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Abstract

The Urban Heat Island (UHI) phenomenon can be harmful during the summer season jeopardizing the safety of
some vulnerable population classes. Typically, the study of the UHI requires long data acquisitions using
weather stations widely distributed within the cities. To this aim, recent research proposed multicriteria ap-
proaches aimed at quantifying the hazard of the summer absolute maximum Urban Heat Island Intensity (UHII),
in urban districts. On the contrary, these approaches are time consuming and involve a large number of
parameters. This article proposes a simplified multiparametric approach based on the three principal parameters
involved in the UHI (albedo, greenery, and anthropogenic heat) obtained by a refined remote sensing data
acquisition. In comparison with other approaches, the proposed method is simpler and quick to apply while
maintaining good precision. Moreover, a calibration is achieved by exploiting the real absolute max UHII of a
set of 41 European urban districts and a validation is obtained by a comparison with another multiparametric
approach already validated in literature. Both the approaches are applied to 96 urban districts of Berlin. The
results show that the simplified procedure keep an average error less than 1°C but improving in applicability.
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Introduction

O VER THE PAST DECADES, global warming has been in the
spotlight since it is threatening human well-being and
environment health (McMichael et al., 2006; Singh and
Purohit, 2014). However, just in the past few years, it has
been noted that overheating consequences can be exacer-
bated or mitigated by human activities (Weng et al., 2004;
Al-Ghussain, 2019). Indeed, it has been amply demonstrated
that anthropogenic actions altered natural land covers that
directly affects the albedo, heat conductivity, and moisture of
a specific zone (Apollonio et al., 2016; Capolupo et al., 2018;
Boccia et al., 2020), causing the increment or the decrement
of air and surface temperatures in such area. Specifically, the
phenomenon of the Urban Heat Island (UHI), regarding
higher air temperatures within urban districts compared with
the surrounding rural environments, raised concern in the
scientific world (Santamouris, 2020). In the related literature,
the parameters influencing the Urban Heat Island Intensity
(UHII) have been widely studied (Oke, 1991) and identified
in the following: (1) meteorological variables; (2) urban
morphological features; (3) building materials; (4) anthro-
pogenic heat; and (5) city canyons. The detection of the main
triggering factors and the prediction of the phenomenon are
essential to identify the optimal strategies to be adopted to
contrast their main effects on human well-being and comfort,
such as the increase in mortality rate (Pantavou et al., 2011)
and cardiovascular illness (Heaviside et al., 2016), and, to
reduce cooling energy consumption during summertime
(Santamouris, 2015).

Conventionally, to measure the UHII in situ, automatic
weather stations are required (Oke et al., 2017). Anyway, this
information is not always available because weather stations
are patchy distributed within the cities and, consequently,
large areas may be without coverage. To overcome this
constraint, numerical simulations-based approaches, which
simultaneously include several parameters (e.g., meteoro-
logical data, urban surface characteristics, and climate con-
ditions), may be adopted. Nevertheless, also numerical
simulations have limitations because the numerous input
parameters of the models need to be measured or estimated
(Cantelli et al., 2015).

To this aim, a recent research proposed a new multi-
parametric index Iygn aimed at quantifying the hazard of the
absolute maximum UHII in urban districts during the summer
season by taking into account all the parameters influencing
the phenomenon based on open-source data (Sangiorgio
et al., 2020). This Iyyy is based on 11 parameters including
meteorological variables, characteristics of the city, an-
thropogenic heat, and city canyons. The advantage in com-
parison with the other approaches is the possibility to
consider numerous qualitative and quantitative aspects in the
analysis, involving a multicriteria-based procedure for the
calibration. In this approach, fundamental parameters such as
albedo and greenery are evaluated by an image analysis,
which breaks down satellite image to individuate urban dis-
trict materials (asphalt, water, white plaster, red brick, etc.)
and presence of greenery. On the contrary, the existing index-
based approaches are time consuming and based on manual
and slow calculations.

A widely used effective and fast approach to extract albedo
and greenery is offered by remote sensing (RS) techniques. In
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the related literature, RS tools have been recognized as the
most effective instrument to compute the urban surface
characteristics contributing to UHI phenomenon (Chen et al.,
2006; Mirzaei et al., 2020). In recent years, specific algo-
rithms have been defined to compute the albedo from each
satellite mission (Caprioli and Tarantino, 2001; Tarantino and
Figorito, 2012; Sarzana et al., 2020). In addition, the use of RS
techniques allows to overcome time-consuming analysis by
processing a large amount of geospatial information and using
cloud-based platforms handling geo-big data at large scale.
Among them, Google Earth Engine (GEE), recently released
by Google to process RS data, is a cloud free environment that
enables parallelized processing of a huge amount of infor-
mation belonging to various data sources (Gorelick et al.,
2017). In addition, its excellent computational power, owing
to the application of many processors, minimizes sensed data
processing time. Thus, GEE has strongly improved the RS
world to evaluate albedo and greenery on a large scale.

This article proposes a simplified index to evaluate the
absolute maximum UHII by combining the multicriteria
approach (Sangiorgio et al., 2020) with RS techniques to
obtain a fast and easy procedure (Caprioli and Tarantino,
2001; Tarantino and Figorito, 2012; Sarzana et al., 2020).
The index is evaluated considering the three most impor-
tant parameters in the UHII generation: albedo, greenery,
and anthropogenic heat. The resulting approach allows
large-scale data acquisition exploiting cloud-based plat-
forms and large-scale geo-big data analysis to identify al-
bedo and greenery in urban districts (Chen er al., 2006;
Wang et al., 2008; Mirzaei et al., 2020). In comparison
with previous studies, the main novelty of such approach
regards a significant increase in usefulness and applica-
bility of the new index, thanks to the synergy of a multi-
parametric approach with geo-big data analysis (that
allows examining 100 processors in parallel). In addition,
the proposed index maintains high accuracy even if it is
simplified in comparison with approaches that contemplate
numerous parameters.

The article is organized as follows. Overview of the
Methodological Approach to Achieve the Index section
proposes an overview of the methodological approach and
The Definition of the Index and Data Acquisition Process
section presents the simplified index and the RS data acqui-
sition procedure. Moreover, Calibration section shows the
calibration of the Index and Application and Comparison
section shows its application and comparison. Finally, Con-
clusions section draws conclusions of this research work.

Overview of the Methodological Approach
to Achieve the Index

This research is achieved in two phases (Fig. 1): (1) the
calibration of the proposed index; and (2) the application and
validation of the index performed by comparison with the
multiparametric index Iygy of Sangiorgio et al. (2020).

In the first phase, the proposed index is calibrated. In this
phase an analytic hierarchy process (AHP) is used to ana-
lyze and structure the problem in its basic components
(macrocriteria, criteria, and intensity ranges) and define the
index. Successively, data acquisition is performed to ac-
quire albedo, greenery, and anthropogenic heat through an
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RS approach. Once the dataset is realized, an optimization
procedure (Sangiorgio et al., 2019; Sangiorgio and Parisi,
2020) is used to calibrate the index exploiting the effective
UHII data acquired in 41 urban districts of 32 different
European cities (obtained from an exhaustive bibliographic
analysis). In addition, the calibration exploits a Jackknife
approach to perform a resampling of the input data and
achieve a statistical graph of the absolute and relative error
of the Index.

In the second phase, both the proposed simplified indices
exploiting the RS tools and the multiparametric index of
Sangiorgio et al. (2020) are applied to 96 urban districts of
Berlin. A comparison is carried out by evaluating the dif-
ferences of the forecasted absolute max UHII for every urban
district using different approaches. In addition, the effec-
tiveness of the proposed calibration is tested with both the
satellite data from Landsat 5 and Landsat 8.

Definition of the Index and Data Acquisition Process

In this section, the index is defined and discussed using the
AHP. In addition, the proposed data acquisition procedure to
include RS tools in the index evaluation is described in detail.

Macro-Criteria
and Criteria

Goal
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Land Cover Types (Albedo) v;

-

Absolute Max Urban
Heat Island Intensity
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N Population Density v;

Satellite image analysis:
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- Section 2

FIG. 1. The two phases of the
proposed methodology to define,
calibrate, and compare the pro-
posed index.

- Section 3

Section 4

Satellite image analysis:
Landsat 8

In particular, a specific focus in this work is dedicated to
data acquisition of the Characteristics of the City in terms of
Albedo and Greenery with a satellite image analysis.

The AHP to define the index

The proposed index is based on two macrocriteria and
three criteria i (with i=1,...,3) that are the principal pa-
rameters involved in the generation of the absolute max UHII
(Sangiorgio et al., 2020). For each criterion, a set of intensity
ranges j (with j=1, ..., n;) is defined to characterize its in-
tensity levels. The three criteria and related intensity ranges
are structured in a hierarchical flowchart as given in Fig. 2
and described in the following.

The first macrocriterion regards the Characteristics of the
City in the UHII accounting the first and second criteria:

(1) Land Cover Types (Albedo) (i=1) including 10 in-
tensity ranges (n; =10);

(2) Land Cover (Greenery) (i=2) to consider the phe-
nomenon of evapotranspiration through 10 ranges
(n,=10).

The other macrocriterion is the anthropogenic heat. The

anthropogenic heat can be evaluated by considering the

Intensity Ranges
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linear dependence between anthropogenic heat and popu-
lation density according to Merkin (2004):
(3) Population Density (i=3) including 11 related ranges
(n3=11).

Once the criteria are defined, the simplified index (Irs yrm)
to evaluate the potential absolute max UHII using RS data
can be evaluated as follows:

IRs, unn = vi Xwij + Vo X Waj + V3 X W3 (1)

where v; and w;; are the weights associated to the criterion i
and to the intensity ranges j, respectively.

Note that the relation between every single intensity ranges
and the associate weights w;; in the UHII development have
already been investigated in literature (Sangiorgio et al.,
2020). Such relation remains valid also for the proposed RS-
based index because the obtained values of weights do not
depend on the data acquisition procedure. The weights w;; are
given in Table 1.

However, the weight v; representing the influence of every
parameter in the phenomenon needs to be calibrated to get the
simplified index.

Data acquisition

This section explains the process of data acquisition that is
used for calibration in the Calibration section. To perform the
calibration, this work exploits and reports the effective UHII

SANGIORGIO ET AL.

data acquired for 41 urban districts of 35 different cities in the
European continent.

In addition, characteristics of the city and anthropogenic
heat data are extracted for the 41 investigated urban districts.

UHII extraction from bibliographic analysis. This study
exploits published experimental data (acquired with fixed
weather stations) on the max UHI magnitude of 35 different
cities in 11 different countries of the European continent. The
obtained data of specific urban districts, related geographic
coordinates, and related UHII measured are given in Fig. 3.
For every urban district, a specific identification code
Ud=1,...,41 is assigned. In particular, the acquired infor-
mation is collected from 15 scientific articles published in
peer review journals, books, and research reports as reported
in the following: Russia (Varentsov et al., 2018), the Neth-
erlands (Van Hove et al., 2011), Italy (Petralli et al., 2006;
Giovannini et al., 2011; Busato et al., 2014; Milelli, 2016;
Guattari et al., 2018; Marando et al., 2019), United Kingdom
(Kolokotroni and Giridharan, 2008), Spain (Santamouris,
2016), Scotland (Kriiger and Emmanuel, 2013), Turkey
(Tayanc and Toros, 1997), Romania (Cheval et al., 2009)
Poland (Fortuniak et al., 2006), and France (Lemonsu and
Masson, 2002).

Characteristics of the city—satellite image analysis ap-
proach. This subsection describes in detail the RS approach
used to individuate data albedo and greenery in the

TABLE 1. TABULATED WEIGHT OBTAINED BY APPLYING ANALYTIC HIERARCHY PROCESSES STEP 2

Macrocriteria Criteria Intensity ranges Wij Value
Characteristics of the city Land cover types (albedo) 0.10-0.12 Wi 1
0.12-0.14 W12 0.85
0.14-0.16 w13 0.73
0.16-0.18 Wi4 0.65
0.18-0.20 Wis 0.58
0.20-0.22 W16 0.52
0.22-0.24 w17 0.48
0.24-0.26 W18 0.44
028-0.30 mo 03
20—V, Wi1.10 .
Land cover (% greenery) Less than 5% Wa 1
5-10% W2 0.9
10-15% W23 0.8
15-20% W4 0.7
20-25% W5 0.6
25-30% W6 0.5
30-35% Wa7 0.4
35-40% Wa g 0.3
40-45% Wao 0.2
More than 45% W10 0.1
Anthropogenic heat Population density More than 20,000 ab/km? W3 1
18,000-20,000 ab/km?* W32 0.91
16,000—18,000 ab/km? W33 0.82
14,000-16,000 ab/km?* W34 0.73
12,000-14,000 ab/km> W35 0.64
10,000-12,000 ab/km?* W36 0.55
8,000-10,000 ab/km? w37 0.46
6,000-8,000 ab/km? W38 0.36
4,000-6,000 ab/km? W39 0.26
2,000-4,000 ab/km? w310 0.15

Less than 2,000 ab/km> Wil 0.07
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FIG. 3. UHIIs extracted from a literature review.

investigated urban districts by analyzing an area within
500m from the relative weather stations. This analysis is
carried out by following four steps: (i) construction of the
Landsat images and database and exploiting Landsat mission;
(i1) adoption of a cloud masking procedure to exclude the
cloud pixels from the analysis; (iii) calculation of greenery;
and (iv) calculation of albedo. Note that all the four steps are
implemented in GEE environment through JavaScript API.

(i) The first step consists of extract Landsat images of the
41 urban districts. In particular, Landsat mission 5 provides
data of 39 urban districts, whereas data regarding the re-
maining 2 districts are extracted from Landsat mission 8.
Table 2 shows for every urban district, the obtained infor-
mation including Landsat Mission, Acquisition period, Sen-
sor Type, Data ID, and Cloud Cover (%) at the time of
acquisition. All collected images are provided in the Uni-
versal Transverse Mercator projection and the World Geo-
detic System (WGS84) datum. In particular, the considered
acquisition period for the RS data is consistent with the ef-
fective UHII data obtained for the investigated 41 urban
districts. The processing phase is implemented directly in the
GEE platform speeding up the overall data acquisition pro-
cedure (Gorelick et al., 2017). Indeed, in such cloud-based
platforms, handling geo-big data, it is possible to download
both raw and preprocessed data by drastically reducing the
processing time (Kumar and Mutanga, 2018).

(i1) Once the database is constructed, cloud masking pro-
cedure is carried out by adopting proper filters suitable for
making the clouds transparent and excluding the corre-
sponding pixels during the processing phase. To meet such

Albedo =

(0.356 X B) + (0.130X R) + (0.373 X NIR) + (0.085 x SWIR1) + (0.072 x SWIR2) — 0.018

purpose, the methodology proposed by Mateo-Garcia et al.
(2018), based on the information provided by the quality
assessment band, is applied. No additional orthorectification
steps need to be applied because the accuracy provided by the
process is considered satisfactory. This implies that the fur-
ther processing steps (Greenery and Albedo evaluation) are
directly calculated on images resultant from cloud cover
masking procedure.

(iii) Green areas percentage (Greenery) can be quickly
extracted by applying the vegetation indices (VIs) approach.
Indeed, as suggested by Anchang et al. (2016), it is the most
efficient classification method to handle a large volume of
geospatial data and to extract greenery at large scale. Among
the several VIs, the SwirTirRed index (STRed index) (Ca-
polupo et al., 2020a, 2020c) is applied because it is consid-
ered one of the most efficient and effective index as
demonstrated in Capolupo et al. (2020b). STRed index is
implemented in GEE environment according to the following
Equation (2):

SWIR1 + R — TIR1
TRed index — 2
STRed index = o TR+ TIRI )

where SWIRI1 is the short wavelength infrared with wave-
length in the range 1.57-1.65, R is the red band, and TIR1 is
the thermal infrared band.

(iv) The last RS step consists of the albedo evaluation for
each urban district. This evaluation is obtained by program-
ming a proper code in the GEE platform and exploiting the
following equation proposed by Allen et al. (2002) [Eq. (3)]:

1.016 )
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TABLE 2. SELECTED LANDSAT DATA DESCRIPTION
Landsat Acquisition Sensor Cloud
UD mission period type Data ID cover (%)
1 Landsat 5 June 1990 ™ LTO5_LI1TP_175034_19900610_20180209_01_T1 1
2 Landsat 5 June 2009 ™ LTO5_L1TP_197024_20090624_20161024_01_T1 0
3 Landsat 5 September 2008 ™ LTO5_LI1TP_197023_20080909_20180117_01_T1 5
4 Landsat 5 July 2007 ™ LTOS5_L1TP_183029_20070719_20161113_01_T1 1
5 Landsat 5 June 1990 ™ LTO5_LI1TP_180032_19900613_20180210_01_T1 0
6 Landsat 5 September 2008 ™ LTO5_L1TP_197023_20080909_20180117_01_T1 5
7 Landsat 5 August 2007 ™ LTO5_L1TP_199024_20070804_20180116_01_T1 2
8 Landsat 5 June 2009 ™ LTO5_L1TP_197024_20090624_20161024_01_T1 0
9 Landsat 5 June 2002 ™ LTO5_L1TP_192030_20020618_20161208_01_T1 0
10 Landsat 5 August 1989 ™ LTO5_L1TP_174034_19890819_20180208_01_T1 0
11 Landsat 5 July 2011 ™ LTO5_L1TP_205021_20110724_20161008_01_T1 2
12 Landsat 5 September 2008 ™ LTO5_L1TP_197023_20080909_20180117_01_T1 5
13 Landsat 5 September 2006 TM LTOS_L1TP_198024_20060911_20161118_01_T1 0
14 Landsat 5 September 2005 ™ LTO5_L1TP_198023_20050908_20161124_01_T1 1
15 Landsat 5 September 2006 ™ LTO5_L1TP_198024_20060911_20161118_01_T1 0
16 Landsat 5 September 2006 TM LTO5_L1TP_198024_20060911_20161118_01_T1 0
17 Landsat 5 July 2006 ™ LTOS5_L1TP_198023_20060725_20161120_01_T1 1
18 Landsat 5 July 1990 ™ LTO5_LI1TP_181033_19900706_20180210_01_T1 0
19 Landsat 5 September 2008 ™ LTOS5_L1TP_197023_20080909_20180117_01_T1 5
20 Landsat 5 July 2006 ™ LTO5_L1TP_199024_20060716_20161120_01_T1 0
21 Landsat 5 July 1994 ™ LTO5_L1TP_188024_19940702_20170113_01_T1 0
22 Landsat 5 June 2000 ™ LTO5_L1TP_202024_20000618_20171211_01_T1 0
23 Landsat 5 June 2000 ™ LTO5_L1TP_202024_20000618_20171211_01_T1 0
24 Landsat 5 July 2006 ™ LTO5_LI1TP_197024_20060718_20161120_01_T1 0
25 Landsat 5 August 2008 ™ LTO5_L1TP_201032_20080820_20180116_01_T1 0
26 Landsat 5 July 2010 ™ LTO5_LI1TP_178021_20100724_20161014_01_T1 1
27 Landsat 5 June 2011 ™ LTO5_L1TP_192028_20110627_20161008_01_T1 5
28 Landsat 5 June 1994 ™ LTOS_L1TP_199026_19940613_20180216_01_T1 31
29 Landsat 5 June 1994 ™ LTO5_L1TP_199026_19940613_20180216_01_T1 31
30 Landsat 5 April 2008 ™ LTOS5_L1TP_198023_20080409_20180311_01_T1 7
31 Landsat 8 July 2015 OLI/TIRS LCO08_L1TP_191031_20150717_20170407_01_T1 0.92
32 Landsat 8 July 2015 OLI/TIRS LCO08_L1TP_191031_20150717_20170407_01_T1 0.92
33 Landsat 5 July 2009 ™ LTO5_LI1TP_198024_20090701_20161025_01_T1 5
34 Landsat 5 June 2010 ™ LTOS5_L1TP_198024_20100602_20161015_01_T1 4
35 Landsat 5 June 2010 ™ LTO5_L1TP_198024_20100602_20161015_01_T1 4
36 Landsat 5 June 2010 ™ LTOS5_L1TP_198024_20100602_20161015_01_T1 4
37 Landsat 5 August 2007 ™ LTO5_L1TP_199024_20070804_20180116_01_T1 2
38 Landsat 5 August 2009 ™ LTO5_L1TP_194029_20090822_20161022_01_T1 7
39 Landsat 5 July 2007 ™ LTO5_L1TP_193028_20070725_20161112_01_T1 3
40 Landsat 5 August 2007 ™ LTO5_L1TP_199024_20070804_20180116_01_T1 2
41 Landsat 5 September 2008 ™ LTO5_L1TP_197023_20080909_20180117_01_T1 5

OLI, Operational Land Imager; TIRS, Thermal Infrared Sensors; TM, Thematic Mapper.

where B, R, and NIR are the blue, red, and near infraRed
bands, respectively, and SWIR?2 is the short wavelength in-
frared with wavelength in the range 2.11-2.29. In addition,
note that Top of Atmosphere corrected bands is used. To sum
up, the RS approach is given in Fig. 4.

Anthropogenic heat. The anthropogenic heat is re-
presented by the single criterion ‘‘population density.”” Data
regarding the population density can be obtained by ex-
ploiting the Eurostat (2018), and integrating some missing
data of small Netherland cities by a specific search on local
websites. The complete dataset for calibration is given in
Supplementary Table S1.

Calibration

In this section, the simplified index is calibrated to en-
able its application with a refined RS data acquisition.

Starting from the index defined in Overview of the Meth-
odological Approach to Achieve the Index section, a
mathematical programming (MP) problem is formulated
to obtain calibrated weights by an optimization proce-
dure by exploiting the effective UHII data acquired in 41
urban districts.

MP and calibration

To obtain the weights v; and calibrate the index defined in
Equation (1), K=41 urban districts (Ud=1,...,K) are con-
sidered in eight cities of the European continent. The index of
IS Ui associated with the urban districts Ud=1, ..., K is
written in function of the column vector of weights v=[v’, v?,
\13]T as follows:

Ud
IRS,UHII(V):VI XWij+ Vo Xwyj + v3 Xws; %)
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where j are the alternatives associated with the Ud-th urban
district.

Subsequently, it is possible to define the function F(v),
which evaluates the difference between the values of Iy
and the effective max UHIIV reported in Fig. 3 calculated for
each examined urban districts Ud=1,...,K:

F(v)= Z (Ilgg,UHH(V) _UHHUd)Z &)

To calibrate vector v, it is assumed that the index of po-
tential I3 pr should be as close as possible to the index of
effective max UHIIY for the considered urban districts.

F(v) represents the sum of the differences between the pro-
posed index and the effective intensity of the registered phe-
nomenon. Consequently, F(v) is set as the objective function to

be minimized by satisfying a set of constraints on vector v:
I'v): vi >0fori=1, ---,3 ©6)

Constraints [Equations (7) and (8)] are set to avoid nega-
tive or null values of the weights.

Satellite Image
Analysis Approach
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Now, to calculate vector v, the following MP problem is
formulated:

min F(v) @)

subjectto I'(v) (8)

Calibration results

A generalized reduced gradient method (Lasdon et al.,
1974) is applied to solve the MP problem by using a mul-
tistart of a population of 1,000 and a convergence of 0.001.
The MP solution outcomes the calibrated weights given in
Fig. 5. In addition, the results of the calibration of the
simplified index (working with RS data acquisition: satel-
lite image analysis approach) is compared with the cali-
bration of the approach of Sangiorgio et al. (2020). In
particular, Fig. 5 in the left part shows a pie chart regarding
the influence of every criterion (or parameters) expressed in
percentage calibrated by using RS data (satellite image
analysis approach) and in the right the pie chart regarding
the calibration of Sangiorgio et al. (2020). Note that the

Approach of
Sangiorgio et al. 2020

= Land Cover Types (Albedo)

» Land Cover (% Greenery)
Average Width of Streets

» Population Density

= Building Height

= Canyon Orientation

# Clear Sky Days

= Windless Days

s [rregularity of the city

= Average Max Summer Temperature

= Average Summer Thermal Excursion

FIG. 5. Calibrated weights, influence of each parameter in the UHII and comparison with an existing multiparametric

approach of Sangiorgio et al. (2020).
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simplified approach is achieved by involving the three most
important parameters of the approach of Sangiorgio et al.
(2020).

Absolute and relative error

To explicitly validate the proposed calibration, a second
analysis is performed to identify the Absolute Error and the
Mean Relative Error of the proposed index in comparison
with the approach of Sangiorgio et al. (2020). In particular,
the values obtained with index Igs yyyy i compared with the
effective absolute max UHII obtained from the bibliography
(RS data acquisition methods and Sangiorgio et al., 2020). To
this aim, a Jackknife approach is used to perform a resam-
pling of the input data and verify both the reliability and the
robustness of the index by displaying statistical graphs. In
particular, a one-by-one removal of the 41 urban districts is
performed and every removal the MP problem is solved to
verify that the solution does not change significantly.

Figure 6 shows the statistical graph (boxplot) of the Absolute
Error and Mean Relative Error obtained for the two approaches.
More in detail, the boxes represent the distribution of the error
(°C for the Absolute Error and % for the Relative Error) and the
black horizontal line inside the boxes denotes the median of the
sample. Although the box contains all results within the 25th and
75th percentile of the population, the vertical line contains all
results that are not considered outliers. The Mean Relative Error
is represented in the same graph by the symbol ““Xx.”

This additional analysis demonstrates that the proposed
index is able to quantify the potential absolute max UHII
with an average accuracy of ~ 1.2°C (mean absolute error
<1.2°C). In addition, in >70% of the investigated urban dis-
trict the relative error is <10%. On the contrary, in the urban
district where the absolute max UHII is small, often there is a
higher error (>15%) even if the absolute error remains ~ 1°C.
The mean relative error is ~20% and 15% for the simplified
index and Sangiorgio’s approach, respectively. The proposed
approach provides accuracy only slightly lower but ensures
greater ease of use and applicability.

Satellite Image

SANGIORGIO ET AL.

In addition, such error and can be considered acceptable to
the effective application of the proposed index as it is similar
to the reliability that characterizes the UHII measurements
with standard fixed station. Indeed, the conventional ap-
proach to measure UHII can be affected by an inaccuracy
owing to the choice of the rural station measurement to be
compared with the city station measurement as discussed by
Oke (1991).

Application and Comparison

To verify the effectiveness of the proposed approach, the
index is applied to the case study of Berlin. Moreover, a
comparison of the two different approaches is performed to
show the differences of the two methods.

The index application: the case of Berlin

The resulting indexes are able to forecast the absolute max
UHII in the urban districts by using the input data including
characteristics of the city (in terms of albedo and greenery)
and anthropogenic heat.

To provide an example, there are no exhaustive studies on
the heat island effect for the whole city of Berlin in related
literature. To this reason, the proposed index can be very
useful to study the magnitude of the phenomenon in the city
exploiting an RS data analysis.

The collection procedure allows to easily achieve the input
data of all the 96 urban districts of the city of Berlin as given
in Supplementary Tables S2 and S3. Note that, data are ac-
quired by considering an area within 500m centroid of
considered districts. In addition, Supplementary Tables S2
and S3 show the two datasets regarding the districts of Berlin,
one obtained with the procedure of Sangiorgio et al. (2020)
and one with the proposed RS procedure, respectively. Note
that the RS procedure is applied with both the data of Landsat
5, acquired on July 2, 2011 and Landsat 8, taken on June 24,
2019, to identify any differences in the applicability of the

Approach of
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method with the different satellites (comparison described in
the next subsection).

Figure 7 shows the application of the proposed index (ex-
ploiting data from Landsat 8) to generate an intensity map
(and show the magnitude of the phenomenon) of the city of
Berlin for the Absolute Max UHII. The central areas of Berlin
(urban districts of Mitte or Friedrichshain) are the most sub-
ject to suffer the UHI caused by an intensely developed urban
fabric. The only few exceptions, as an example, the urban
district of Hellersdorf may be subject to high-absolute max
UHII because of the high housing density and lower presence
of green. On the contrary, in most districts of Berlin, there is
lot of greenery between parks and urban woods that are able to
mitigate the effects of the phenomenon. These results are in

Sangiorgio et al. 2020

RS Approach Landsat 5

FIG. 7. Example of the
application of the Irs yan
(RS data from Landsat 8) to
create an intensity map of the
city districts of Berlin.

line with the study of Menberg et al. (2013) that investigates
the distribution of the surface air temperature in Berlin.

The comparison of different approaches

To show the differences of the two approaches and in-
vestigate the contribution of diverse satellite data, the in-
tensity map of Berlin is evaluated by the index applied with:
(1) the approach of Sangiorgio et al. (2020); (2) the simpli-
fied index exploiting satellite image analysis approach using
Landsat 5; (3) and the simplified index exploiting satellite
image analysis approach using Landsat 8. Figure 8 shows the
different intensity maps obtained with the two approaches
and the three different datasets.

RS Approach Landsat 8

FIG. 8. Example of the application of the /rs ygn and comparison with Sangiorgio et al. (2020), Landsat 5, and Landsat 8
to create a intensity map of the city districts of Berlin.
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FIG. 9. Pair comparisons of the intensity maps of Berlin and boxplot of the Ay evaluated for every urban district.

Moreover, Fig. 9 emphasizes the differences of the various
intensity maps showing pair comparisons of the three maps
obtained. For every pair comparison, a boxplot representing
the differences of the estimated absolute max UHII for all the
city urban districts Ay, is given.

The approach of Sangiorgio et al. (2020) allows achieving
good results for the estimation of both the high- and low-
absolute max UHIIL On the contrary, this approach is time
consuming and involves a large number of parameters in
comparison with the simplified RS approach.

The satellite image analysis approach using Landsat 5 is
accurate for districts with medium and high UHII but pro-
vides a slight overestimation of the districts with low UHII.

On the contrary, Landsat 8 is very accurate for districts with
low UHII and slightly underestimates districts with high UHIIL.

However, the average differences among the three
approaches are far below 1°C, confirming that both the
approaches and the three data acquisition methods are ef-
fective. Specifically, such an outcome provides relevant
contribution in detecting the UHI in specific historical pe-
riods, owing to the reliability of Landsat data (in both the
considered missions 5 and 8). Indeed, Landsat is the only
satellite platform providing free continuous information
from 1973. Thus, the Landsat-based RS approach allows
extracting information in a specific temporal period. Con-
sequently, by using this approach it is possible to carry out
multi-temporal analysis suitable for investigating UHI
evolution over the time.

Conclusions

The proposed work presents a simplified index that allows
to evaluate the potential absolute max UHII in urban districts
by exploiting satellite image analysis to identify the albedo,
greenery, and population density.

The novelty of the proposed approach is twofold.

First, in comparison with previous approaches, such as the
index of Sangiorgio et al. (2020), the proposed method is

simplified, automated, and applicable at a large scale. Indeed,
the proposed index can exploit a structured RS evaluation to
acquire albedo and greenery with a cloud-based platform
handling geo-big data at large scale. The integration of such
data acquisition approach in the index provides the great ad-
vantage of processing the big data by using in parallel 100
processors, speeding up the overall data acquisition procedure.

Second, the RS-based procedure provides relevant contri-
bution in detecting the UHI in specific historical periods owing
to the reliability of Landsat providing free continuous infor-
mation from 1973. Thus, the Landsat-based RS approach al-
lows extracting information in a specific temporal period and
simultaneously carrying out multi-temporal analysis suitable
for investigating UHI evolution over the time.

The proposed index could be a useful tool to quantify the
potential UHII in any phase of an urban development, from
the project phase to the construction maintenance and
management phases. The index could also be used to eval-
uate local mitigation strategies and the effectiveness of
retrofit interventions to improve the energy performances of
buildings. Beyond this, researchers can also use this index to
obtain maps of intensity at different scales: urban, regional,
and national.

Future research will evaluate the vulnerability index and
exposure index to the UHII phenomenon to obtain an overall
risk index of the phenomenon. In addition, the proposed in-
dex will be integrated in Spatial Decision Support Systems
for the large-scale risk assessment useful to set effective
mitigation strategies.
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