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Abstract: Capparis spinose L. also known as Caper is of great significance as a traditional
medicinal food plant. The present work was targeted on the determination of chemical
composition, pharmacological properties, and in-vitro toxicity of methanol and
dichloromethane (DCM) extracts of different parts of C. spinosa. Chemical composition
was established by determining total bioactive contents and via UHPLC-MS secondary
metabolites profiling. For determination of biological activities, antioxidant capacity was
determined through DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal
chelating assays while enzyme inhibition against cholinesterase, tyrosinase, α-amylase
and α-glucosidase were also tested. All the extracts were also tested for toxicity
against two breast cell lines. The methanolic extracts were found to contain highest
total phenolic and flavonoids which is correlated with their significant radical
scavenging, cholinesterase, tyrosinase and glucosidase inhibition potential. Whereas
DCM extracts showed significant activity for reducing power, phosphomolybdenum,
metal chelation, tyrosinase, and α-amylase inhibition activities. The secondary
metabolites profiling of both methanolic extracts exposed the presence of 21 different
secondary metabolites belonging to glucosinolate, alkaloid, flavonoid, phenol,
triterpene, and alkaloid derivatives. The present results tend to validate folklore uses of
C. spinose and indicate this plant to be used as a potent source of designing novel
bioactive compounds.
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 Chemical, biological and in-vitro toxicological properties of Capparis spinosa 

extracts were studied. 

 Methanol extracts of both the aerial and root parts were found to have higher total 

bioactive contents and comparatively higher antioxidant potential. 

 UHPLC-MS and HPLC-PDA analysis revealed the presence of phenolic, alkaloid, 

glucosinolate, and flavonoid derivatives  

 The plant was found to present weak to moderate toxicity against the tested cell lines. 
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Capparis spinose L. also known as Caper is of great significance as a traditional 

medicinal food plant. The present work was targeted on the determination of chemical 

composition, pharmacological properties, and in-vitro toxicity of methanol and 

dichloromethane (DCM) extracts of different parts of C. spinosa. Chemical composition was 

established by determining total bioactive contents and via UHPLC-MS secondary metabolites 

profiling. For determination of biological activities, antioxidant capacity was determined 

through DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelating assays 

while enzyme inhibition against cholinesterase, tyrosinase, α-amylase and α-glucosidase were 

also tested. All the extracts were also tested for toxicity against two breast cell lines. The 

methanolic extracts were found to contain highest total phenolic and flavonoids which is 

correlated with their significant radical scavenging, cholinesterase, tyrosinase and glucosidase 

inhibition potential. Whereas DCM extracts showed significant activity for reducing power, 

phosphomolybdenum, metal chelation, tyrosinase, and α-amylase inhibition activities. The 

secondary metabolites profiling of both methanolic extracts exposed the presence of 21 

different secondary metabolites belonging to glucosinolate, alkaloid, flavonoid, phenol, 

triterpene, and alkaloid derivatives. The present results tend to validate folklore uses of C. 

spinose and indicate this plant to be used as a potent source of designing novel bioactive 

compounds. 
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Abstract 41 

Capparis spinose L. also known as Caper is of great significance as a traditional medicinal 42 

food plant. The present work was targeted on the determination of chemical composition, 43 

pharmacological properties, and in-vitro toxicity of methanol and dichloromethane (DCM) 44 

extracts of different parts of C. spinosa. Chemical composition was established by determining 45 

total bioactive contents and via UHPLC-MS secondary metabolites profiling. For determination 46 

of biological activities, antioxidant capacity was determined through DPPH, ABTS, CUPRAC, 47 

FRAP, phosphomolybdenum, and metal chelating assays while enzyme inhibition against 48 

cholinesterase, tyrosinase, α-amylase and α-glucosidase were also tested. All the extracts were also 49 

tested for toxicity against two breast cell lines. The methanolic extracts were found to contain 50 

highest total phenolic and flavonoids which is correlated with their significant radical scavenging, 51 

cholinesterase, tyrosinase and glucosidase inhibition potential. Whereas DCM extracts showed 52 

significant activity for reducing power, phosphomolybdenum, metal chelation, tyrosinase, and α-53 

amylase inhibition activities. The secondary metabolites profiling of both methanolic extracts 54 

exposed the presence of 21 different secondary metabolites belonging to glucosinolate, alkaloid, 55 

flavonoid, phenol, triterpene, and alkaloid derivatives. The present results tend to validate folklore 56 

uses of C. spinose and indicate this plant to be used as a potent source of designing novel bioactive 57 

compounds. 58 

Keywords: Capparis spinose; antioxidant; secondary metabolites, enzyme inhibition, bioactive 59 

compounds 60 

 61 

 62 

 63 
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1. Introduction 64 

Natural products have been utilized since time immemorial as curative agents for health 65 

management and treatment of common ailments because of their health-promoting properties and 66 

bioactive contents (Zhang and Ma, 2018). In consonance with the World Health Organization, the 67 

majority of the world’s populations (about 80%) depends mostly on conventional/herbal drugs and 68 

in many countries, and the overall medicinal consumption is 30-50% that can be estimated from 69 

the preparation of conventional medicine (Locatelli et al., 2017; Zhang and Ma, 2018). For 70 

example, in Germany, approximately 90% of the population has utilized the old natural remedies 71 

for different health matters [2]. Hence, in industrial and developing countries, the use of traditional 72 

medicine is prevalent (Gunjan et al., 2015). The worldwide market for the use of traditional 73 

medicine is becoming very strong. Almost over $60 billion are covered from herbal medicine 74 

yearly, which is increasing progressively (Gunjan et al., 2015).  75 

 Capparis genus is from the family of Capparidaceae, which is in use widely for folk 76 

medicine from the distant past, particularly in countries of Western and Central Asia as well as the  77 

Mediterranean basin like Morocco, Spain, Tunisia, Italy and Turkey (Rivera et al., 2003). C. 78 

spinosa (also called as Caper) is a long-lasting shrubby plant that can grow in warm and dry 79 

weathers such as Middle and West Asia, the Mediterranean region and also numerous regions of 80 

Iran  (Sultan and Çelik, 2009). The connection between capers and human beings is ancient that 81 

can be linked to the Stone Age. C. spinosa remains were discovered in archaeological areas like 82 

the inferior Mesolithic (9500–9000 b.p.) (Moufid and Farid, 2015). The remains of C. 83 

spinosa have been explored in China for the very first time and also in the eastern part of Central 84 

Asia which favors the use of caper as medicine from the last 2800 years (Jiang et al., 2007). 85 
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Caper is in use from ancient times in food preparation for fragrant and flavoring 86 

purposes, C. spinosa is also known for its use as an ordinary natural remedy because of its distinct 87 

properties for hypertension, poultice, tonic and diuretic problems (Duman and Özcan, 2014; 88 

Trombetta et al., 2005). C. spinosa is commonly found in hot and dry weathers and that its fruit, 89 

roots and barks are known because of their medicinal significance. It is traditionally used as the 90 

medicine for different health problems like diuretic, gout, rheumatism, hyperlipidemia, 91 

hyperglycemia, hypertension and also for liver and spleen disorders (Bonina et al., 2002; Lemhadri 92 

et al., 2007). In Morocco, this plant is usually used to control diabetes and its treatment and mostly 93 

used as a scented agent in Moroccan kitchens  (Jouad et al., 2001). The parts of C. spinosa, such 94 

as fruits and roots, are known because of their beneficial properties on human health and are used 95 

as a herbal curative agent from the old times (Mansour et al., 2016). In earlier ages, The Egyptians 96 

and Arabs used the roots of C. spinosa for the treatment of kidney and liver disorders, and Romans 97 

used this plant as a therapeutic agent for paralysis. Moroccans also used it for diabetes treatment 98 

(Tlili et al., 2011). The root of C. spinosa is used for the treatment of enlarged spleen, mental 99 

problem and tubercular glands (Afzal et al., 2009). C. spinosa was also used as a medicine of 100 

rheumatoid arthritis and gout in China (Ao et al., 2007). It is also used in the treatment of 101 

hemorrhoids and gout in Iran (Mahboubi and Mahboubi, 2014).  102 

Despite the plethora of studies related to the therapeutic uses of C. spinosa, data related to 103 

its chemical composition, antioxidant potential and enzyme inhibition activities related to most 104 

common human diseases is limited. Given the background regarding medicinal properties of E. 105 

milii, this work was conducted to probe into the enzymatic inhibitory activities of methanol and 106 

dichloromethane (DCM) extracts from aerial and roots of C. spinosa on key enzymes related to 107 

neurodegenerative ailments (acetylcholinesterase -AChE and butyrylcholiesterase -BChE), 108 
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diabetes (α-glucosidase and α-amylase) and skin hyperpigmentation (tyrosinase). Extracts were 109 

also appraised for their antioxidant potential utilizing free radical scavenging (2,2-diphenyl-1-110 

picrylhydrazyl -DPPH and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) -ABTS), 111 

reducing power (ferric reducing antioxidant power -FRAP and cupric reducing antioxidant 112 

capacity -CUPRAC), phosphomolybdenum and metal chelation assays. The cytotoxicity was also 113 

performed against the MCF-7 and MDA-MB-231 breast cancer cell lines. All the extracts were 114 

chemically characterized by determining their total bioactive contents via spectrophotometric 115 

methods and individual secondary metabolic profiles by ultra-high-performance liquid 116 

chromatography- mass spectrometry (UHPLC-MS). Moreover, principal component analysis 117 

(PCA) statistical studies were performed to highlight possible interactions between the bioactive 118 

contents and tested biological assays. 119 

2. Material and methods 120 

2.1. Plant material and extraction 121 

Aerial and root parts of C. spinosa were collected from Cholistan desert and identified by 122 

Mr. Hafiz Waris, Taxonomist, at Cholistan Institute of Desert Studies, The Islamia University of 123 

Bahawalpur. Additionally, a voucher specimen was deposited in the herbarium of Faculty of 124 

Pharmacy and Alternative Medicines, The Islamia University of Bahawalpur, for future reference. 125 

For extraction, powdered aerial and root parts were subjected for maceration (72 hrs) consecutively 126 

using DCM and methanol solvents and were kept at room temperature with intermittent shaking. 127 

The extracts obtained were made concentrated using a rotary evaporator and are abbreviated as 128 

CsA-M: C. spinosa aerial methanol extract; CsA-D: C. spinosa aerial DCM extract; CsR-M: C. 129 

spinosa root methanol extract; CsR-D: C. spinosa root DCM extract. 130 

 131 
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2.2. Total bioactive contents, UHPLC-MS analysis, and HPLC-PDA analysis 132 

The standard Folin-Ciocalteu method was utilized to find out total phenolic content 133 

(Zengin et al., 2016c). The standard used for this purpose was gallic acid, and the amount of total 134 

phenolic content is expressed as mg GAE/g (gallic acid equivalents). Whereas to explore the total 135 

flavonoid content, the aluminum chloride colorimetric method was used (Chew et al., 2009), and 136 

quercetin was used as a standard. The results were expressed as mg QE/g (quercetin equivalent). 137 

UHPLC-MS analysis of methanol and ethyl acetate extracts was performed (negative 138 

ionization mode) on Agilent 1290 Infinity LC system coupled with Agilent 6520 Accurate-Mass 139 

Q-TOF mass spectrometer with dual ESI source as reported earlier (Saleem et al., 2019). The 140 

METLIN database was used for the tentative identification of different secondary metabolites in 141 

the tested samples. Moreover, a list of 22 different polyphenolic standards (including gallic acid, 142 

catechin, chlorogenic acid, 4-hydroxybenzoic acid, vanillic acid, epicatechin, syringic acid, 3-143 

hydroxybenzoic acid, 3-hydroxy-4-methoxybenzaldehyde, p-coumaric acid, rutin, sinapinic acid, 144 

t-ferulic acid, naringin, 2,3-dimethoxybenzoic acid, benzoic acid, o-coumaric acid, quercetin, 145 

harpagoside, t-cinnamic acid, naringenin and carvacrol) was tested to be quantified in all the 146 

samples using HPLC-PDA analysis as reported previously (Locatelli et al., 2017).  147 

2.3. Antioxidant assays 148 

The standard methods were used to explore the free radical scavenging using DPPH (2,2-149 

diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), 150 

reducing power by using FRAP (ferric reducing antioxidant power) and CUPRAC (cupric 151 

reducing antioxidant capacity), total antioxidant capacity through phosphomolybdenum assay and 152 

metal chelating power as explained earlier in  Grochowski et al. (2017) (Grochowski et al., 2017). 153 
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The results of all antioxidant assays were recorded as Trolox equivalents (except metal chelating 154 

assay for which EDTA was used as standard). 155 

2.4. Enzyme inhibition assays 156 

The enzyme inhibition studies of all the extracts against tyrosinase, acetylcholinesterase, 157 

butyrylcholinesterase, α-amylase, and α-glucosidase were exposed by utilizing the previous 158 

standard in-vitro methods (Grochowski et al., 2017). The AChE (acetylcholinesterase) and BChE 159 

(butyrylcholinesterase) inhibition activity were expressed as standard galantamine equivalents (mg 160 

GALAE/g extract), while acarbose equivalent (mmol ACAE/g extract) for α-amylase and α-161 

glucosidase and kojic acid equivalent (mg KAE/g extract) for tyrosinase were used. 162 

2.5. MTT cytotoxicity assay 163 

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cytotoxicity 164 

activity of the tested samples was tested against two breast cancer cell lines, i.e., MDA-MB 231 165 

and MCF-7 cells employing the previously described method (Nemudzivhadi and Masoko, 2014).  166 

The cell viability percentage (%) was determined as follows: 167 

Percentage cell viability = ABSs – ABSc × 100 168 

Where ABSs: absorbance of the sample; ABSc: absorbance of control 169 

 170 

2.6. Statistical analysis 171 

The assays were carried out in a triplet, and independent experiment, and the results were 172 

calculated as a mean value ± standard deviation (SD). SPSS v.17.0 software was used for data 173 

analysis. One way analysis of variance via ANOVA followed by Tukey’s test was done to find out 174 

the differences between means. A statistical value of p < 0.05 was considered significant. The 175 

principal component analysis (PCA) was carried out to identify the association between 176 

phytochemical content and biological properties. 177 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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3. Results and discussion 178 

3.1. Total bioactive contents 179 

In the present case, the extracts of C. spinosa were tested by the standard Folin-Ciocalteu 180 

and AlCl3 methods for their total phenolic and flavonoid contents. The amount of total phenolic 181 

content was more in CsA-M (30.36 mg GAE/g extract) and CsR-M (23.53 mg GAE/g extract), as 182 

compared to the DCM extracts. Related results can be seen in the case of flavonoids as well 183 

(Table 1). Many studies have confirmed the presence of greater phenolic contents in methanolic 184 

extracts (Do et al., 2014; Murugan and Parimelazhagan, 2014). 185 

The UHPLC-MS analysis of C. spinosa aerial methanol extract showed the presence of 186 

eleven different compounds (Table 2 and Figure 1). Most of these compounds were belonging to 187 

glucosinolate and flavonoid derivatives. The five flavonoids present were kaempferol 3-(2G-188 

glucosylrutinoside), robinin, robinetin 3-rutinoside, luteolin 7-rhamnosyl (1->6) galactoside and 189 

tricetin 7-methyl ether 3'-glucoside-5'-rhamnoside. While glucoputranjivin, glucocochlearin and 190 

4-Methoxyglucobrassicin were the present glucosinolates. Moreover, sarmentosin epoxide 191 

(cyanogenic compound), citric acid and gimgerol (phenol) were also detected. Similarity, C. 192 

spinosa root methanol extract identified the ten different compounds belonging to alkaloid and 193 

flavonoids (Table 3 and Figure 1). The alkaloids detected were calystegin B2, cadabicine, 3-O-194 

acetylhamayne and michellamine B. Three flavonoids abruquinone B, melanoxetin and embigenin 195 

2''-(2'''-acetylrhamnoside) were also identified. Moreover, one glucosinolate (glucoputranjivin), 196 

withanolide (withaperuvin H) and triterpene (licoricesaponin K2) were also present. The presence 197 

of these classes of secondary metabolites in C. spinosa is in agreement with previous studies 198 

(Moufid and Farid, 2015; Zhang and Ma, 2018). 199 



9 
 

Similarly, to have in-depth evaluation of the phytochemical composition, all the extracts 200 

of C. spinosa were studied by HPLC-PDA analysis for the quantification of 22 important phenolic 201 

compounds, and the results are presented in Table 4. The CsR-D extract was found to contain the 202 

maximum number of phenolics including vanillic acid, syringic acid, 3-OH benzoic acid, 3-OH 4-203 

methoxy benzaldehyde, and 2.3-diMeO benzoic acid. 204 

3.2. Antioxidant potential 205 

A pathological activator of various diseases, such as Alzheimer's disease and Type II 206 

Diabetes, is oxidative pressure. Therefore, antioxidants are of great significance for the treatment 207 

of such oxidative stress. (Li et al., 2017). In this study, the antioxidant potential of C. spinosa aerial 208 

and root extracts was evaluated by utilizing six different protocols such as phosphomolybdenum, 209 

CUPTAC, FRAP, ABTS, DPPH, and metal chelating power, and the results can be seen in Table 210 

5. The stable compound DPPH is free-radical, which shows the maximum wavelength at 517 nm 211 

and is commonly used for antioxidant determination (Loganayaki et al., 2013). All of the extracts 212 

were active against DPPH, showing activity in the following order CsA-M >CsR-M >CsR-D 213 

>CsA-D. This higher DPPH radical scavenging of aerial methanol (30.48±0.37 mg TE/g extract) 214 

and root methanol (28.45 mg TE/g extract) extracts shows correlation with their greater bioactive 215 

contents, and this is supported by the previous researcher who already explained that high DPPH 216 

scavenging activity was due to the presence of high phenolic content (Loganayaki et al., 2013; 217 

Piluzza and Bullitta, 2011). Another radical used for the determination of the antioxidant potential 218 

of plant extracts is ABTS and is a free blue/green radical with the maximum wavelength of 734nm 219 

(Zengin et al., 2018). In Table 5, it can be seen that the CsA-M and CsR-M extracts of C. spinosa 220 

actively scavenged ABTS radical, exploring the maximum Trolox equivalent values, i.e., 40.55 221 

and 40.43 mg TE/g extract, respectively.  222 
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Other assays like FRAP and CUPRAC were utilized for the determination of the reducing 223 

capacity of the extracts. The reducing capacity can be quantified by observing the absorbance of 224 

ferric tripyridyltriazine to ferrous tripyridyltriazine while in the CUPRAC method, we can observe 225 

cupric reducing capacity to cuprous in the presence of copper(II)- neocuproine [Cu(II)-Nc] reagent 226 

(Al-Rimawi et al., 2016). It can be seen that both DCM extracts i.e., CsA-D (FRAP: 50.37 mg 227 

TE/g extract CUPRAC: 118.45 mg TE/g extract) and CsR-D (FRAP: 42.82 mg TE/g extract 228 

CUPRAC: 96.89 mg TE/g extract) has a potent reducing ability. 229 

In the phosphomolybdenum method, Mo (VI) is reduced to Mo (V) in the presence of 230 

antioxidants (Chaouche et al., 2014). A reverse pattern can be observed as a trend for the 231 

phosphomolybdenum method, with CsA-D being the most active extract, in comparison with CsR-232 

D and CsA-M extracts. The root methanol extract was not active. As this antioxidant assay 233 

measures the antioxidant potential of both phenolic and non-phenolic compounds, so the results 234 

recorded in phosphomolybdenum assay can be correlated to other non-phenolic compounds such 235 

as vitamin C or tocopherol in DCM extracts. These results are in agreement with the earlier studies 236 

(Albayrak et al., 2010; Llorent-Martínez et al., 2017) who reported the high antioxidant potential 237 

for DCM solvent. 238 

 Iron is of vital importance for respiration, oxygen transportation, and enzyme activity, but 239 

it also plays a vital role in the redox reaction, hence playing a role in oxidative stress (Farina et al., 240 

2013). The results of our study explained that the different extracts of C. spinosa could chelate 241 

iron (Table 5). Similar to reducing power results, both DCM extracts were found to be the most 242 

active metal chelators, followed by methanolic extracts. These findings show similarity with 243 

earlier studies which reported that there is no correlation between total phenolic and metal 244 

chelating capacity (Khorasani Esmaeili et al., 2015; Silva et al., 2008; Yerlikaya et al., 2017). At 245 
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this point, non-phenolic compounds like tocopherol, as previously isolated from C. spinose 246 

(Moufid and Farid, 2015), could be attributed to this activity.  As presented in Figure 2, Pearson 247 

correlation analysis confirmed the tested antioxidant results and showed a significant relationship 248 

of total bioactive contents and radical scavenging capacities (DPPH and ABTS), while a moderate 249 

association was observed for FRAP, whereas a negative correlation was the recorder for 250 

phosphomolybdenum and metal chelation assays in relation with bioactive contents. 251 

3.3. Enzyme inhibition assays 252 

Similarly, α-amylase and α-glucosidase inhibitors are used as therapeutic agents in the case 253 

of DM. Tyrosine is the key enzyme used in melanin synthesis, and for the treatment of 254 

hyperpigmentation, tyrosinase inhibitors are used. According to this information, the enzyme 255 

inhibitors can be synthesized artificially. In this case, limited side effects can be observed, such as 256 

toxic properties and gastrointestinal problems (Kumar et al., 2011). So, many researchers are trying 257 

to isolate inhibitors from natural sources having no or minimal side effects. So, the enzyme 258 

inhibition studies were carried out on C. spinosa extracts against cholinesterases, tyrosinase, 259 

amylase and glucosidase. The results are expressed in Table 6. The CsA-M and CsR-M extracts 260 

revealed the highest cholinesterase inhibition on both AChE (4.06 and 5.58 mg GALAE/g extract) 261 

and BChE (4.71 and 4.13 mg GALAE/g extract). However, the CsR-D extract does not show 262 

inhibition against AChE. This observed activity of methanolic extracts can be linked to high levels 263 

of phenolic compounds in the extracts. These findings are supported by several researchers 264 

(Kennedy and Wightman, 2011; Mazlan et al., 2013; Roseiro et al., 2012), who reported a linear 265 

correspondence between phenolic content and cholinesterase inhibition. Moreover, as shown in 266 

Figure 2, a strong positive correlation was observed between total phenolic contents of the tested 267 
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extracts and their AChE and BChE inhibition (R values in the range of 1), whereas total flavonoids 268 

presented a strong positive correlation for BChE but moderate for AChE. 269 

All extracts have the significant ability to inhibit tyrosinase enzyme, and the CsA-D extract 270 

showed great tyrosinase inhibition, which is 139.78 mg KAE/g extract. As for glucosidase 271 

inhibition, the methanolic extracts express maximum ability for inhibition as compared to DCM 272 

extracts. However, as indicated in Figure 2, a strong negative correlation was seen among total 273 

bioactive contents and tyrosinase inhibition (R values in the range of -1). 274 

 Glucosidase inhibition may be due to the presence of high phenolic contents. According 275 

to our study, the phenolic compounds were responsible for anti-diabetic activity (Etxeberria et al., 276 

2012; Tundis et al., 2010). Though, the case for amylase was different because DCM extracts were 277 

found to be most active. Huseini et al. (Huseini et al., 2013) revealed those patients who were 278 

taking 1200 mg of C. spinosa fruit extracts in their daily routine expressed a significant low level 279 

of glycosylated hemoglobin and fasting blood glucose level as compared to the control group (p = 280 

0.043 and 0.037, correspondingly) and it was also reported that there was an improvement in 281 

hyperglycemia and hypertriglyceridemia in diabetic persons. Likewise, it was also reported that C. 282 

spinosa is responsible for decreased absorption of carbohydrates, and another study reports that it 283 

decreases the rate of carbohydrate absorption and exerts the postprandial hypoglycemic effect on 284 

the gastrointestinal tract (Lemhadri et al., 2007). So, the molecular approaches can be more 285 

valuable to understand the interactions between enzymes and secondary metabolites. Our results 286 

are also supported by PCA analysis (Figure 2) which confirms a negative association among total 287 

phenolic and flavonoids with amylase inhibition, however, a strong positive correlation was 288 

observed for phenolic contents and glucosidase inhibition, while total flavonoid contents also 289 

showed a moderated correlation for glucosidase enzyme.  According to our information, this is the 290 
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very first detailed study on C. spinosa. Altogether, this information can be beneficial for starting 291 

and designing unique functional products of natural origin.  292 

3.4. Cytotoxicity assay 293 

  The cytotoxicity of all the four extracts of C. spinosa was also performed against two breast 294 

cancer cell lines including MCF-7 and MDA-MB-231 cells, and the findings of cytotoxicity 295 

activity are depicted in Table 7. From the results it is clear that, all the tested extracts presented 296 

low to moderate toxicity against the tested breast cell line. The CsR-M extract was noted to be 297 

most active against MDA-MB-231 cell line with a percentage viability of 73.81%. Likewise, the 298 

CsA-M extract was also found to be considerable active against both the cell lines. This is just a 299 

preliminary toxicity testing of the studied plant extract, and the detailed in-vivo toxicity studies 300 

are recommended. 301 

4. Conclusion 302 

The functional pharmaceutical products are of great interest in recent years. In this report, 303 

the current work describes the chemical profile and biological abilities of aerial and root parts of 304 

C. spinosa. The tested extracts exhibited notable antioxidant and enzyme inhibition properties and 305 

also presented considerable toxicity against breast cells. The plant was found to contain flavonoid, 306 

alkaloid, and glucosinolate derivatives as major secondary metabolites. The methanolic extracts 307 

exhibited higher phenolic and flavonoids as well DPPH and ABTS radical savaging activities. On 308 

the contrary, the DCM extracts were most active for reducing power, phosphomolypdenum and 309 

metal chelation assays. For enzyme inhibition, both methanolic extracts exerted considerable anti-310 

cholinesterase, anti-tyrosinase and glucosidase inhibition. The expressed enzyme inhibition 311 

potential could be attributed to the higher levels of phenolic and flavonoid contents in methanolic 312 

extracts. The obtained results from the current work can provide new directions for the 313 
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bioprospecting of C. spinosa as a potential source of antioxidants and enzyme inhibitor bioactive 314 

molecules.  315 
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 319 

List of abbreviations: 320 

ABTS: 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid); AChE (acetylcholinesterase); 321 

BChE (butyrylcholinesterase); CUPRAC: cupric reducing antioxidant capacity; DPPH: 2,2-322 

diphenyl-1-picrylhydrazyl; EDTA: Ethylenediaminetetraacetic acid; FRAP: ferric reducing 323 

antioxidant power; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PCA: 324 

principal component analysis; UHPLC-MS: ultra-high-performance liquid chromatography- mass 325 
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 492 

Figure captions: 493 
Figure 1. Total ion chromatograms (TICs) of C. spinosa aerial (A) and root (B) methanol 494 

extracts 495 

Figure 2. Statistical evaluations, A: Correlation coefficients between total bioactive compounds 496 

and biological activities (Pearson Correlation Coefficient (R), p < 0.05); B and D: Distribution of 497 

the tested extracts on the factorial plan and representation of biological activities on the correlation 498 

circle based on PCA; C: Eigenvalues and percentage of variability expressed by the factors; E: 499 

Heat map of extracts in according to bioactive compounds and biological activities 500 
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 538 

Tables and Figures: 539 

 540 
 541 

Table 1. Total bioactive contents in C. spinosa extracts 542 

 543 

Extracts  Yield (%) 
Total phenolic content (mg 

GAE/g) 

Total flavonoid content (mg 

QE/g) 

CsA-M 13 30.36±0.65 31.58±0.17 

CsA-D 11 18.88±0.17 3.09±0.08 

CsR-M 15 23.53±0.23 8.78±0.08 

CsR-D 09 12.44±0.34 1.22±0.08 

CsA-M: C. spinosaaerial methanol; CsA-D: C. spinosa aerial DCM; CsR-M: C. spinosa root 544 

methanol; CsR-D: C. spinosa root DCM. 545 

Data from three repetitions, with mean ± standard deviation; GAE: gallic acid equivalent; QE: 546 

quercetin equivalent. 547 

 548 
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 578 

 579 

Table 2. UHPLC-MS analysis of C. spinosa aerial methanol extract 580 

 581 

S.no 
RT 

(min) 

B. peak 

m/z 
Tentative compound identification Comp. class MFG formula 

Mol. 

mass 

1 0.92 290.09 Sarmentosin epoxide Cyanogenic C11H17NO8 291.09 

2 0.96 191.02 Citric acid Organic Acid C6H8O7 192.02 

3 1.12 360.05 Glucoputranjivin Glucosinolate C10H19NO9S2 361.05 

4 2.05 374.06 Glucocochlearin Glucosinolate C11H21NO9S2 375.06 

5 8.40 755.21 Kaempferol 3-(2G-glucosylrutinoside) Flavonoid C33H40O21 756.21 

6 8.61 477.07 4-Methoxyglucobrassicin Glucosinolate C17H22N2O10S2 478.07 

7 8.64 739.21 Robinin Flavonoid C33H40O19 740.21 

8 8.87 609.15 Robinetin 3-rutinoside Flavonoid C27H30O16 610.15 

9 9.20 593.15 Luteolin 7-rhamnosyl (1->6) galactoside Flavonoid C27H30O15 594.15 

10 9.26 623.16 Tricetin 7-methyl ether 3'-glucoside-5'-rhamnoside Flavonoid C28H32O16 624.16 

11 13.28 293.18 Gingerol Phenol C17H26O4 294.18 

RT: retention time; B. peak: base peak 582 

 583 

 584 

 585 

 586 

 587 

 588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 

 612 

 613 
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 614 

Table 3. UHPLC-MS analysis of C. spinosa root methanol extract 615 

 616 
S.

no 

RT 

(min) 

B. peak 

m/z 
Tentative compound identification Comp. class MFG formula 

Mol. 

mass 

1 1.18 360.05 Glucoputranjivin Glucosinolate C10H19N O9S2 361.05 

2 1.66 174.08 Calystegin B2 Alkaloid C7H13NO4 175.08 

3 8.87 434.21 Cadabicine Alkaloid C25H29N3O4 435.21 

4 9.11 389.13 Abruquinone B Flavonoid C20H22O8 390.13 

5 9.24 328.12 3-O-Acetylhamayne Alkaloid C18H19NO5 329.12 

6 10.78 301.04 Melanoxetin Flavonoid C15H10O7 302.04 

7 10.79 647.20 Embigenin 2''-(2'''-acetylrhamnoside) Flavonoid C31H36O15 648.20 

8 11.47 577.25 Withaperuvin H Withanolide C30H42O9S 578.25 

9 11.58 755.34 Michellamine B Alkaloid C46H48N2O8 756.34 

10 11.91 821.40 Licoricesaponin K2 Triterpene C42H62O16 822.40 

RT: retention time; B. peak: base peak 617 
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 650 

Table 4. HPLC polyphenolic quantification of C. spinosa extracts (μg/g sample) (mean ± S. D). 651 

Phenolic compounds CsA-M  CsA-D  CsR-M  CsR-D  

Vanillic acid nd nd nd 0.33±0.03 

Epicatechin 0.59±0.06 nd 0.33±0.03 nd 

Syringic acid nd nd nd 0.27±0.02 

3-OH Benzoic acid BLD 0.45±0.04 5.67±1.03 0.56±0.04 

3-OH 4-methoxy benzaldehyde nd nd nd 0.24±0.02 

Naringin 3.13±0.09 nd nd nd 

2.3-diMeO benzoic acid nd nd nd 1.02±0.09 

Benzoic acid nd 2.26±0.15 nd nd 

Carvacrol 0.33±0.03 nd nd nd 
nd: not detected; BLD: below limit of detection (<0.1 μg/mL); Chlorogenic acid, p-coumaric acid, rutin, sinapinic 652 
acid, t-ferullic acid, o-coumaric acid, quercetin, harpagoside, t-cinnamic acid were not detected in any of the tested 653 
extracts.  654 
 655 
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 687 

Table 5. Antioxidant properties of C. spinosa extracts 688 

Extracts 

Radical Scavenging 

activity 
Reducing power 

Total antioxidant 

capacity (TAC) 

Ferrous 

chelating 

DPPH (mg 

TE/g 

extract) 

ABTS 

(mgT E/g 

extract) 

FRAP 

(mg TE/g 

extr act) 

CUPRAC 

(mgT E/g 

extract) 

Phosphomolybdenum 

(mg TE/g extract) 

Metal 

Chelating 

(mg EDTA/g) 

CsA-M 30.48±0.37 40.43±3.33 47.13±3.67 86.64±8.09 6.73±0.39 1.19±0.03 

CsA-D 6.24±0.61 23.64±1.07 50.37±2.42 118.45±1.69 75.79±1.25 2.51±0.19 

CsR-M 28.45±0.60 40.55±1.35 38.49±0.83 58.77±0.71 na 0.31±0.04 

CsR-D 16.06±1.81 33.68±2.55 42.82±1.55 96.89±5.19 13.56±1.05 1.41±0.09 

TE: trolox equivalent; EDTAE: EDTA equivalent; na: not active. All values expressed are means 689 

± S.D. of three parallel measurements.  690 
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 724 

Table 6. Enzyme inhibition effects of C. spinosa extracts 725 

Extracts 

AChE inhibition 

(mg GALAE/g 

extract) 

BChE inhibition 

(mg GALAE/g 

extract) 

Tyrosinase 

(mg KAE/g 

extract) 

Amylase (mmol 

ACAE/g 

extract) 

Glucosidase 

(mmol ACAE/g 

extract) 

CsA-M 4.06±0.18 5.58±0.45 127.89±0.75 0.52±0.01 1.85±0.06 

CsA-D 3.43±0.34 2.28±0.04 135.52±0.76 0.77±0.02 1.80±0.04 

CsR-M 4.71±0.14 4.13±0.17 132.85±0.85 0.39±0.02 1.94±0.01 

CsR-D na 3.56±0.08 139.78±0.95 0.57±0.04 1.79±0.03 

All values expressed are means ± S.D. of three parallel measurements. AChE: 726 

acetylcholinesterase; BChE: butyrylcholinesterase; GALAE: galantamine equivalent; KAE: kojic 727 

acid equivalent; ACAE: acarbose equivalent; na: not active. 728 
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 762 
Table 7: Cytotoxicity of C. spinosa samples against breast cell lines. 763 
 764 

Samples 
% Viability (200 µg/mL) 

MCF-7 MDA-MB-231 

CsA-M 55.72 55.36 

CsA-D 12.59 47.84 

CsR-M 48.46          73.81 

CsR-D 2.67          46.98 

 CsA-M: C. spinosaaerial methanol; CsA-D: C. spinosa aerial DCM; CsR-M: C. spinosa root 765 

methanol; CsR-D: C. spinosa root DCM. 766 
 767 

 768 
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781 
Figure 1. Total ion chromatograms (TICs) ofC. spinosa aerial (A) and root (B) methanol extracts 782 

 783 
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 784 
Figure 2. Statistical evaluations, A: Correlation coefficients between total bioactive compounds 785 

and biological activities (Pearson Correlation Coefficient (R), p < 0.05); B and D: Distribution of 786 

the tested extracts on the factorial plan and representation of biological activities on the correlation 787 

circle based on PCA; C: Eigen values and percentage of variability expressed by the factors; E: 788 

Heat map of extracts in according to bioactive compounds and biological activities 789 

 790 
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Abstract 41 

Capparis spinose L. also known as Caper is of great significance as a traditional medicinal 42 

food plant. The present work was targeted on the determination of chemical composition, 43 

pharmacological properties, and in-vitro toxicity of methanol and dichloromethane (DCM) 44 

extracts of different parts of C. spinosa. Chemical composition was established by determining 45 

total bioactive contents and via UHPLC-MS secondary metabolites profiling. For determination 46 

of biological activities, antioxidant capacity was determined through DPPH, ABTS, CUPRAC, 47 

FRAP, phosphomolybdenum, and metal chelating assays while enzyme inhibition against 48 

cholinesterase, tyrosinase, α-amylase and α-glucosidase were also tested. All the extracts were also 49 

tested for toxicity against two breast cell lines. The methanolic extracts were found to contain 50 

highest total phenolic and flavonoids which is correlated with their significant radical scavenging, 51 

cholinesterase, tyrosinase and glucosidase inhibition potential. Whereas DCM extracts showed 52 

significant activity for reducing power, phosphomolybdenum, metal chelation, tyrosinase, and α-53 

amylase inhibition activities. The secondary metabolites profiling of both methanolic extracts 54 

exposed the presence of 21 different secondary metabolites belonging to glucosinolate, alkaloid, 55 

flavonoid, phenol, triterpene, and alkaloid derivatives. The present results tend to validate folklore 56 

uses of C. spinose and indicate this plant to be used as a potent source of designing novel bioactive 57 

compounds. 58 

Keywords: Capparis spinose; antioxidant; secondary metabolites, enzyme inhibition, bioactive 59 

compounds 60 

 61 

 62 

 63 
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1. Introduction 64 

Natural products have been utilized since time immemorial as curative agents for health 65 

management and treatment of common ailments because of their health-promoting properties and 66 

bioactive contents (Zhang and Ma, 2018). In consonance with the World Health Organization, the 67 

majority of the world’s populations (about 80%) depends mostly on conventional/herbal drugs and 68 

in many countries, and the overall medicinal consumption is 30-50% that can be estimated from 69 

the preparation of conventional medicine (Locatelli et al., 2017; Zhang and Ma, 2018). For 70 

example, in Germany, approximately 90% of the population has utilized the old natural remedies 71 

for different health matters [2]. Hence, in industrial and developing countries, the use of traditional 72 

medicine is prevalent (Gunjan et al., 2015). The worldwide market for the use of traditional 73 

medicine is becoming very strong. Almost over $60 billion are covered from herbal medicine 74 

yearly, which is increasing progressively (Gunjan et al., 2015).  75 

 Capparis genus is from the family of Capparidaceae, which is in use widely for folk 76 

medicine from the distant past, particularly in countries of Western and Central Asia as well as the  77 

Mediterranean basin like Morocco, Spain, Tunisia, Italy and Turkey (Rivera et al., 2003). C. 78 

spinosa (also called as Caper) is a long-lasting shrubby plant that can grow in warm and dry 79 

weathers such as Middle and West Asia, the Mediterranean region and also numerous regions of 80 

Iran  (Sultan and Çelik, 2009). The connection between capers and human beings is ancient that 81 

can be linked to the Stone Age. C. spinosa remains were discovered in archaeological areas like 82 

the inferior Mesolithic (9500–9000 b.p.) (Moufid and Farid, 2015). The remains of C. 83 

spinosa have been explored in China for the very first time and also in the eastern part of Central 84 

Asia which favors the use of caper as medicine from the last 2800 years (Jiang et al., 2007). 85 
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Caper is in use from ancient times in food preparation for fragrant and flavoring 86 

purposes, C. spinosa is also known for its use as an ordinary natural remedy because of its distinct 87 

properties for hypertension, poultice, tonic and diuretic problems (Duman and Özcan, 2014; 88 

Trombetta et al., 2005). C. spinosa is commonly found in hot and dry weathers and that its fruit, 89 

roots and barks are known because of their medicinal significance. It is traditionally used as the 90 

medicine for different health problems like diuretic, gout, rheumatism, hyperlipidemia, 91 

hyperglycemia, hypertension and also for liver and spleen disorders (Bonina et al., 2002; Lemhadri 92 

et al., 2007). In Morocco, this plant is usually used to control diabetes and its treatment and mostly 93 

used as a scented agent in Moroccan kitchens  (Jouad et al., 2001). The parts of C. spinosa, such 94 

as fruits and roots, are known because of their beneficial properties on human health and are used 95 

as a herbal curative agent from the old times (Mansour et al., 2016). In earlier ages, The Egyptians 96 

and Arabs used the roots of C. spinosa for the treatment of kidney and liver disorders, and Romans 97 

used this plant as a therapeutic agent for paralysis. Moroccans also used it for diabetes treatment 98 

(Tlili et al., 2011). The root of C. spinosa is used for the treatment of enlarged spleen, mental 99 

problem and tubercular glands (Afzal et al., 2009). C. spinosa was also used as a medicine of 100 

rheumatoid arthritis and gout in China (Ao et al., 2007). It is also used in the treatment of 101 

hemorrhoids and gout in Iran (Mahboubi and Mahboubi, 2014).  102 

Despite the plethora of studies related to the therapeutic uses of C. spinosa, data related to 103 

its chemical composition, antioxidant potential and enzyme inhibition activities related to most 104 

common human diseases is limited. Given the background regarding medicinal properties of E. 105 

milii, this work was conducted to probe into the enzymatic inhibitory activities of methanol and 106 

dichloromethane (DCM) extracts from aerial and roots of C. spinosa on key enzymes related to 107 

neurodegenerative ailments (acetylcholinesterase -AChE and butyrylcholiesterase -BChE), 108 
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diabetes (α-glucosidase and α-amylase) and skin hyperpigmentation (tyrosinase). Extracts were 109 

also appraised for their antioxidant potential utilizing free radical scavenging (2,2-diphenyl-1-110 

picrylhydrazyl -DPPH and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) -ABTS), 111 

reducing power (ferric reducing antioxidant power -FRAP and cupric reducing antioxidant 112 

capacity -CUPRAC), phosphomolybdenum and metal chelation assays. The cytotoxicity was also 113 

performed against the MCF-7 and MDA-MB-231 breast cancer cell lines. All the extracts were 114 

chemically characterized by determining their total bioactive contents via spectrophotometric 115 

methods and individual secondary metabolic profiles by ultra-high-performance liquid 116 

chromatography- mass spectrometry (UHPLC-MS). Moreover, principal component analysis 117 

(PCA) statistical studies were performed to highlight possible interactions between the bioactive 118 

contents and tested biological assays. 119 

2. Material and methods 120 

2.1. Plant material and extraction 121 

Aerial and root parts of C. spinosa were collected from Cholistan desert and identified by 122 

Mr. Hafiz Waris, Taxonomist, at Cholistan Institute of Desert Studies, The Islamia University of 123 

Bahawalpur. Additionally, a voucher specimen was deposited in the herbarium of Faculty of 124 

Pharmacy and Alternative Medicines, The Islamia University of Bahawalpur, for future reference. 125 

For extraction, powdered aerial and root parts were subjected for maceration (72 hrs) consecutively 126 

using DCM and methanol solvents and were kept at room temperature with intermittent shaking. 127 

The extracts obtained were made concentrated using a rotary evaporator and are abbreviated as 128 

CsA-M: C. spinosa aerial methanol extract; CsA-D: C. spinosa aerial DCM extract; CsR-M: C. 129 

spinosa root methanol extract; CsR-D: C. spinosa root DCM extract. 130 

 131 
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2.2. Total bioactive contents, UHPLC-MS analysis, and HPLC-PDA analysis 132 

The standard Folin-Ciocalteu method was utilized to find out total phenolic content 133 

(Zengin et al., 2016c). The standard used for this purpose was gallic acid, and the amount of total 134 

phenolic content is expressed as mg GAE/g (gallic acid equivalents). Whereas to explore the total 135 

flavonoid content, the aluminum chloride colorimetric method was used (Chew et al., 2009), and 136 

quercetin was used as a standard. The results were expressed as mg QE/g (quercetin equivalent). 137 

UHPLC-MS analysis of methanol and ethyl acetate extracts was performed (negative 138 

ionization mode) on Agilent 1290 Infinity LC system coupled with Agilent 6520 Accurate-Mass 139 

Q-TOF mass spectrometer with dual ESI source as reported earlier (Saleem et al., 2019). The 140 

METLIN database was used for the tentative identification of different secondary metabolites in 141 

the tested samples. Moreover, a list of 22 different polyphenolic standards (including gallic acid, 142 

catechin, chlorogenic acid, 4-hydroxybenzoic acid, vanillic acid, epicatechin, syringic acid, 3-143 

hydroxybenzoic acid, 3-hydroxy-4-methoxybenzaldehyde, p-coumaric acid, rutin, sinapinic acid, 144 

t-ferulic acid, naringin, 2,3-dimethoxybenzoic acid, benzoic acid, o-coumaric acid, quercetin, 145 

harpagoside, t-cinnamic acid, naringenin and carvacrol) was tested to be quantified in all the 146 

samples using HPLC-PDA analysis as reported previously (Locatelli et al., 2017).  147 

2.3. Antioxidant assays 148 

The standard methods were used to explore the free radical scavenging using DPPH (2,2-149 

diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), 150 

reducing power by using FRAP (ferric reducing antioxidant power) and CUPRAC (cupric 151 

reducing antioxidant capacity), total antioxidant capacity through phosphomolybdenum assay and 152 

metal chelating power as explained earlier in  Grochowski et al. (2017) (Grochowski et al., 2017). 153 
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The results of all antioxidant assays were recorded as Trolox equivalents (except metal chelating 154 

assay for which EDTA was used as standard). 155 

2.4. Enzyme inhibition assays 156 

The enzyme inhibition studies of all the extracts against tyrosinase, acetylcholinesterase, 157 

butyrylcholinesterase, α-amylase, and α-glucosidase were exposed by utilizing the previous 158 

standard in-vitro methods (Grochowski et al., 2017). The AChE (acetylcholinesterase) and BChE 159 

(butyrylcholinesterase) inhibition activity were expressed as standard galantamine equivalents (mg 160 

GALAE/g extract), while acarbose equivalent (mmol ACAE/g extract) for α-amylase and α-161 

glucosidase and kojic acid equivalent (mg KAE/g extract) for tyrosinase were used. 162 

2.5. MTT cytotoxicity assay 163 

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cytotoxicity 164 

activity of the tested samples was tested against two breast cancer cell lines, i.e., MDA-MB 231 165 

and MCF-7 cells employing the previously described method (Nemudzivhadi and Masoko, 2014).  166 

The cell viability percentage (%) was determined as follows: 167 

Percentage cell viability = ABSs – ABSc × 100 168 

Where ABSs: absorbance of the sample; ABSc: absorbance of control 169 

 170 

2.6. Statistical analysis 171 

The assays were carried out in a triplet, and independent experiment, and the results were 172 

calculated as a mean value ± standard deviation (SD). SPSS v.17.0 software was used for data 173 

analysis. One way analysis of variance via ANOVA followed by Tukey’s test was done to find out 174 

the differences between means. A statistical value of p < 0.05 was considered significant. The 175 

principal component analysis (PCA) was carried out to identify the association between 176 

phytochemical content and biological properties. 177 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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3. Results and discussion 178 

3.1. Total bioactive contents 179 

In the present case, the extracts of C. spinosa were tested by the standard Folin-Ciocalteu 180 

and AlCl3 methods for their total phenolic and flavonoid contents. The amount of total phenolic 181 

content was more in CsA-M (30.36 mg GAE/g extract) and CsR-M (23.53 mg GAE/g extract), as 182 

compared to the DCM extracts. Related results can be seen in the case of flavonoids as well 183 

(Table 1). Many studies have confirmed the presence of greater phenolic contents in methanolic 184 

extracts (Do et al., 2014; Murugan and Parimelazhagan, 2014). 185 

The UHPLC-MS analysis of C. spinosa aerial methanol extract showed the presence of 186 

eleven different compounds (Table 2 and Figure 1). Most of these compounds were belonging to 187 

glucosinolate and flavonoid derivatives. The five flavonoids present were kaempferol 3-(2G-188 

glucosylrutinoside), robinin, robinetin 3-rutinoside, luteolin 7-rhamnosyl (1->6) galactoside and 189 

tricetin 7-methyl ether 3'-glucoside-5'-rhamnoside. While glucoputranjivin, glucocochlearin and 190 

4-Methoxyglucobrassicin were the present glucosinolates. Moreover, sarmentosin epoxide 191 

(cyanogenic compound), citric acid and gimgerol (phenol) were also detected. Similarity, C. 192 

spinosa root methanol extract identified the ten different compounds belonging to alkaloid and 193 

flavonoids (Table 3 and Figure 1). The alkaloids detected were calystegin B2, cadabicine, 3-O-194 

acetylhamayne and michellamine B. Three flavonoids abruquinone B, melanoxetin and embigenin 195 

2''-(2'''-acetylrhamnoside) were also identified. Moreover, one glucosinolate (glucoputranjivin), 196 

withanolide (withaperuvin H) and triterpene (licoricesaponin K2) were also present. The presence 197 

of these classes of secondary metabolites in C. spinosa is in agreement with previous studies 198 

(Moufid and Farid, 2015; Zhang and Ma, 2018). 199 
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Similarly, to have in-depth evaluation of the phytochemical composition, all the extracts 200 

of C. spinosa were studied by HPLC-PDA analysis for the quantification of 22 important phenolic 201 

compounds, and the results are presented in Table 4. The CsR-D extract was found to contain the 202 

maximum number of phenolics including vanillic acid, syringic acid, 3-OH benzoic acid, 3-OH 4-203 

methoxy benzaldehyde, and 2.3-diMeO benzoic acid. 204 

3.2. Antioxidant potential 205 

A pathological activator of various diseases, such as Alzheimer's disease and Type II 206 

Diabetes, is oxidative pressure. Therefore, antioxidants are of great significance for the treatment 207 

of such oxidative stress. (Li et al., 2017). In this study, the antioxidant potential of C. spinosa aerial 208 

and root extracts was evaluated by utilizing six different protocols such as phosphomolybdenum, 209 

CUPTAC, FRAP, ABTS, DPPH, and metal chelating power, and the results can be seen in Table 210 

5. The stable compound DPPH is free-radical, which shows the maximum wavelength at 517 nm 211 

and is commonly used for antioxidant determination (Loganayaki et al., 2013). All of the extracts 212 

were active against DPPH, showing activity in the following order CsA-M >CsR-M >CsR-D 213 

>CsA-D. This higher DPPH radical scavenging of aerial methanol (30.48±0.37 mg TE/g extract) 214 

and root methanol (28.45 mg TE/g extract) extracts shows correlation with their greater bioactive 215 

contents, and this is supported by the previous researcher who already explained that high DPPH 216 

scavenging activity was due to the presence of high phenolic content (Loganayaki et al., 2013; 217 

Piluzza and Bullitta, 2011). Another radical used for the determination of the antioxidant potential 218 

of plant extracts is ABTS and is a free blue/green radical with the maximum wavelength of 734nm 219 

(Zengin et al., 2018). In Table 5, it can be seen that the CsA-M and CsR-M extracts of C. spinosa 220 

actively scavenged ABTS radical, exploring the maximum Trolox equivalent values, i.e., 40.55 221 

and 40.43 mg TE/g extract, respectively.  222 
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Other assays like FRAP and CUPRAC were utilized for the determination of the reducing 223 

capacity of the extracts. The reducing capacity can be quantified by observing the absorbance of 224 

ferric tripyridyltriazine to ferrous tripyridyltriazine while in the CUPRAC method, we can observe 225 

cupric reducing capacity to cuprous in the presence of copper(II)- neocuproine [Cu(II)-Nc] reagent 226 

(Al-Rimawi et al., 2016). It can be seen that both DCM extracts i.e., CsA-D (FRAP: 50.37 mg 227 

TE/g extract CUPRAC: 118.45 mg TE/g extract) and CsR-D (FRAP: 42.82 mg TE/g extract 228 

CUPRAC: 96.89 mg TE/g extract) has a potent reducing ability. 229 

In the phosphomolybdenum method, Mo (VI) is reduced to Mo (V) in the presence of 230 

antioxidants (Chaouche et al., 2014). A reverse pattern can be observed as a trend for the 231 

phosphomolybdenum method, with CsA-D being the most active extract, in comparison with CsR-232 

D and CsA-M extracts. The root methanol extract was not active. As this antioxidant assay 233 

measures the antioxidant potential of both phenolic and non-phenolic compounds, so the results 234 

recorded in phosphomolybdenum assay can be correlated to other non-phenolic compounds such 235 

as vitamin C or tocopherol in DCM extracts. These results are in agreement with the earlier studies 236 

(Albayrak et al., 2010; Llorent-Martínez et al., 2017) who reported the high antioxidant potential 237 

for DCM solvent. 238 

 Iron is of vital importance for respiration, oxygen transportation, and enzyme activity, but 239 

it also plays a vital role in the redox reaction, hence playing a role in oxidative stress (Farina et al., 240 

2013). The results of our study explained that the different extracts of C. spinosa could chelate 241 

iron (Table 5). Similar to reducing power results, both DCM extracts were found to be the most 242 

active metal chelators, followed by methanolic extracts. These findings show similarity with 243 

earlier studies which reported that there is no correlation between total phenolic and metal 244 

chelating capacity (Khorasani Esmaeili et al., 2015; Silva et al., 2008; Yerlikaya et al., 2017). At 245 
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this point, non-phenolic compounds like tocopherol, as previously isolated from C. spinose 246 

(Moufid and Farid, 2015), could be attributed to this activity.  As presented in Figure 2, Pearson 247 

correlation analysis confirmed the tested antioxidant results and showed a significant relationship 248 

of total bioactive contents and radical scavenging capacities (DPPH and ABTS), while a moderate 249 

association was observed for FRAP, whereas a negative correlation was the recorder for 250 

phosphomolybdenum and metal chelation assays in relation with bioactive contents. 251 

3.3. Enzyme inhibition assays 252 

Similarly, α-amylase and α-glucosidase inhibitors are used as therapeutic agents in the case 253 

of DM. Tyrosine is the key enzyme used in melanin synthesis, and for the treatment of 254 

hyperpigmentation, tyrosinase inhibitors are used. According to this information, the enzyme 255 

inhibitors can be synthesized artificially. In this case, limited side effects can be observed, such as 256 

toxic properties and gastrointestinal problems (Kumar et al., 2011). So, many researchers are trying 257 

to isolate inhibitors from natural sources having no or minimal side effects. So, the enzyme 258 

inhibition studies were carried out on C. spinosa extracts against cholinesterases, tyrosinase, 259 

amylase and glucosidase. The results are expressed in Table 6. The CsA-M and CsR-M extracts 260 

revealed the highest cholinesterase inhibition on both AChE (4.06 and 5.58 mg GALAE/g extract) 261 

and BChE (4.71 and 4.13 mg GALAE/g extract). However, the CsR-D extract does not show 262 

inhibition against AChE. This observed activity of methanolic extracts can be linked to high levels 263 

of phenolic compounds in the extracts. These findings are supported by several researchers 264 

(Kennedy and Wightman, 2011; Mazlan et al., 2013; Roseiro et al., 2012), who reported a linear 265 

correspondence between phenolic content and cholinesterase inhibition. Moreover, as shown in 266 

Figure 2, a strong positive correlation was observed between total phenolic contents of the tested 267 



12 
 

extracts and their AChE and BChE inhibition (R values in the range of 1), whereas total flavonoids 268 

presented a strong positive correlation for BChE but moderate for AChE. 269 

All extracts have the significant ability to inhibit tyrosinase enzyme, and the CsA-D extract 270 

showed great tyrosinase inhibition, which is 139.78 mg KAE/g extract. As for glucosidase 271 

inhibition, the methanolic extracts express maximum ability for inhibition as compared to DCM 272 

extracts. However, as indicated in Figure 2, a strong negative correlation was seen among total 273 

bioactive contents and tyrosinase inhibition (R values in the range of -1). 274 

 Glucosidase inhibition may be due to the presence of high phenolic contents. According 275 

to our study, the phenolic compounds were responsible for anti-diabetic activity (Etxeberria et al., 276 

2012; Tundis et al., 2010). Though, the case for amylase was different because DCM extracts were 277 

found to be most active. Huseini et al. (Huseini et al., 2013) revealed those patients who were 278 

taking 1200 mg of C. spinosa fruit extracts in their daily routine expressed a significant low level 279 

of glycosylated hemoglobin and fasting blood glucose level as compared to the control group (p = 280 

0.043 and 0.037, correspondingly) and it was also reported that there was an improvement in 281 

hyperglycemia and hypertriglyceridemia in diabetic persons. Likewise, it was also reported that C. 282 

spinosa is responsible for decreased absorption of carbohydrates, and another study reports that it 283 

decreases the rate of carbohydrate absorption and exerts the postprandial hypoglycemic effect on 284 

the gastrointestinal tract (Lemhadri et al., 2007). So, the molecular approaches can be more 285 

valuable to understand the interactions between enzymes and secondary metabolites. Our results 286 

are also supported by PCA analysis (Figure 2) which confirms a negative association among total 287 

phenolic and flavonoids with amylase inhibition, however, a strong positive correlation was 288 

observed for phenolic contents and glucosidase inhibition, while total flavonoid contents also 289 

showed a moderated correlation for glucosidase enzyme.  According to our information, this is the 290 



13 
 

very first detailed study on C. spinosa. Altogether, this information can be beneficial for starting 291 

and designing unique functional products of natural origin.  292 

3.4. Cytotoxicity assay 293 

  The cytotoxicity of all the four extracts of C. spinosa was also performed against two breast 294 

cancer cell lines including MCF-7 and MDA-MB-231 cells, and the findings of cytotoxicity 295 

activity are depicted in Table 7. From the results it is clear that, all the tested extracts presented 296 

low to moderate toxicity against the tested breast cell line. The CsR-M extract was noted to be 297 

most active against MDA-MB-231 cell line with a percentage viability of 73.81%. Likewise, the 298 

CsA-M extract was also found to be considerable active against both the cell lines. This is just a 299 

preliminary toxicity testing of the studied plant extract, and the detailed in-vivo toxicity studies 300 

are recommended. 301 

4. Conclusion 302 

The functional pharmaceutical products are of great interest in recent years. In this report, 303 

the current work describes the chemical profile and biological abilities of aerial and root parts of 304 

C. spinosa. The tested extracts exhibited notable antioxidant and enzyme inhibition properties and 305 

also presented considerable toxicity against breast cells. The plant was found to contain flavonoid, 306 

alkaloid, and glucosinolate derivatives as major secondary metabolites. The methanolic extracts 307 

exhibited higher phenolic and flavonoids as well DPPH and ABTS radical savaging activities. On 308 

the contrary, the DCM extracts were most active for reducing power, phosphomolypdenum and 309 

metal chelation assays. For enzyme inhibition, both methanolic extracts exerted considerable anti-310 

cholinesterase, anti-tyrosinase and glucosidase inhibition. The expressed enzyme inhibition 311 

potential could be attributed to the higher levels of phenolic and flavonoid contents in methanolic 312 

extracts. The obtained results from the current work can provide new directions for the 313 
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bioprospecting of C. spinosa as a potential source of antioxidants and enzyme inhibitor bioactive 314 

molecules.  315 
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List of abbreviations: 320 

ABTS: 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid); AChE (acetylcholinesterase); 321 

BChE (butyrylcholinesterase); CUPRAC: cupric reducing antioxidant capacity; DPPH: 2,2-322 

diphenyl-1-picrylhydrazyl; EDTA: Ethylenediaminetetraacetic acid; FRAP: ferric reducing 323 

antioxidant power; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PCA: 324 

principal component analysis; UHPLC-MS: ultra-high-performance liquid chromatography- mass 325 

spectrometry;  326 
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 492 

Figure captions: 493 
Figure 1. Total ion chromatograms (TICs) of C. spinosa aerial (A) and root (B) methanol 494 

extracts 495 

Figure 2. Statistical evaluations, A: Correlation coefficients between total bioactive compounds 496 

and biological activities (Pearson Correlation Coefficient (R), p < 0.05); B and D: Distribution of 497 

the tested extracts on the factorial plan and representation of biological activities on the correlation 498 

circle based on PCA; C: Eigenvalues and percentage of variability expressed by the factors; E: 499 

Heat map of extracts in according to bioactive compounds and biological activities 500 
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 538 

Tables and Figures: 539 

 540 
 541 

Table 1. Total bioactive contents in C. spinosa extracts 542 

 543 

Extracts  Yield (%) 
Total phenolic content (mg 

GAE/g) 

Total flavonoid content (mg 

QE/g) 

CsA-M 13 30.36±0.65 31.58±0.17 

CsA-D 11 18.88±0.17 3.09±0.08 

CsR-M 15 23.53±0.23 8.78±0.08 

CsR-D 09 12.44±0.34 1.22±0.08 

CsA-M: C. spinosaaerial methanol; CsA-D: C. spinosa aerial DCM; CsR-M: C. spinosa root 544 

methanol; CsR-D: C. spinosa root DCM. 545 

Data from three repetitions, with mean ± standard deviation; GAE: gallic acid equivalent; QE: 546 

quercetin equivalent. 547 
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 578 

 579 

Table 2. UHPLC-MS analysis of C. spinosa aerial methanol extract 580 

 581 

S.no 
RT 

(min) 

B. peak 

m/z 
Tentative compound identification Comp. class MFG formula 

Mol. 

mass 

1 0.92 290.09 Sarmentosin epoxide Cyanogenic C11H17NO8 291.09 

2 0.96 191.02 Citric acid Organic Acid C6H8O7 192.02 

3 1.12 360.05 Glucoputranjivin Glucosinolate C10H19NO9S2 361.05 

4 2.05 374.06 Glucocochlearin Glucosinolate C11H21NO9S2 375.06 

5 8.40 755.21 Kaempferol 3-(2G-glucosylrutinoside) Flavonoid C33H40O21 756.21 

6 8.61 477.07 4-Methoxyglucobrassicin Glucosinolate C17H22N2O10S2 478.07 

7 8.64 739.21 Robinin Flavonoid C33H40O19 740.21 

8 8.87 609.15 Robinetin 3-rutinoside Flavonoid C27H30O16 610.15 

9 9.20 593.15 Luteolin 7-rhamnosyl (1->6) galactoside Flavonoid C27H30O15 594.15 

10 9.26 623.16 Tricetin 7-methyl ether 3'-glucoside-5'-rhamnoside Flavonoid C28H32O16 624.16 

11 13.28 293.18 Gingerol Phenol C17H26O4 294.18 

RT: retention time; B. peak: base peak 582 
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 614 

Table 3. UHPLC-MS analysis of C. spinosa root methanol extract 615 

 616 
S.

no 

RT 

(min) 

B. peak 

m/z 
Tentative compound identification Comp. class MFG formula 

Mol. 

mass 

1 1.18 360.05 Glucoputranjivin Glucosinolate C10H19N O9S2 361.05 

2 1.66 174.08 Calystegin B2 Alkaloid C7H13NO4 175.08 

3 8.87 434.21 Cadabicine Alkaloid C25H29N3O4 435.21 

4 9.11 389.13 Abruquinone B Flavonoid C20H22O8 390.13 

5 9.24 328.12 3-O-Acetylhamayne Alkaloid C18H19NO5 329.12 

6 10.78 301.04 Melanoxetin Flavonoid C15H10O7 302.04 

7 10.79 647.20 Embigenin 2''-(2'''-acetylrhamnoside) Flavonoid C31H36O15 648.20 

8 11.47 577.25 Withaperuvin H Withanolide C30H42O9S 578.25 

9 11.58 755.34 Michellamine B Alkaloid C46H48N2O8 756.34 

10 11.91 821.40 Licoricesaponin K2 Triterpene C42H62O16 822.40 

RT: retention time; B. peak: base peak 617 
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 650 

Table 4. HPLC polyphenolic quantification of C. spinosa extracts (μg/g sample) (mean ± S. D). 651 

Phenolic compounds CsA-M  CsA-D  CsR-M  CsR-D  

Vanillic acid nd nd nd 0.33±0.03 

Epicatechin 0.59±0.06 nd 0.33±0.03 nd 

Syringic acid nd nd nd 0.27±0.02 

3-OH Benzoic acid BLD 0.45±0.04 5.67±1.03 0.56±0.04 

3-OH 4-methoxy benzaldehyde nd nd nd 0.24±0.02 

Naringin 3.13±0.09 nd nd nd 

2.3-diMeO benzoic acid nd nd nd 1.02±0.09 

Benzoic acid nd 2.26±0.15 nd nd 

Carvacrol 0.33±0.03 nd nd nd 
nd: not detected; BLD: below limit of detection (<0.1 μg/mL); Chlorogenic acid, p-coumaric acid, rutin, sinapinic 652 
acid, t-ferullic acid, o-coumaric acid, quercetin, harpagoside, t-cinnamic acid were not detected in any of the tested 653 
extracts.  654 
 655 
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 687 

Table 5. Antioxidant properties of C. spinosa extracts 688 

Extracts 

Radical Scavenging 

activity 
Reducing power 

Total antioxidant 

capacity (TAC) 

Ferrous 

chelating 

DPPH (mg 

TE/g 

extract) 

ABTS 

(mgT E/g 

extract) 

FRAP 

(mg TE/g 

extr act) 

CUPRAC 

(mgT E/g 

extract) 

Phosphomolybdenum 

(mg TE/g extract) 

Metal 

Chelating 

(mg EDTA/g) 

CsA-M 30.48±0.37 40.43±3.33 47.13±3.67 86.64±8.09 6.73±0.39 1.19±0.03 

CsA-D 6.24±0.61 23.64±1.07 50.37±2.42 118.45±1.69 75.79±1.25 2.51±0.19 

CsR-M 28.45±0.60 40.55±1.35 38.49±0.83 58.77±0.71 na 0.31±0.04 

CsR-D 16.06±1.81 33.68±2.55 42.82±1.55 96.89±5.19 13.56±1.05 1.41±0.09 

TE: trolox equivalent; EDTAE: EDTA equivalent; na: not active. All values expressed are means 689 

± S.D. of three parallel measurements.  690 
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 724 

Table 6. Enzyme inhibition effects of C. spinosa extracts 725 

Extracts 

AChE inhibition 

(mg GALAE/g 

extract) 

BChE inhibition 

(mg GALAE/g 

extract) 

Tyrosinase 

(mg KAE/g 

extract) 

Amylase (mmol 

ACAE/g 

extract) 

Glucosidase 

(mmol ACAE/g 

extract) 

CsA-M 4.06±0.18 5.58±0.45 127.89±0.75 0.52±0.01 1.85±0.06 

CsA-D 3.43±0.34 2.28±0.04 135.52±0.76 0.77±0.02 1.80±0.04 

CsR-M 4.71±0.14 4.13±0.17 132.85±0.85 0.39±0.02 1.94±0.01 

CsR-D na 3.56±0.08 139.78±0.95 0.57±0.04 1.79±0.03 

All values expressed are means ± S.D. of three parallel measurements. AChE: 726 

acetylcholinesterase; BChE: butyrylcholinesterase; GALAE: galantamine equivalent; KAE: kojic 727 

acid equivalent; ACAE: acarbose equivalent; na: not active. 728 
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 762 
Table 7: Cytotoxicity of C. spinosa samples against breast cell lines. 763 
 764 

Samples 
% Viability (200 µg/mL) 

MCF-7 MDA-MB-231 

CsA-M 55.72 55.36 

CsA-D 12.59 47.84 

CsR-M 48.46          73.81 

CsR-D 2.67          46.98 

 CsA-M: C. spinosaaerial methanol; CsA-D: C. spinosa aerial DCM; CsR-M: C. spinosa root 765 

methanol; CsR-D: C. spinosa root DCM. 766 
 767 
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781 
Figure 1. Total ion chromatograms (TICs) ofC. spinosa aerial (A) and root (B) methanol extracts 782 

 783 
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 784 
Figure 2. Statistical evaluations, A: Correlation coefficients between total bioactive compounds 785 

and biological activities (Pearson Correlation Coefficient (R), p < 0.05); B and D: Distribution of 786 

the tested extracts on the factorial plan and representation of biological activities on the correlation 787 

circle based on PCA; C: Eigen values and percentage of variability expressed by the factors; E: 788 

Heat map of extracts in according to bioactive compounds and biological activities 789 

 790 
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