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A B S T R A C T   

In the past few decades, there has been a lot of interest in plant constituents for their antioxidant, anti- 
inflammatory, anti-microbial and anti-proliferative properties. However, concerns have been raised on their 
potential toxic effects particularly when consumed at high dose. The anti-thyroid effects of some plant constit-
uents have been known for some time. Indeed, epidemiological observations have shown the causal association 
between staple food based on brassicaceae or soybeans and the development of goiter and/or hypothyroidism. 
Herein, we review the main plant constituents that interfere with normal thyroid function such as cyanogenic 
glucosides, polyphenols, phenolic acids, and alkaloids. In detail, we summarize the in vitro and in vivo studies 
present in the literature, focusing on the compounds that are more abundant in foods or that are available as 
dietary supplements. We highlight the mechanism of action of these compounds on thyroid cells by giving a 
particular emphasis to the experimental studies that can be significant for human health. Furthermore, we reveal 
that the anti-thyroid effects of these plant constituents are clinically evident only when they are consumed in 
very large amounts or when their ingestion is associated with other conditions that impair thyroid function.   

1. Introduction 

Several plant constituents can interfere with the thyroid function 
posing the risk of goiter or functional abnormalities such as hypothy-
roidism. The goitrogenic effects of foodstuffs rich in cyanogenic gluco-
sides or in flavonoids have been known for at least 60 years (Gaitan, 
1990; Moudgal et al., 1958). Indeed, several plant constituents can 
interfere with thyroid function competing with the enzymes involved in 
thyroid hormonogenesis, such as thyroid peroxidase (TPO), or inhibiting 
the expression of the thyroid specific genes involved in the glandular 
function (Fig. 1A). The impairment of thyroid hormonogenesis causes a 
decreased production of the thyroid hormones T3 and T4 and conse-
quently a rise of TSH secretion. The latter stimulates thyrocytes growth 
and function and may induce the thyroid enlargement (goiter), (Fig. 1B). 
This process is observed mainly when several goitrogenic factors are 
associated, i.e. when the ingestion of food rich in phytochemicals with 

anti-thyroid properties is associated with a low iodine intake. In severe 
case hypothyroidism may develop. 

In the past few decades, several studies have identified the main 
plant constituents with anti-thyroid properties and their mechanisms of 
action. In this review we summarize the in vitro and in vivo studies 
present in the literature, focusing on the compounds that are more 
abundant in food or that are available as dietary supplements. We 
discuss the mechanism of action of these compounds on thyroid cells, 
focusing on the data that can be translated into clinical practice. Note-
worthy, many plant constituents such as polyphenols and alkaloids not 
only can interfere with thyroid hormones production or metabolism, but 
also may have antiproliferative effects on thyroid cancer cells (Benvenga 
et al., 2020; Gonçalves et al., 2017; Montané et al., 2020; Sharifi-Rad 
et al., 2020). These observations are spurring studies for the use of these 
compounds as therapeutic agents in poor differentiated thyroid cancer. 
Furthermore, some of these compounds have also a potential role in the 
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treatment of thyroid autoimmunity (Caturegli et al., 2012; Hosseinzade 
et al., 2019; Khan et al., 2020; Schmeltz et al., 2014). However, these 
two issues are beyond the purpose of this review and will not be dis-
cussed below. 

2. Search methods 

Electronic databases such as PubMed, Web of Science and Scopus 
were screened for in vivo and in vitro animal or human studies which 
investigated the effects of various isolated plant constituents on the 
thyroid gland. The search keywords were: “thyroid” and “phytochemi-
cals” or “glucosinolates” or “polyphenols” or “flavonoids” or “non- 
flavonoid phenolic compound” or “alkaloids” in the title and abstract. 
Only English language full-text papers were considered and included in 
this review. Irrelevant documents, incomplete articles, duplicates, and 
conference papers were excluded. Data collection was carried out be-
tween June 1, 2020 and September 1, 2020. A selection of relevant 
references related to the topic of interest was performed based first on 
title and abstract, and finally on the full text of the paper. Since this 
review focuses on the effects of the plant constituents on thyroid func-
tion, we did not consider the studies regarding their effects on thyroid 
cancer or thyroid autoimmunity. Furthermore, we focused on experi-
mental data that assessed the effects of the specific single molecules and 
not of the whole plant extracts except for human studies where the ef-
fects of ingesting whole plants or mixtures of phytochemicals were also 

considered. 

3. Glucosinolates and other cyanogenic glucosides 

The glucosinolates are thioglucosides in which the glucose molecule 
is linked to an O-sulfated (Z)-thiohydroximate group (Fig. 2) (Blažević 
et al., 2020). 

They are present in several plants of the Brassicaceae family (known 
also as Cruciferae). This family includes numerous components of the 
human diet such as broccoli, cabbage, sprouts Brussels, cauliflower, 
rape, mustard, turnip. The glucosinolates are the source of anti-thyroid 
compounds such cyanate, isothiocyanate and 5-vinyloxazolidine-2-thi-
one (goitrin) (Barba et al., 2016; Gaitan, 1990; Melrose, 2019). 
Indeed, the glucosinolates are easily hydrolyzed by the enzyme mir-
osinase, a β-thioglucosidase which is present in the same plant (where it 
can be activated by cutting or chewing the plant) and in the intestinal 
lumen. After hydrolysis the aglycon group is further transformed in 
several breakdown products among which thiocyanate, isothiocyanate 
and goitrin (Fig. 3) (Barba et al., 2016; Gaitan, 1990; Melrose, 2019). 

Thiocyanate is also the breakdown product of other cyanogenic 
glucosides contained in several staple food of developing countries such 

Fig. 1. A, schematic illustration of a thyrocytes showing the main steps of thyroid hormonogenesis. Iodide uptake is an active process performed by the sodium/ 
iodide symporter (NIS) located in the basolateral membrane. Iodide is transported in the follicular lumen where it is oxidized and covalently bound to the thyro-
globulin (TG) by the action of the enzyme thyroid peroxidase (TPO) located on the apical membrane. TG iodination (TGI) brings to the formation of the thyroid 
hormones molecules still covalently bound to the protein. TGI is reabsorbed by endocytosis and hydrolyzed with consequent release of the thyroid hormones (T4 and 
T3) into cytosol and thence to the capillaries. The hydrolytic process causes also the release of moniodo- and diiodothyrosine (MIT and DIT, respectively) that are 
further metabolized by iodothyrosines dhealogenases (DHEAL) to allow recycle of iodide. All these steps are under the control of the TSH through the TSH receptor 
(TSHR). B, schematic drawing of the hypothalamus-pituitary-thyroid axis. The physiologic negative feedback of thyroid hormones (T4 and T3) on the hypothalamus 
and pituitary function is depicted in red straight lines. Anti-thyroid compounds cause a decreased secretion of T4 and T3 that results in a reduction of the negative 
feedback (dashed purple lines) with an increased secretion of TRH and TSH (straight purple lines) that stimulates thyroid growth and function. In some cases, the 
enlargement of the thyroid gland can compensate the impaired function and the patient is euthyroid, in other cases the compensation is not sufficient and hypo-
thyroidism will develop. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. General structure of the glucosinolates. R indicates the aglycone 
side chain. 

Fig. 3. Chemical structures of thiocyanate, isothiocianate and goitrin. R is an 
alkyl or aryl group. 
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as cassava, lima beans, bamboo shoots. For example cassava roots 
contain high levels of linamarin a glucoside which after ingestion is 
transformed first into cyanate and then into thiocyanate for about 25% 
(Carlsson et al., 1999). A diet rich in these foods has been associated 
with goiter endemia (Bourdoux et al., 1978; Chandra et al., 2013). The 
anti-thyroid effect of thiocyanate has been known for over 70 years since 
it was demonstrated its ability to inhibit iodide uptake in thyroid tissue 
(Wolff et al., 1946). Thiocyanate is a competitive inhibitor of iodide at 
the sodium/iodide symporter (NIS) with an affinity slightly lower than 
that of iodide (thiocyanate Km = 30–100 μM vs iodide Km = 10–30 μM) 
(Concilio et al., 2020; Portulano et al., 2014). For this reason, the 
anti-thyroid effect of thiocyanate is enhanced by iodine deficiency and a 
low iodide/thiocyanate ratio is related to the development of endemic 
goiter (Brauer et al., 2006; Gaitan, 1990). Since NIS is also involved in 
the iodide transport of the mammary gland and placenta, the effects of 
thiocyanate excess on these tissues have also been evaluated. Thiocya-
nate may decrease iodine concentration in the milk and this can 
contribute to neonatal goiter and/or hypothyroidism in iodine deficient 
regions (Laurberg et al., 2002, 2004). By contrary, the iodide placental 
transport is unaffected even by high concentrations of thiocyanate 
(Andersen et al., 2013). However, thiocyanate crosses the placenta and 
may directly affect the fetus thyroid function causing neonatal hypo-
thyroidism (Moreno-Reyes et al., 1993). Besides its effects on thyroid 
iodide uptake, thiocyanate inhibits also TPO activity decreasing iodide 
organification and thyroid hormones synthesis (Willemin and Lumen, 
2016, 2019). TPO is a key enzyme in thyroid hormonogenesis (Fig. 1A) 
since it catalyzes iodide oxidation and the binding of the oxidized iodine 
to the tyrosyl residues of thyroglobulin (TG), process defined as iodine 
organification. Furthermore, TPO catalyzes the coupling of iodotyr-
osines to generate the iodothyronines T4 and T3 (Colin et al., 2013). 
Thiocyanate is a competitive inhibitor of iodide oxidation and organ-
ification and this effect is independent of its effect on iodide uptake 
(Fukayama et al., 1992; Willemin and Lumen, 2019). 

Regarding the isothiocyanates, their anti-thyroid effects are due both 
to their transformation in thiocyanate and in their ability to react with 
amino groups and form thiourea derivatives (Agerbirk et al., 2015), 
which are competitive inhibitors of the TPO activity (Cooper, 2005). 
Goitrin is also a potent inhibitor of the TPO activity (Langer, 1966). 

The content of glucosinolates and other cyanogenic glucosides varies 
among the different plant. However, even in the case of the highest 
concentrations, a diet containing a normal serving size of brassicaceae 
(100–200 g of fresh weight) does not affect thyroid function (Felker 
et al., 2016). In a study performed in China, the administration to 
healthy volunteers for 84 days of a broccoli sprout beverage containing 
600 μmol of the glucosinolate glucoraphanin showed no adverse effect 
on thyroid function (Chartoumpekis et al., 2019). It has to be noted that 
fresh broccoli contain an amount of glucoraphanin ranging from 11 to 
296 μmol/100 g of fresh weight (Felker et al., 2016). 

Moreover, the mean concentration of thiocyanate, the main end 
product of glucosinolates, in the plasma of subjects with a regular 
western diet is from 2.5 to 3.5 mg/L (~43 μM–60 μM) (Braverman et al., 
2005; Lundquist et al., 1995). These values are not an issue for thyroid 
function in a population with an optimal iodine intake. On the other 
hand, a diet based on cassava causes an increase of plasma thiocyanate 
above 66–78 μM (Carlsson et al., 1999; Oluwole et al., 2002) and in 
tobacco smokers the thiocyanate plasma concentrations exceed 
100–150 μM (Ockene et al., 1987), values associated with an increased 
risk of developing goiter (Brauer et al., 2006). However, since thiocya-
nate acts as a competitive inhibitor of thyroid iodide uptake and TPO 
activity, many experts consider the urinary iodide/thiocyanate ratio as a 
more accurate parameter than thiocyanate plasma concentration to 
assess the risk of anti-thyroid effects (Brauer et al., 2006; Erdogan, 
2003). 

In conclusion, the anti-thyroid effects of Brassicaceae is not an issue 
except in conditions of iodine deficiency or in the event of their exces-
sive intake, as in a case of a severe hypothyroidism observed in an old 

woman who was eating up to 1–1.5 Kg of raw bok choy daily for several 
months (Chu and Seltzer, 2010). 

4. Polyphenols 

Polyphenols are plant secondary metabolites characterized by the 
presence of two or more phenolic groups. By definition these compounds 
are the products of two biochemical pathways, the shikimate and/or the 
polyketide pathway (Quideau et al., 2011). Therefore, compounds 
constituted by only one phenolic ring, even with two or more hydroxyl 
groups are more correctly defined as phenols instead that polyphenols 
(Quideau et al., 2011). Polyphenols have several functions in plants, 
mainly they act as phytoalexins providing defense against microbes and 
insects (Manach et al., 2004; Pecyna et al., 2020; Zaynab et al., 2018). 
They also give protection against solar UV-A and UV-B (Pecyna et al., 
2020; Saric and Sivamani, 2016). Based on their chemical structure 
polyphenols are classified in flavonoids, stilbens, lignans, and curcu-
minoids (Montané et al., 2020; Quideau et al., 2011). 

4.1. Flavonoids 

Flavonoids are an important group of polyphenols comprising more 
than 6000 molecules (Montané et al., 2020). Their general structure 
(Fig. 4) is constituted by two benzene rings (named A and B) linked by a 
heterocyclic pyran ring (named C) (Montané et al., 2020; Santhakumar 
et al., 2018). This structure is also indicated as C6–C3–C6. 

Flavonoids are widely distributed in plants including fruits and 
vegetables and they are the main constituents of several medical plants. 
Based on their chemical structure flavonoids are further classified in six 
subgroups: flavonols, flavones, isoflavones, flavanones, anthocyanidins 
and flavanols (Fig. 5) (Montané et al., 2020; Santhakumar et al., 2018). 

The goitrogenic effects of some flavonoids have been observed in 

Fig. 4. General structures of flavonoids.  

Fig. 5. General structures of the flavonoid subgroups.  
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experimental studies about sixty years ago (Moudgal et al., 1958). Later 
Gaitan and coworkers showed that the goiter endemia induced in a 
population of the West Africa by a diet rich in millet was due to the high 
content of glycosilflavones present in this food (Gaitan et al., 1989, 
1995). The increased interest on the therapeutic properties of flavonoids 
as antioxidants, antimicrobial, anti-inflammatory and antitumor, led to 
several studies on their effects on thyroid growth and function in the last 
25 years (Benvenga et al., 2020; de Souza Dos Santos et al., 2011; 
Gonçalves et al., 2017; Pistollato et al., 2019). The seminal work of 

Gaitan and coworkers showed that the anti-thyroid effect of millet gly-
cosilflavones was due to the inhibition of the TPO activity (Gaitan et al., 
1989). Subsequent studies performed in vitro showed that several fla-
vonoids share this mechanism of action, some with a competitive 
mechanism and other with a non-competitive mechanism, and interfere 
with other functions of thyroid cells, Table 1. Beside their effects on 
thyroid cells, flavonoids also interfere with thyroid hormone meta-
bolism and action, Table 1. 

Most of these data observed in vitro were also confirmed in vivo 

Table 1 
Effects of the main flavonoids on thyroid growth and function and on thyroid hormones metabolism from studies performed in vitro.  

Class Compound Experimental model Dose Effects Reference 

Flavonols Quercetin TPO purified from porcine thyroid 
glands 

2.4 ± 0.6 μM 
199 ± 8 μM  

- Inhibition of tyrosine iodination  
- Inhibition of TPO activity 

Divi and Doerge (1996) 
Habza-Kowalska et al. 
(2019b)   

Rat thyroid microsome fractions 13.2 ± 1.5 μM  - Inhibition of thyroid D1 activity Ferreira et al. (2002)   
Cell culture: RMS-13 cells 20 μmol/l  - Stimulation of D2 activity da-Silva et al. (2007)   
Cell culture: FRTL-5 cells 1–10 μM  - Inhibition of cell growth Giuliani et al. (2008) 

- Down-regulation of TSH-increased NIS gene expres-
sion through inhibition of the PLA2 pathway   

- Decrease of thyroid-specific genes expression (NIS, 
TSHR, TPO and TG) 

Giuliani et al. (2014b)  

- Activation of AP-1 Giuliani (2019)  
Kaempferol TPO purified from porcine thyroid 

glands 
1.2 ± 0.5 μM 
61.7 ± 3.1 μg/ml  

- Inhibition of tyrosine iodination  
- Inhibition of TPO activity 

Divi and Doerge (1996) 
Habza-Kowalska et al. 
(2019a)   

Rat thyroid microsome fractions 71.8 ± 12.8 μM  - Inhibition of thyroid D1 activity Ferreira et al. (2002)   
Cell culture: GH4C1, HSM myoblasts, 
MSTO-211H and RMS-13 cells 

20 μmol/l  - Stimulation of D2 activity da-Silva et al. (2007) 

Cell culture: GH4C1 cells 20 μmol/l  - Inhibition of D1 activity  
Myricetin TPO purified from porcine thyroid 

glands 
0.6 ± 0.2 μM  - Inhibition of tyrosine iodination Divi and Doerge (1996)   

TPO purified from human thyroid glands 2.9 μM  - Inhibition of TPO activity Ferreira et al. (2006)  
Mearnsitrin TPO purified from human thyroid glands 1.97 μM  - Inhibition of TPO activity Ferreira et al. (2006)  
Morin TPO purified from porcine thyroid 

glands 
2.1 ± 0.8 μM  - Inhibition of tyrosine iodination Divi and Doerge (1996)   

Rat thyroid microsome fractions 55.1 ± 0.1 μM  - Inhibition of thyroid D1 activity Ferreira et al. (2002)  
Fisetin TPO purified from porcine thyroid 

glands 
6.3 ± 0.6 μM  - Inhibition of tyrosine iodination Divi and Doerge (1996)   

Rat thyroid microsome fractions 70.4 ± 2.6 μM  - Inhibition of thyroid D1 activity Ferreira et al. (2002)   
Cell culture: RMS-13 cells 20 μmol/l  - Stimulation of D2 activity da-Silva et al. (2007)  

Rutin TPO purified from porcine thyroid 
glands 

40.6 ± 3.9 μM 
122 ± 4 μM  

- Inhibition of tyrosine iodination  
- Inhibition of TPO activity 

Divi and Doerge (1996) 
Habza-Kowalska et al. 
(2019b)   

D1 activity measured in rat thyroid 
microsome fractions 

68 ± 1.0 μM  - Inhibition of thyroid D1 activity Ferreira et al. (2002)   

TPO purified from rat thyroid glands 3.4 μM  - Inhibition of TPO activity Gonçalves et al. (2013)   
Cell culture: PCCL3 cells 25 μM  - Increase of iodide uptake and reduction of iodide 

efflux  
- Increase of NIS expression. 

Gonçalves et al. (2018) 

Flavones Apigenin Cell culture: pig thyrocytes 1–100 μM  - Inhibition of thyroid hormones synthesis Sartelet et al. (1996)   
Cell culture: PCCL3 cells 20 μM  - Increase of TSH-induced iodide uptake in combination 

with inhibitors of Akt 
Lakshmanan et al. 
(2014)   

TPO purified from porcine thyroid 
glands 

116.3 ± 5.4 μg/ 
ml  

- Inhibition of TPO activity Habza-Kowalska et al. 
(2019a)  

Baicalein Rat thyroid microsome fractions 10.6 μM  - Inhibition of thyroid D1 activity Ferreira et al. (2002)  
Luteolin Cell culture: pig thyrocytes 1–100 μM  - Inhibition of thyroid hormones synthesis Sartelet et al. (1996) 

Isoflavones Biochanin 
A 

TPO purified from porcine thyroid 
glands 

6.2 ± 0.8 μM  - Alternate substrate inhibition of iodination Divi and Doerge (1996)   

Rat thyroid microsome fractions 77.0 ± 1.0 μM  − Inhibition of thyroid D1 activity Ferreira et al. (2002)  
Genistein TPO purified from porcine thyroid 

glands 
3.2 μM  − Inhibition of tyrosine iodination and iodotyronine 

formation 
Divi et al. (1997)   

Human serum 10 μmol/l  − Inhibition of thyroid hormones binding to 
Transthyretin 

Radović et al. (2006)   

Culture cell: HEK293 cells 3 μM  - Inhibition of thyroid D1 activity Renko et al. (2015)  
Daidzein TPO purified from porcine thyroid 

glands 
7.6 μM  - Inhibition of tyrosine iodination Divi et al. (1997) 

Flavanones Naringenin TPO purified from porcine thyroid 
glands 

2.7 ± 1 μM  - Inhibition of tyrosine iodination Divi and Doerge (1996)  

Naringin TPO purified from porcine thyroid 
glands 

12.6 ± 1.6 μM  - Inhibition of tyrosine iodination Divi and Doerge (1996) 

Flavanols Catechin TPO purified from porcine thyroid 
glands 

36.4 ± 3.9 μM 
29.8 ± 2.1 μg/mL  

- Inhibition of tyrosine iodination  
- Inhibition of TPO activity 

Divi and Doerge (1996) 
Habza-Kowalska et al. 
(2019a)   

Rat thyroid microsome fractions 17.5 ± 6.4 μM  - Inhibition of thyroid D1 activity Ferreira et al. (2002)  
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(Table 2), although results may vary based on dose, route of adminis-
tration and animal models used. 

The effects of flavonoids on thyroid function depends on the amount 
ingested and, as discussed for the glucosinolates, on their association 
with other anti-thyroid conditions such as iodine deficiency. 

The daily intake of flavonoids varies widely depending on eating 
habits: in the Western world the daily average intake is between 20 and 
35 mg and can reach 500 mg in subjects who have a diet rich in fruits 
and vegetables (Manach et al., 2004; Pérez-Jiménez et al., 2011). In 
people who take dietary supplements containing flavonoids, the daily 
intake can be up to 2 g (Andres et al., 2018; Manach et al., 2005). The 
intestinal absorption of the flavonoids ingested vary from 10 to 60% and 
is influenced by several factors such as the processing and preparation of 
foods, the molecular structure of the flavonoid (glycoside or aglycone) 
and the intestinal and liver metabolism (Gonçalves et al., 2017; Manach 
et al., 2004, 2005). Therefore, there is a high interindividual variability 
in the human plasma concentrations of flavonoids after food ingestion, 

which vary between 0.1 and 5 μM (Erlund et al., 2006; Larson et al., 
2012; Williamson and Manach, 2005). 

These data must be kept in mind when evaluating the anti-thyroid 
effects of the flavonoids reported in the experimental studies. Indeed, 
the effects observed in vitro with concentrations above 20 μM are hardly 
applicable to the intake of flavonoids in human through diet or dietary 
supplements. Higher concentrations are only observed when an 
abnormal amount of flavonoids is taken for therapeutic use, e.g. the 
administration of 945 mg/m2 of quercetin intravenously in cancer pa-
tients has resulted in a plasma concentration greater than 200 μM. 

Although the flavonoids that possess an effect on thyroid function are 
numerous, as reported in Tables 1 and 2, we will discuss in detail the 
compounds that are most abundant in the diet and/or are available as 
dietary supplements. 

Quercetin is the most abundant flavonoid present in fruit and vege-
tables and its plasma concentration can reach 0.7–2.5 μM in subjects 
eating high quantities of vegetables such as onions or taking dietary 

Table 2 
Effects of the main flavonoids on thyroid growth and function from experimental study performed in vivo.  

Class Compound Experimental model Dose Effects Reference 

Flavonols Quercetin Sprague–Dawley rats (M, 8 weeks old) 50 mg/kg/day i.p. for 
14 days  

− Decrease of iodide uptake Giuliani et al. 
(2014b)   

Swiss albino mice (F, adult) 10 mg/kg/day p.o. for 
10 days  

− Decrease of thyroid hormones serum concentrations 
and liver D1 activity in euthyroid animals. 

Panda and Kar 
(2007b)   

C57BL/6J mice (F, 3 weeks old) fed 
with HFD 

1 g/100 g of HFD for 26 
weeks p.o.  

− Restoration of changes induced by HFD on the 
expression of thyroid hormone receptor α1 and D1 
in the heart.  

− Amelioration of the decreased T3 levels induced by 
HFD 

Cheserek et al. 
(2016)  

Myricetin C57BL/6J mice (M, 4 weeks old) fed 
with HFD 

100 mg/kg of BW by 
oral gavage for 16 
weeks  

− Restoration of changes induced by HFD on serum 
TSH, thyroid hormones levels, and liver D1 

Xia et al. (2019)  

Rutin Wistar rats (M, 12 weeks old) 20 mg/kg of BW s.c. for 
5 days  

− Increase of iodide uptake and NIS expression  
− Reduction of serum T4 and T3  

− Decrease of liver D1 activity and increase of D2 
activity 

Gonçalves et al. 
(2013)   

Albino Wistar rats (sex and age N.A.) 
rendered thyrotoxic by T4 
administration 

50 mg/kg of BW p.o. for 
14 days  

− Improvement of thyrotoxicosis (decrease of serum 
T4 and T3)  

− Decrease of liver D1 activity 

Panda and Kar 
(2014) 

Flavones Apigenin Swiss albino mice (M, adult) 0.78 mg/kg, s.c. for 10 
days  

− Decrease of serum T4 and T3 Panda and Kar 
(2007c) 

Isoflavones Genistein Sprague–Dawley rats (M and F, pups) genistein-fortified diet 
(5–500 ppm) for 20 
weeks  

− Inhibition of TPO activity Chang and Doerge 
(2000)   

Wistar rats (M, 15–16 months old) 
orchidectomized 

10 mg/kg of BW s.c. for 
3 weeks  

− Increase of serum TSH levels with decrease of T4 

and T3  

− Induction of microfollicular changes in thyroid 
tissue  

− Decrease of TG and TPO expression and increase of 
liver D1 

Sosic-Jurjevic et al. 
(2010, 2014)   

Wistar rats (M, 15–16 months old) 
orchidectomized 

30 mg/kg of BW s.c. for 
3 weeks  

− Decrease of serum T4 and T3  

− Induction of microfollicular changes in thyroid 
tissue 

Filipović et al. 
(2018)  

Daidzein Wistar rats (M, 15–16 months old) 
orchidectomized 

10 mg/kg of BW s.c. for 
3 weeks  

− Increase of serum TSH levels with decrease of T4 

and T3  

− Induction of microfollicular changes in thyroid 
tissue  

− Decrease of TG and TPO expression and increase of 
liver D1 

Sosić-Jurjević et al. 
(2010) 
(Šošić-Jurjević et al., 
2014) 

Flavanones Hesperitin Albino Wistar rats (sex and age N.A.) 
rendered thyrotoxic by T4 
administration 

50 mg/kg of BW p.o. for 
14 days  

− Improvement of thyrotoxicosis (decrease of serum 
T4 and T3)  

− Decrease of liver D1 activity 

Panda and Kar 
(2014)   

Wistar rats (M, 24 months old) 15 mg/kg of BW p.o. for 
4 weeks  

− Induction of thyroid morphological changes Miler et al. (2017)  

Naringenin Wistar rats (M, 24 months old) 15 mg/kg of BW p.o. for 
4 weeks  

− Induction of thyroid morphological changes and 
increase of serum TSH levels 

Miler et al. (2017)  

Naringin Albino Wistar rats (sex and age N.A.) 
rendered thyrotoxic by T4 
administration 

50 mg/kg of BW p.o. for 
14 days  

− Improvement of thyrotoxicosis (decrease of serum 
T4 and T3)  

− Decrease of liver D1 activity 

Panda and Kar 
(2014) 

Flavanols Catechin Albino Sprague–Dawley rats (M, 3 
months old) 

30 mg/kg of BW i.p. for 
15 days  

− Induction of goiter, increase of TSH, decrease of 
thyroid hormones, inhibition of TPO activity and 
liver and kidney D1 

Chandra and De 
(2013) 

BW: body weight; F: female; HFD: high fat diet; i.p.: intraperitoneal; M: male; N.A.: not available; p.o.: per os; ppm: parts per million; s.c.: subcutaneous. 
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supplements. 
Quercetin is the most abundant flavonoid present in fruit and vege-

tables and its plasma concentration can reach 0.7–2.5 μM in subjects 
eating high quantities of vegetables such as onions or taking dietary 
supplements containing 500 mg of quercetin per tablet (Bondonno et al., 
2016; Erlund et al., 2006; Henning et al., 2020; Larson et al., 2012; 
Williamson and Manach, 2005). Indeed, the administration of 1095 mg 
of quercetin results in a plasma concentration of 2.3 ± 1.8 μM (Larson 
et al., 2012). It is noteworthy that some of the anti-thyroid effect of 
quercetin are observed in vitro at a concentration of 1–2.5 μM. Indeed, 
quercetin decreases NIS mRNA expression in thyroid cells at 1 μM 
(Giuliani et al., 2008) and inhibits TPO activity with a IC50 of 2.4 μM 
(Divi and Doerge, 1996). The inhibition of the thyroid iodide uptake as 
well as that of the expression of the thyroid-specific genes TG, TPO, 
TSHR is observed at 5 μM with a maximum effect at 10 μM (Giuliani 
et al., 2008, 2014b). Of relevance is the observation that the anti-thyroid 
effects of quercetin were also confirmed in vivo. Indeed, treatment of 
Sprague-Dawley rat with 50 mg/kg of quercetin by intraperitoneal (i.p.) 
injection for 14 days resulted in a significant decrease of the radioiodide 
uptake (Giuliani et al., 2014b). This treatment was chosen since a pre-
vious study demonstrated that it is able to give a quercetin plasma 
concentration in Sprague-Dawley rats that can peak 2.6 μM (Piantelli 
et al., 2006). Of note, the dose of quercetin administered to the animals 
is equivalent to a dose of about 8 mg/kg in human according to dose 
translation from animal to human (Nair and Jacob, 2016). Furthermore, 
the administration of quercetin 10 mg/kg/day p.o. to Swiss albino mice 
reduced the serum concentrations of thyroid hormones and the enzy-
matic activity of the type I 5′-deiodinase (D1) in euthyroid animals 
(Panda and Kar, 2007c). These effects were observed also in mice 
rendered thyrotoxic by the administration of L-T4, suggesting a potential 
use of quercetin in hyperthyroidism (Panda and Kar, 2007c). 

The data reported above indicate that the anti-thyroid effects of 
quercetin are relevant only when high amount of the compound is 
ingested. Therefore, there is no reason to concern about the intake of 
vegetables and fruits rich in quercetin. Instead, caution should be used in 
the administration of high amount of quercetin until human information 
is available, particularly in subjects with thyroid impairment. 

It is important to remark that the translation of the data obtained 
from animal studies to human requires caution. In fact, some studies 
have reported a discrepancy between the effects caused by quercetin and 
those caused by rutin, a glycoside of quercetin where the latter is linked 
to the disaccharide rutinose (Dihal et al., 2006; Gonçalves et al., 2013; 
Hsieh et al., 2013). Regarding the effects on thyroid, the treatment of 
Wistar rats with rutin 20 mg/kg of body weight (B.W.) s.c. for 5 days 
caused an increase of iodide uptake and NIS expression contrary to what 
was observed in Sprague-Dawley rats treated with quercetin 50 
mg/kg/day i.p. for 14 days (Giuliani et al., 2014b). This discrepancy 
may be related to the different route of administration that can affect the 
metabolism of the compounds. Of note, despite the effect on NIS 
expression and iodide uptake the treatment with rutin resulted in a 
decrease of the serum T3 and T4 concentrations, presumably for the 
inhibition of TPO activity (Gonçalves et al., 2013). 

Other subgroups of flavonoids that are important for their impact on 
thyroid function are flavones and isoflavones. Indeed, as already 
mentioned, the ingestion of food rich in flavones in West Africa has been 
associated with the development of goiter (Gaitan et al., 1989; Konde 
et al., 1994). A seminal work performed by Sartelet et al. showed that 
the flavones luteolin and apigenin are the main constituents of the fonio 
millet, a staple food in West Africa, and that they decreased the secretion 
of thyroid hormones in a culture of pig thyroid cells at a concentration of 
10 μM (Sartelet et al., 1996). Further, the decrease of thyroid hormones 
production was observed in healthy Swiss albino mice treated with 
apigenin 0.8 mg/kg (Panda and Kar, 2007c). 

The occurrence of goiter was also described in people eating food 
rich in isoflavones such as infants fed with soy formula (Hydovitz, 1960) 
and in healthy volunteers after the administration of 30 g of soybeans 

every day for 3 months (Ishizuki et al., 1991). 
Soybean contains high amount of the isoflavones genistein and 

daidzein that are able to inhibit TPO activity at 1 μM (Divi et al., 1997), a 
concentration close to that detected in the serum of humans eating soy 
derivatives or taking isoflavones supplements (Hüser et al., 2018). 
Genistein is also an inhibitor of thyroid D1 with an IC50 of 3 μM (Renko 
et al., 2015). 

A study performed in Sprague-Dawley rats fed with a diet fortified 
with genistein confirmed the inhibition of TPO activity observed pre-
viously in vitro (Chang and Doerge, 2000). The anti-thyroid effects of 
genistein and daidzein were further observed in middle-aged Wistar rats 
orchidectomized to minimize the effects of endogenous sex steroids on 
the pituitary (Filipović et al., 2018; Sosić-Jurjević et al., 2010; 
Šošić-Jurjević et al., 2014). In these studies, the treatment with genistein 
or daidzein increased the number of the pituitary thyrotrophs and the 
serum concentrations of TSH; it also decreased serum concentrations of 
T3 and T4. The effects of these compounds on thyrotrophs are not only a 
consequence of the decrease in the negative feedback of thyroid hor-
mones on the pituitary, in fact daidzein has a greater effect on the 
thyrotrophs than genistein despite the same reduction of serum T3 and 
T4. This result has been explained by the greater estrogenic activity of 
daidzein, since estrogens stimulate thyrotrophs (Asa and Ezzat, 1999). 
Moreover, the treatment with genistein and daidzein decreased the 
expression of the thyroid genes TPO and TG (Šošić-Jurjević et al., 2014) 
and induced morphological changes in the thyroid histological archi-
tecture: small size follicles poor in colloid lined by cuboid or columnar 
epithelium (Filipović et al., 2018; Sosić-Jurjević et al., 2010). 

The inhibitory effects of a diet rich in isoflavones on TPO activity was 
also confirmed in study performed in humans reviewed by Hüser et al. 
(2018). An interesting study performed in human volunteers showed 
that the administration of 16 mg of an isoflavones preparation, made by 
54% genistein, 35% daidzein and 12% glycitein, induced the progres-
sion from a condition of subclinical hypothyroidism to an overt hypo-
thyroidism in 16 female patients (Sathyapalan et al., 2011). 

It is important to remark that the anti-thyroid effects of isoflavones in 
humans have been observed when their ingestion was associated with a 
condition of iodine deficiency in the population (Gaitan et al., 1989; 
Konde et al., 1994), or when large quantities (30 g/day) were admin-
istered in healthy volunteers (Ishizuki et al., 1991). An intake of iso-
flavones even up to 1 g/day, did not significantly affect thyroid function 
in euthyroid individuals (Messina and Redmond, 2006). 

4.2. Stilbenoids or stilbenes 

Stilbenoids are characterized by two phenyl groups linked by a trans- 
ethane bond. Resveratrol (3,4’,5-trihydroxystilbene) (Fig. 6) is the most 
well-known stilbenoid and it is found in grapes, berries, peanuts, and 
other several plants (Pecyna et al., 2020). 

Resveratrol has many therapeutic properties, such as antioxidant, 
anti-inflammatory, antiaging, antidiabetic, neuroprotective, car-
dioprotective, and antiproliferative activities. The latter has also been 

Fig. 6. Chemical structures of trans-resveratrol.  
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observed in thyroid cancer cells (Rauf et al., 2018). In an experimental 
model of subclinical hypothyroidism, the treatment with resveratrol had 
beneficial effects on the animal behavior and decreased the secretion of 
TRH and TSH acting directly on the hypothalamus-pituitary axis, i.e. 
without increasing the plasma concentrations of thyroid hormones (Ge 
et al., 2015, 2016). An amelioration of serum T3 and TSH has also been 
observed in female rats ovariectomized (Böttner et al., 2006), Table 3. 
However, high dose and/or long-term intake of resveratrol can cause 
harmful effects (Shaito et al., 2020). In particular, resveratrol can act as 
a thyroid function disruptor and a goitrogen, Table 3. Experiments 
performed in vitro in the FRTL-5 rat thyroid cells, showed that resvera-
trol 10 μM down-regulates the expression of the thyroid-specific genes 
NIS, TSHR, TG, TPO, Nkx2-1, Foxe1 and Pax8, furthermore it inhibits 
iodide uptake (Giuliani et al., 2014a, 2017). These anti-thyroid effects of 
resveratrol were also confirmed in vivo in male Sprague-Dawley rats. A 
short-term treatment with resveratrol 50 mg/kg/day i.p for 14 days 
resulted in an inhibition of iodide uptake with a decreased expression of 
the NIS protein on the thyroid (Giuliani et al., 2014a). A 
longer-treatment, with resveratrol 25 mg/kg/day i.p for 60 days, 
showed, in addition to the decreased expression of the NIS protein, also a 
reduction of the thyroid TG with a significant increase of the thyroid 
size. The thyroid gland was hyperplastic with irregularly shaped folli-
cles, occasionally devoid of colloid. Furthermore, the hormonal evalu-
ation showed an increase of the serum TSH in the rat treated with 
resveratrol (Giuliani et al., 2017). Noteworthy, the dose of resveratrol 
used in the rat experiments is equivalent to a dose of about 4 mg/kg/day 
in human (Nair and Jacob, 2016). This dose is not reached with a regular 

diet even if rich in vegetables and fruits; however, it can be reached or 
even overcome in individuals taking supplements (Giuliani et al., 2017). 

4.3. Lignans 

Lignans are a large class of naturally occurring secondary plant 
metabolites characterized by a phenylpropanoid core (Fig. 7). Lignans 
are found in a wide variety of plant-based foods, including seeds, whole 
grains, legumes, fruit, and vegetables (Rodríguez-García et al., 2019). 
These compounds possess several beneficial properties, such as anti-
cancer, antioxidant, estrogenic, and antiestrogenic activities (Durazzo 
et al., 2018). Epidemiological data have suggested that lignans intake 
may be associated with a reduced risk of thyroid cancer due to their 
influence on estrogen metabolism, resulting in a milieu less favorable to 
cancer development (Horn-Ross et al., 2002). However, no data are 
available on their role on normal thyroid growth and function, except 
for the ability of (− ) arctigenin and (+) pinoresinol, to act as antagonists 
of the human thyroid hormone receptor β (hTRβ) in a cell-based reporter 
bioassay (Table 3). The study showed that (− ) arctigenin and (+) 
pinoresinol had an IC50 of 3.8 and 8.2 μM respectively for hTRβ 
(Ogungbe et al., 2014). However, it is doubtful whether this effect is of 
clinical relevance since the T3 EC50 is in the nanomolar range (Cheng 
et al., 2010). 

4.4. Curcuminoids 

Curcuminoids extracted from the rhizomes of Curcuma longa 

Table 3 
Effects of non-flavonoids polyphenols on thyroid growth and function and on thyroid hormones action in vitro and in vivo.  

Class Compound Experimental model Dose Effects Reference 

Stilbenoids Resveratrol FRTL-5 cells 10–100 μM  − Transient increase of iodide trapping, iodide influx 
and NIS expression after short-term treatment 
(6–12 h) 

Sebai et al. 
(2010) 

10 μM  − Decrease of iodide uptake and expression of NIS, 
TG, TPO, TSHR, Nkx2-1, Foxe1 and Pax8 after long- 
term treatment (48–72 h) 

(Giuliani et al., 
2014a, 2017)   

Rat hepatocytes and HepG2 cells 20 μM  − Increase the T3 induction of genes related to fatty 
acid oxidation and gluconeogenesis in the liver 

Thakran et al. 
(2013)   

Sprague-Dawley rats (F, adult) 
ovariectomized 

0.084 g–0.84 g per kg 
food for 3 months p.o.  

− Increase of serum T3 with slight decrease of serum 
TSH 

Böttner et al. 
(2006)   

Sprague-Dawley rats (M, 8 weeks old) 50 mg/kg of BW i.p. for 
14 days 
25 mg/kg of BW i.p. for 2 
months  

− Down-regulation of NIS expression and iodide 
uptake  

− Increase of thyroid size  
− Induction of thyroid hypertrophy and hyperplasia  
− Decrease of thyroid TG  
− Increase of serum TSH 

Giuliani et al. 
(2014a) 
(Giuliani et al., 
2017)   

Wistar rats fluoride-exposed (M, adult) 20 mg/kg of BW i.p. for 
14 days  

− Amelioration of the fluoride metabolic toxicity  
− Restoration of the fluoride-induced changes in 

serum T3 and T4, in thyroid TPO activity, and in 
thyroid histology 

Sarkar and Pal 
(2014)   

Sprague-Dawley rats (M, 2 months old) 
with surgical-induced subclinical 
hypothyroidism 

15 mg/kg of BW by oral 
gavage for 16 days  

− Decrease of TRH and TSH secretion and 
improvement of animal behavior 

(Ge et al., 2015, 
2016) 

Lignans Arctigenin cell-based hTRβ reporter assay 3.8 μM  − Antagonist of TRβ Ogungbe et al. 
(2014)  

Pinoresinol cell-based hTRβ reporter assay 8.2 μM  − Antagonist of TRβ Ogungbe et al. 
(2014) 

Curcuminoids Curcumin Wistar rats (M, 3 months old) 100 mg/kg of BW by 
gavage for 30 days  

− Increase of serum FT3 and FT4 Papiez et al. 
(2008)   

Wistar rats (M, 18 months old) 100 mg/kg of BW by 
gavage for 30 days  

− Decrease of serum FT3 Papiez et al. 
(2008)   

Sprague-Dawley rats (M, 6–8 weeks 
old) fluoride-exposed 

100 mg/kg of BW by 
gavage for 21 days  

− Prevention of the fluoride-induced changes in 
serum TSH, T3, T4 concentrations and in thyroid 
morphology 

Abdelaleem et al. 
(2018)   

Wistar rats (M, 5 months old) rendered 
thyrotoxic by L-T4 administration 

30 mg/kg of BW per os 
for 30 days  

− Amelioration of hepatic changes induced by 
thyrotoxicosis 

Subudhi et al. 
(2008)   

Wistar rats (M, adults) rendered 
hypothyroid by PTU administration 

30 mg/kg of BW by 
gavage for 30 days  

− Up-regulation of superoxide dismutase (SOD1) and 
glutathione peroxidase (GPx1)  

− No changes in serum T3, T4 and TSH levels  
− Restoration of hepatic cell population and 

histoarchitecture 

Subudhi and 
Chainy (2012) 
(Bunker et al., 
2019)  
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(known also as turmeric), are naturally occurring polyphenols respon-
sible for the yellow color of the plant. They consist of a mixture of 
curcumin and its derivatives demethoxycurcumin and bis- 
demethoxycurcumin (Amalraj et al., 2017), (Fig. 8). Curcuminoids, 
used generally as spices or colorants, have gained interest in medicine 
for their antioxidant, anti-inflammatory, and anti-cancer properties 
(Gupta et al., 2013; Panda et al., 2017). Few studies are available on the 
effects of curcumin on thyroid function or thyroid hormones action 
(Table 3). A study performed on healthy rats treated with curcumin 100 
mg/kg of B.W. by gavage revealed different effects depending on the age 
of the rats. In younger rats (3 months old) curcumin stimulated the 
secretory function of the thyroid gland as demonstrated by a weak in-
crease of FT3 and FT4 serum concentrations, whereas in older rats (18 
months old) curcumin induced a decrease of FT3 concentrations asso-
ciated with morphological changes of thyroid histology similar to that 
induced by anti-thyroid drugs (Papiez et al., 2008). However, this study 
has important weaknesses that make its evaluation difficult. Indeed, the 
authors did not report the serum TSH and total thyroid hormones con-
centrations, but they evaluated only the free thyroid hormones con-
centrations using a radioimmunoassay method. These data should be 
interpreted with caution since the measurement of free thyroid hor-
mones by methods other than equilibrium dialysis can be erroneous 
(Bianco et al., 2014). A more recent study performed in Sprague-Dawley 
rats exposed to sodium fluoride showed that curcumin 100 mg/kg of B. 
W. by gavage prevented the fluoride-induced anti-thyroid effect on 
serum concentrations of thyroid hormones and on glandular 
morphology (Abdelaleem et al., 2018). However, the effect of curcumin 
on normal control rats was not evaluated. Some studies have evaluated 
the anti-oxidants effects of curcumin on thyrotoxic or hypothyroid rats 
(Bunker et al., 2019; Subudhi and Chainy, 2012; Subudhi et al., 2008). 
In rats rendered thyrotoxic by L-T4 administration curcumin signifi-
cantly improved the hepatic dysfunction and the oxidative stress 
induced by thyrotoxicosis (Subudhi et al., 2008). A beneficial effect of 
curcumin was also observed in rats rendered hypothyroid by propylth-
iouracile. In this model curcumin restored the glutathione redox status 
altered by the hypothyroidism, and modulated the activities of the genes 
involved in the antioxidant activity. In detail, the treatment with cur-
cumin normalized the increased activities of superoxide dismutase 
(SOD) 1, SOD 2, glutathione peroxidase (GPx1) and glutathione reduc-
tase (GR), and the decreased activity of catalase (CAT) caused by hy-
pothyroidism (Bunker et al., 2019; Subudhi and Chainy, 2012). 
However, in all these studies curcumin was unable to restore the altered 
concentrations of serum TSH, T3 and T4 and therefore its beneficial ef-
fects seem linked to the antioxidant properties and not to a direct action 
on thyroid function (Bunker et al., 2019; Subudhi and Chainy, 2012). 

5. Coumarins and phenolic acids 

Coumarins are plant secondary metabolites composed of a benzene 
ring linked to a pyrone ring. They comprise several compounds that 
have antimicrobial, antithrombotic, anti-inflammatory, and vaso-
dilatory activities (Stringlis et al., 2019). Of these compounds only 
coumarin (Fig. 9) has been shown to affect thyroid function (Table 4). 
Indeed, administration of coumarin in female rats made thyrotoxic with 
L-T4 reversed the increased thyroid hormones serum concentrations and 
the liver D1 activity (Panda and Kar, 2007a). Of note, this study 

Fig. 7. Chemical structures of the phenylpropanoid unit and of the lignans (− ) 
arctigenin and (+) pinoresinol. 

Fig. 8. Chemical structures of curcumin and its derivative demethoxycurcumin 
and bisdemethoxycurcumin. 

Fig. 9. Chemical structure of coumarin.  
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demonstrated that coumarin also had an inhibitory effect on the thyroid 
function of control euthyroid rats where the administration of the 
compound reduced serum thyroid hormone concentrations and D1 ac-
tivity by about half (Panda and Kar, 2007a). 

However, these data have little clinical impact as the maximum 
amount of coumarin ingested by humans is estimated to be approxi-
mately 0.06 mg/kg/day (Lončar et al., 2020). 

Phenolic acids are aromatic secondary metabolites with a phenolic 
ring having at least one carboxylic acid group. 

They are widely distributed in the plant kingdom and found in a 
variety of nuts and fruits, such as raspberries, grapes, strawberries, 
walnuts, cranberries, and black currants. They are divided into two sub- 
groups: hydroxycinnamic and hydroxybenzoic acids (Kumar and Goel, 
2019). The most common hydroxycinnamic acids include coumaric, 
ferulic, sinapic, and caffeic acids (Fig. 10). 

They are found in fruits, vegetables, and beverages, such as coffee, 
tea, and wine (Coman and Vodnar, 2020). Studies performed in vitro, 
summarized in Table 4, have shown the abilities of several hydrox-
ycinnammic compounds to inhibit TPO activity or the binding of TSH on 
thyroid plasma membrane (Auf’mkolk et al., 1985; Habza-Kowalska 
et al., 2019a; Habza-Kowalska et al., 2019b). However, in these studies 
the concentrations used are much higher than that observed in human 
plasma that are below 100 nM (Grabska-Kobylecka et al., 2020; Lee 
et al., 2016) Coumaric acid has been shown to exert a goitrogen activity 
in rats (Khelifi-Touhami et al., 2003). Indeed, the administration of 
coumaric acid (0.25 μmol/kg/day for 3 weeks by gastric tube) caused 
hypertrophy and hyperplasia of the thyroid follicles, a decrease of serum 

Table 4 
Effects of other phenolic compounds on thyroid growth and function in vitro and in vivo.  

Class Compound Experimental model Dose Effects Reference 

Coumarins Coumarin Wister Albino rats (F, 
adult) 

10 mg/kg of BW for 15 
days p.o.  

− Decrease of serum T3 and T4, decrease of liver D1 activity in 
normal rats and in rats rendered thyrotoxic by 
administration of L-T4 

Panda and Kar 
(2007a) 

Phenolic 
acids 

Coumaric acid Wister Albino rats (M, 
adults) 

0.25 μmol/kg of BW 
for 3 weeks by gastric 
tube  

− Induction of thyroid hypertrophy and hyperplasia  
− Decrease of serum T3 and T4 levels and increase of serum 

TSH 

Khelifi-Touhami et al. 
(2003)  

Ferulic acid Wister Albino rats (M, 
adults) 

0.25 μmol/kg of BW 
for 3 weeks by gastric 
tube  

− Induction of slight thyroid hypertrophy Khelifi-Touhami et al. 
(2003)  

Caffeic acid Wister Albino rats (M, 
adults) 

0.25 μmol/kg of BW 
for 3 weeks by gastric 
tube  

- Induction of slight thyroid hypertrophy Khelifi-Touhami et al. 
(2003)  

Sinapic acid TPO extracted from 
porcine thyroid glands 

25.4 ± 1.1 μg/mL  − Inhibition of tyrosine iodination by TPO Habza-Kowalska et al. 
(2019a)  

Chlorogenic 
acid 

Human thyroid glands 80 μg/ml  − Inhibition of TSH binding to thyroid plasma membranes Auf’mkolk et al. 
(1985)   

TPO extracted from 
porcine thyroid glands 

1439 ± 40 μM  − Inhibition of tyrosine iodination by TPO Habza-Kowalska et al. 
(2019b)  

Rosmarinic 
acid 

Human thyroid glands 70 μg/mL  − Inhibition of TSH binding to thyroid plasma membranes Auf’mkolk et al. 
(1985)   

TPO extracted from 
porcine thyroid glands 

4 ± 0.1 μM  − Inhibition of tyrosine iodination by TPO Habza-Kowalska et al. 
(2019b)  

Gallic acid In vitro peroxidase assay 150 ± 23 μM  − Inhibition of peroxidase activity Benarous et al. (2020)  
Ellagic acid Human thyroid glands 20 μg/ml  − Inhibition of TSH binding to thyroid plasma membranes Auf’mkolk et al. 

(1985)   
GH3-TRE-Luc cells 37.5 μM  − Antagonist activity on thyroid hormone receptor Gramec Skledar et al. 

(2019)  

Fig. 10. Chemical structure of main hydroxycinnamic acids.  

Fig. 11. Chemical structure of the main alkaloids that affect thyroid function.  
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T3 and T4 concentrations, with a parallel increase of serum TSH con-
centrations. In the same study, caffeic acid and ferulic acid caused only a 
slight increase in thyroid volume without increasing cell proliferation 
and without affecting the serum concentrations of TSH and thyroid 
hormones (Khelifi-Touhami et al., 2003). However, also in this study 
high concentrations of compounds were used in comparison with that 
detected in human plasma. Of note, no data are available on hydrox-
ycinnamic acids consumption and risk of thyroid dysfunction in humans. 

Hydroxybenzoic acids in plant foods include p-hydroxybenzoic, 
gallic, syringic, protocatechuic, and vanilic acids (Valanciene et al., 
2020). There are no data regarding their effects on thyroid function in 
vivo, some studies have shown that gallic acid and its dimeric derivative, 
the ellagic acid, inhibit in vitro the TPO activity and the TSH binding to 
thyroid plasma membranes (Auf’mkolk et al., 1985; Benarous et al., 
2020; Gramec Skledar et al., 2019) (Table 4). However, even in these 
studies the concentrations used are much higher than that detected in 
human plasma (Fan et al., 2020; Long et al., 2019). 

6. Alkaloids 

Alkaloids are secondary plant metabolites containing cyclic struc-
tures with at least one basic nitrogen atom being incorporated within 
(Fig. 11). These compounds have a wide distribution in the plant 
kingdom and are important for plants defense against herbivores and 
pathogenic organisms (Zaynab et al., 2018). 

Alkaloids can be classified, based on their heterocyclic ring system 
and biosynthetic precursor, into several groups, including: tropanes, 
pyrrolidines, isoquinoline purines, imidazoles, quinolizidines, indoles, 
piperidines and pyrrolizidines (Thawabteh et al., 2019). Alkaloids have 
been extensively investigated because of their biological activity and 
therapeutic potential. They are endowed, indeed, with several biological 
activities, including anti-inflammatory, anti-oxidant, anti-microbial, 
anti-cancer (Mondal et al., 2019), immunomodulatory (Khan et al., 
2020), anticholinergic, analgesic, and antiangiogenic properties (Alas-
vand et al., 2019). However, many alkaloids are well known poisons and 
are toxic to both humans and animals (Matsuura and Fett-Neto, 2015). 
They can also interfere with many enzymatic systems, including those 
involved in thyroid hormone status. The main alkaloids that interfere 
with thyroid function are reported in Table 5. 

Nicotine is one of the best-known alkaloids being a main constituent 
of tobacco. In addition to smoking, nicotine can be ingested by chewing 
tobacco leaves or taking tablets. Several studies have shown that nico-
tine can affect thyroid function particularly in the early stages of life. In 

studies performed in lactating rats, treatment of dams with nicotine 
caused a central hypothyroidism in the lactating pups (de Oliveira et al., 
2011; Lisboa et al., 2015; Oliveira et al., 2009). Of note, plasma nicotine 
concentration in these studies was similar to that observed in heavy 
smokers. However, no effect of nicotine was observed on thyroid hor-
mone synthesis and metabolism both in vivo in adult rats (Colzani et al., 
1998) and in vitro in cultured porcine thyroid follicles (Fukayama et al., 
1992). 

Other alkaloids that interfere with thyroid function are harmine, 
piperine, arecoline and mitragynine. 

Harmine, present in several medical plants, is an inhibitor of the 
horseradish peroxidase activity with an IC50 of 141.4 μM. Molecular 
modelling showed that this data can also apply to TPO, suggesting a 
potential use of this compound as anti-thyroid drug (Benarous et al., 
2020). 

Piperine, the major alkaloid contained in Piper nigrum (black pep-
per), significantly lowered serum T3 and T4 concentrations, and liver D1 
activity in Swiss albino mice (Panda and Kar, 2003). These results were 
observed treating the mice with 2.5 mg/kg/day. A lower dose, 0.25 
mg/kg/day, decreased only liver D1 activity and serum T3 concentra-
tions. However, these doses are far from those reached in human 
nutrition since black pepper contains approximately 5–9% piperine 
(Dudhatra et al., 2012). Arecoline is a naturally occurring psychoactive 
alkaloid from the betel nut of the Areca catechu, a plant that growth in 
Southeast Asia, East African and Western Pacific seaboards. The nuts are 
chewed by millions of people to increase capacity to work and reduce 
stress. Arecoline is a partial agonist of nicotinic and muscarinic acetyl-
choline receptors and exhibits several pharmacological activities 
including endocrine and metabolic effects (Volgin et al., 2019). Areco-
line showed dual actions on mouse thyroid gland, it stimulates thyroid 
function initially with a subsequent inhibition of thyroid activity, 
probably due to the cytotoxic effect of this compound as demonstrated 
by the ultrastructural changes observed in thyrocytes (Dasgupta et al., 
2010). Indeed, acute exposure to arecoline caused an increase of serum 
T3 and T4 levels associated with a decrease of serum TSH concentrations 
in adult male mice within 40 min from i.p. injection. Instead, a 
long-term treatment (10 mg/kg B.W. daily for 15 days) induced ultra-
structural degeneration of thyroid follicular cells with reduction of 
serum T3 and T4 levels followed by an elevation of TSH. Furthermore, 
arecoline treatment has been shown to aggravate hypothyroidism in 
mice under metabolic stress (Dasgupta et al., 2017) and to ameliorate 
hyperthyroid condition in cold-stressed mice (Dasgupta et al., 2018). 

Mitragynine, an indole alkaloid, is the main component of the 

Table 5 
Effects of alkaloids on thyroid growth and function in vitro and in vivo.  

Class Compound Experimental model Dose Effects Reference 

Pyridines Nicotine Wistar rats (F and M, lactating pups 
from dams treated with nicotine 
during lactation) 

6 mg/kg of BW for 14 
days by s.c. minipump  

− Decrease of serum FT3 and FT4 levels and of liver 
D1 activity  

− Transient increase with subsequent decrease of 
serum TSH levels  

− Decrease of thyroid iodide uptake 

(Lisboa et al., 2015;  
Oliveira et al., 2009) 
(de Oliveira et al., 
2011)   

Porcine thyroid follicles 0–200 μmol/L  − No effect on thyroid hormone synthesis  
− No effect on iodide efflux 

Fukayama et al. 
(1992)   

Sprague Dawley rats (adults) 2 mg/kg of BW for 7 
days by s.c. minipump  

− No effect on serum T4 and T3  

− No effect on D1 activity 
Colzani et al. (1998)   

C57BL/6 mice 24 mg/kg of BW for 
12 days by s.c. 
minipump  

− Decrease of serum T4 concentration and increase of 
T3/T4 ratio after 24 h of nicotine withdrawal 

Leach et al. (2015)  

Arecoline Albino mice (M, adults) 10 mg/kg of BW i.p. 
for 15 days  

− Acute effect: increase of serum T3 and T4 levels and 
decrease of serum TSH levels  

− Chronic effect: increase of serum TSH 
concentrations and decrease of serum T3 and T4 

levels with degenerations of thyrocytes 

Dasgupta et al. 
(2017) 

Isoquinoline 
purines 

Harmine In vitro peroxidase assay 141 ± 4.0 μM  − Inhibition of peroxidase activity Benarous et al. 
(2020) 

Piperidines Piperine Swiss albino mice (M, adults) 2.5 mg/kg of BW for 
15 days p.o.  

− Decrease of serum T3 and T4 levels and inhibition of 
liver D1 activity 

Panda and Kar 
(2003)  
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psychoactive plant Mitragyna speciosa (commonly known as Kratom). A 
case of severe primary hypothyroidism in a 44-year-old man has been 
reported following the chronic use (4 months) of high dose of kratom for 
abdominal pain (Sheleg and Collins, 2011). However, no experimental 
data are available on the effects of this alkaloid on thyroid function. 
Therefore, further experimental investigations are necessary to establish 
an anti-thyroid effect of mitragynine. 

7. Conclusions 

In this review we have discussed the main plant constituents that 
have anti-thyroid effects. We have described the several groups of 
phytochemicals based on their chemical classification and we have re-
ported their known mechanisms of action on thyroid cells and/or thy-
roid hormones metabolism mainly in tabular forms. Furthermore, we 
have discussed more extensively the compounds that are most abundant 
in food or dietary supplements, indicating the concentrations at which 
they are active and highlightening the data available on humans. We 
believe this information is important to evaluate the real impact of 
phytochemicals in the clinical practice. 
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Habza-Kowalska, E., Kaczor, A.A., Żuk, J., Matosiuk, D., Gawlik-Dziki, U., 2019b. 
Thyroid peroxidase activity is inhibited by phenolic compounds-impact of 
interaction. Molecules 24. 

Henning, S.M., Wang, P., Lee, R.P., Trang, A., Husari, G., Yang, J., Grojean, E.M., Ly, A., 
Hsu, M., Heber, D., Grogan, T., Li, Z., Aronson, W.J., 2020. Prospective randomized 
trial evaluating blood and prostate tissue concentrations of green tea polyphenols 
and quercetin in men with prostate cancer. Food Funct 11, 4114–4122. 

Horn-Ross, P.L., Hoggatt, K.J., Lee, M.M., 2002. Phytoestrogens and thyroid cancer risk: 
the San Francisco Bay Area thyroid cancer study. Cancer Epidemiol. Biomark. Prev. 
11, 43–49. 

Hosseinzade, A., Sadeghi, O., Naghdipour Biregani, A., Soukhtehzari, S., Brandt, G.S., 
Esmaillzadeh, A., 2019. Immunomodulatory effects of flavonoids: possible induction 
of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. 
Front. Immunol. 10, 51. 

Hsieh, C.L., Peng, C.C., Chen, K.C., Peng, R.Y., 2013. Rutin (quercetin rutinoside) 
induced protein-energy malnutrition in chronic kidney disease, but quercetin acted 
beneficially. J. Agric. Food Chem. 61, 7258–7267. 

Hüser, S., Guth, S., Joost, H.G., Soukup, S.T., Köhrle, J., Kreienbrock, L., Diel, P., 
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