of achieving the obtained 
accuracy or better given no drug effect (chance = 50%, Binomial test). 90% Wilson-score 
confidence intervals are shown.  Colors indicate whether compounds passed a specific 
assessment phase based: Green –pass; Yellow – qualified pass (Q); Red –fail. 



 

 

 
 

 
 

 

 
 

Study Drug Clinical efficacy A 
(Existing analgesics) 

Clinical efficacy B  
(Response normalization) 

Accuracy 
(range) 

P Training comparison Training 
accuracy 
(range) 

Validation 
accuracy 
(range) 

P  

Analgesic study assessments 

a Gabapentin 83% (60-94) 0.003 Hyperalgesic vs. normal 92% (70-100) 67% (43-84) 0.007 

b Pregabalin 61% (44-76) 0.105 High vs. low pain 70% (52-83) 39% (24-56) 0.800 

c Pregabalin 69% (42-79) 0.038 Allodynic vs. normal 69% (48-84) 63% (42-79) 0.105 

d Tramadol 75% (55-74) 0.01 Allodynic vs. normal 50% (31-69) 44% (26-64) 0.600 

e Remifentanilllodynic vs. normal

f Remifentanil 75% (51-90) 0.003 Pain vs. non-pain  83% (60-94) 75% (51-90) 0.003 

g THC 57% (36-76) 0.22 Hyperalgesic vs. normal 71% (49-86) 57% (36-76) 0.210 

h Naproxen 73% (55-83) 0.01 High vs. low pain 63% (44-79) 58% (39-74) 0.180 

Control study assessments 

i Placebo (Study b)  52% (22-54) 0.339 High vs. low pain 70% (52-83) 30% (17-48) 0.890 

j Placebo (Study e)  27% (15-45) 0.97 Allodynic vs. normal 91% (76-97) 19% (33-67) 0.42 



  
 
 

MATERIALS AND METHODS 

Additional experimental methods for pregabalin and tramadol experiment 

A 3-T Tim Trio scanner (Siemens) was used. BOLD fMRI was acquisitions used an EPI 

sequence with GRAPPA acceleration factor 2, a 192x192mm FOV and matrix size of 64x64.  

The sequence had a repetition time of 3 s, a TE of 30 ms and 87 degree flip angle.  A symmetric-

asymmetric spin echo sequence was used to acquire field maps to correct for distortions due to 

B0-field inhomogeneities: TR=532 ms, TE1= 5.19 ms, TE2=7.65 ms, flip angle=60 degrees. 

High resolution structural scans were acquired using an MPRAGE sequence: single shot, 

FOV=192 mm, matrix size 192x174 with a 1x1x1 mm voxel size, TR=2040 ms, TE=4.7 ms, 

IR=900 ms, flip angle 8 degrees. 

 

Image pre-processing and General Linear Modeling (GLM) analysis for all studies 

Datasets including raw time series images were transferred to the FMRIB Centre, Oxford 

University, where they were stored, analyzed, and assessed for quality in a standardized manner.  

Each dataset included functional MRI scans and a high-resolution structural scan. Two-level 

(within- and between-subjects) fMRI GLM analyses were performed for each study to produce 

the inputs used by the assessment protocol.  The key inputs for the assessment protocol were 

response maps for individual subject’s placebo and drug sessions, and study-level drug-effect 

maps.  The multi-study analysis methods were specified prior to any data analysis.  Acquisition 

and pre-processing of the individual studies was performed in a blinded manner. Unblinding was 

required for the cross-validated analyses.   



 

 

Standard preprocessing and mapping analysis was employed using tools from FMRIB’s 

Software Library (FSL) package (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/).  Preprocessing included 

brain extraction (BET), head motion correction (McFLIRT), and spatial smoothing (SUSAN) 

(33).  Appropriate controls for the effects of non-neural physiological processes, such as changes 

in respiration, heart rate, and head movement, were important, as these could induce false-

positives or -negatives. Scans were excluded if an excess of 3mm of motion was detected across 

frames. Magnetic field maps were used to reduce distortions due to field inhomogeneities when 

available (FUGUE). 

For each study, the pre-processed functional data from the placebo and drug sessions 

were fit with a temporal model composed of separate regressors for each of the different painful 

stimulus conditions employed in the study, along with additional regressors modeling non pain-

related signals, such as innocuous sensory stimuli, pain-rating periods, physiological 

measurements, and head motion. The amplitude of the regressors was kept consistent across all 

studies to make them comparable. The FSL FMRI Expert Analysis Tool (FEAT) was used for 

linear modeling (33, 35). Resulting parameter maps were registered to standard anatomical 

space, via their high-resolution structural images using the FSL linear and non-linear registration 

tools FLIRT and FNIRT (33).  These drug and placebo response maps were used in the 

classification assessments, and also fed into the higher-level study and multi-study GLM 

analyses. 

Study-level effect maps were generated from session-level response maps using a 

second-level paired GLM that modeled consistent pair-wise differences between drug and 

placebo sessions. For studies with multiple types of stimuli, the stimuli expected to be most 

strongly modulated by analgesics were used. The study-level models included a regressor 



 

 

modeling the average difference between drug and placebo session responses across all subjects.  

Additional regressors modeled the average stimulus response for each subject, across both the 

drug and placebo sessions.  A further regressor modeled any effects associated with the order in 

which sessions were acquired.  Separate models were used to generate the average response to 

the stimulus. These models were estimated using FLAME (FMRIB’s Local Analysis of Mixed 

Effects), which provides a Bayesian mixed effects analysis incorporating estimates of uncertainty 

of the measured responses in each study (35).  

The image-based meta-analyses were performed in the same manner as the higher level 

group analyses, utilizing parameter and variance maps from the individual studies. Regressor 

amplitudes were standardized across studies. No further normalization of maps was performed; 

this remains an area open to optimization. At the multi-study level we modeled mean effects.  In 

the quality assurance assessment, we used a model accounting for mean differences between the 

pain response in a target study and all other studies. 

 

Quality assurance (QA) 

Meta-analytic approaches rely on the integrity of the datasets. In addition to standard 

quality control procedures built into the FSL software tools (33), we implemented an additional, 

meta-analytic assessment designed to identify modeling issues, such as inadequate baseline brain 

responses, incorrect timing specification, inaccurate hemodynamic models, or non-optimal 

filtering, that are unlikely to be identified from low-level data assessment.  This assessment 

determined whether the baseline patterns of brain activity of the test study (e.g. pain responses) 

deviated significantly from those observed in past studies. Deviations will indicate that the data 

may not provide a valid assessment for drug effects. Ideally this activity assessment would be 



 

 

performed on baseline sessions not affected by the drug or placebo arms of the study. However, 

these were generally not available, so the assessment was performed using both placebo and drug 

arms of the studies to ensure that no bias towards one condition is introduced.  

The assessment focused on regions that were significantly activated or deactivated across 

the other studies in a GLM-based meta-analysis performed using the FSL FEAT software (33). A 

study was flagged as potentially problematic if it showed significantly lower responses compared 

to the remaining studies, in regions found to be consistently activated across all studies 

(significant regions here identified by the spatial thresholding described in the main text under 

“Statistical analysis”).  

Flagged studies were subject to further assessments to determine the source of the 

unexpectedly low values. Model fits were compared to average responses, to identify modeling 

errors such as incorrect timing specification, inaccurate HRF models, or non-optimal filtering. If 

other stimuli were used, these were investigated to determine whether responses to these stimuli 

were affected.  Any problems that were identified were corrected, and all analyses were repeated 

with the corrected data.  

Multivariate pattern analysis 

Multivariate pattern analysis algorithms were trained to identify sessions with drug 

effects from held out single-subject data.  Single-subject drug and placebo trial-wise regression 

coefficient maps from the individual subject GLM analyses were input into the prediction 

algorithms. Regressor amplitudes were standardized across studies.  As with the GLM meta-

analyses, no further normalization of effect maps was carried out.  



 

 

Prior to prediction, data were projected onto a spatial basis set derived from an 

Independent Component Analysis (ICA) decomposition performed using the FSL tool 

MELODIC.  This reduced the drug and placebo effect parameter maps to a set of 110 features 

(29, 36). For all assessments, we used a basis set generated from all studies except the study 

under assessment, to avoid any chance of bias. 

The forced-choice task of identifying which of two sessions involves an analgesic is a 

ranking problem, which can be performed with a ranking SVM (26). A ranking SVM differs 

from an SVM classifier in that it aims to rank a set of samples in some way, rather than classify 

individual samples. The present task requires ranking the scans by identifying which of the two 

is most likely to involve the drug (for example, a forced choice between placebo and drug 

conditions). SVMs have been shown to deal well with large feature sets, and are consistently one 

of the best performing methods in imaging comparison studies (28). The C parameter of the 

SVM determines the trade-off between the width of the decision-boundary margin and the 

number of support vectors (or mis-classified points).  We used a nested cross-validation 

procedure to identify an optimal C value. The Python Multivariate Pattern Analysis (PyMVPA) 

and Scikit-learn toolkits were used for prediction, with SVM routines from the LibSVM library 

(37–39). The forced choice classification meant that sensitivity and specificity are always equal 

to the prediction accuracy. 

 

Assessing normalization of responses to clinical pain states 

This assessment determined whether drug-induced modulations of stimulus responses 

resembled the differences in responses seen when the severity of the disease-relevant stimuli was 

reduced (e.g., the difference between different intensities of painful stimuli). For example, a 



 

 

number of the test studies included painful stimuli to allodynic and normal skin, with the drug 

expected to modulate allodynia.  A forced-choice SVM classifier was trained to distinguish 

between responses to two levels of disease-relevant stimuli under placebo conditions (for 

example, painful stimuli applied to sensitized and non-sensitized skin). This classifier was then 

tested on a held-out subject, with the responses associated with the lower symptom severity 

being replaced by responses to the higher symptom severity during the drug sessions (fig. S1).  

Positive evidence for efficacy was flagged if the drug-modulated responses were consistently 

identified by the classifier as responses associated with the reduced clinical symptoms.  

 
 

 

 



 

 

Supplementary Figures 

 

Fig. S1. Alternative clinical efficacy procedure.  In this assessment, a classifier was trained to 
distinguish different levels of disease symptoms (for example, strong and weak painful stimuli).  
The classifier was then tested for its ability to distinguish drug sessions from placebo session 
responses to painful stimuli. If the drug session was consistently identified as the lower weaker 
stimulus, this was taken as evidence of efficacious action. 

 



 

 

 

Fig. S2. Modeling of pain responses in the pregabalin study (b) (27). This study was flagged 
in QA as showing anomalous pain responses. Further assessment found the responses did not 
match the initial response model. (A) Pain response modeling. Blue line shows the original 
sustained response component. Red line shows the transient response component added after 
QA. (B) Time course of fMRI BOLD signal responses extracted from the imaging recordings the 
insula and anterior cingulate cortex (ACC) brain regions (n = 23 subjects; confidence intervals 
indicate standard errors). (C) Sustained component–only modeling of the pain response. i. 
Regions showing a significant sustained signal response for the full duration of the mechanical 
stimulus. All effects are deactivations of the BOLD signal relative to baseline. ii. Regions 
showing significantly lower pain responses compared to those seen across all other studies in the 
multi-study dataset (two-group t-test, cluster-based thresholding, blue corresponds to regions 
where study (b) was less than the multi-study average). (D) Significant effects identified using 
the extended pain response model (paired t-tests, where red/yellow is a positive response; blue is 
deactivation). No differences were found compared to other studies. 
  

  

  



 

 

 

 

Fig. S3. Summary of significant effects in individual study placebo vs. drug pain response 
contrasts for individual analgesic studies in Table 2. Blue regions indicate where one or more 
studies had significant decreases in responses during drug conditions. Red indicates where one or 
more studies had greater responses in drug conditions. Green areas indicate where some studies 
showed significant increases and others significant decreases. Color bars indicate the number of 
studies showing significant effects.  All contrasts were paired t-tests and statistically thresholded 
identically with cluster corrected P ≤ 0.05. 

 
  



 

 

SUPPLEMENTARY TABLES 
 
Table S1. Results of procedure applied to analgesic studies when experimental stimuli with 
lower clinical relevance are used. Drug assessment protocol results when stimuli with lower 
clinical relevance than the primary stimuli (Table 2) were used as inputs to the assessments. 
Colors indicate whether compounds passed a specific assessment phase based on the predefined 
decision rules described in Results: Green –pass; Yellow – qualified pass (Q); Red – fail. Non-
hyperalgesic: stimulus was to hyperalgesic skin. Non-allodynic: stimulus was to non-allodynic 
skin. P-values indicate the probability of achieving this accuracy or better given no drug effect 
(chance = 50%). CIs are 90% Wilson-score confidence intervals. Analgesic modulations were 
not as consistently identified as they were with the primary stimuli, with four studies failing the 
pharmacodynamic effect assessment. 
 
 

Study Drug (condition) QA Pharmacodynamic effect  Clinical efficacy  Decision  
Area of reduced 

response (%) 
Accuracy 
(range) 

P Accuracy 
(range) 

P  

Additional study contrasts	
  

a Gabapentin (non-

hyperalgesic) 

0 58% (36-78) 0.193 75% (51-90) 0.019 Go(Q) 

c Pregabalin (non-

allodynic) 

0 63% (43-79) 0.105 63% (43-79) 0.105 Go(Q) 

c Pregabalin (thermal) 0 38% (21-58) 0.773 63% (42-79) 0.105 Go(Q) 

d Tramadol (non-

allodynic) 

0 25% (12-45) 0.96159 68% (48-84) 0.038 Go(Q) 

d Tramadol (thermal) 0 38% (21-58) 0.773 50% (31-69) 0.402 Stop 

e Remifentanil (thermal)  0 82% (65-92) 0 79% (61-90) 0.002 Go 

g THC (non-hyperalgesic)  0 71% (49-86)  0.029 57% (36-86) 0.212 Go(Q) 

f Naproxen (mild pain) 0 74% (49-86) 0.010 79% (61-90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.002 Go 

 

 

  



 

 

 
Table S2. Outcome of the analgesic assessment protocol when using inputs derived from a 
set of pain-related ROIs. Colors indicate whether compounds passed a specific assessment 
phase based on the predefined decision rules in Fig. 1: Green –pass; Yellow – qualified pass (Q); 
Red –fail. Grey – reassess data/analysis. Three analgesic studies were not successfully identified 
by this assessment protocol. QA  characterized the percentage of voxels showing responses that 
were significantly lower than responses in regions consistently responding to similar stimuli in 
the other studies (voxelwise unpaired t-test, corrected for multiple comparisons). Accuracies give 
the proportion of subjects for which the analgesic session was correctly identified.  P-values 
indicate the probability of achieving this accuracy or better given no drug effect (binomial test, 
chance = 50%). Sample sizes correspond to number of subjects reported in Table 1. 90% Wilson-
score confidence intervals are shown.   
 
Study Drug QA Pharmacodynamic effect  Clinical efficacy  Decision  

Area of reduced 

response (%) 

Accuracy 

(range?) 

P Accuracy 

(range?) 

P 

 Analgesic study contrasts  

a Gabapentin  0 75% (51-90) 0.019 75% (51-90) 0.019 Go  

b Pregabalin (I)  0  52% (36-68) 0.339 48% (32-64) 0.500 Stop 

c Pregabalin (II)  0  44% (26-64) 0.598 38% (21-58) 0.772 Stop 

d Tramadol   0  38% (21-58) 0.772 38% (21-58) 0.772 Stop 

e Remifentanil  (I)  0 91% (76-97) 0.000 95% (82-99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.000 Go 

f Remifentanil (II)   0  92% (69-99) 0.000 92% (69-99) 0.000 Go 

g  THC 0  71% (49-86) 0.029 43% (24-64) 0.029 Go(Q) 

h Naproxen   0  63% (44-79) 0.084 63% (44-79) 0.084 Go(Q) 

   Control study contrasts  

i Placebo - Study (b)  0 30% (22-54) 0.953 43% (32-64) 0.661 Stop 

j Placebo - Study (e)  0  59% (42-74) 0.143 59% (42-74) 0.143 Go(Q)  

k Baseline - Study (f)  0  67% (43-84) 0.072 42% (22-64) 0.612 Stop 

l Visual stimulus -  Study (f)  79 91% (70-99) 0.000 8% (0-30) 0.997 Reassess 

m Auditory stimulus - Study (f)  6  50% (29-71) 0.387 42% (22-64) 0.612 Reassess 

n Visual stimulus - Study (h)  48 32% (17-50) 0.916 58% (42-74) 0.143 Reassess 

 


