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ABSTRACT

Generation of renewable energy is destined to grow further, motivated, for exam-
ple, by the Paris Agreement, aimed at reducing the production of greenhouse gases.
In particular, hybrid production plants allow the exploitation of different climatic
sources to generate electricity. We analyze the electricity generation of a mixed
wind-photovoltaic (PV) system, considering a multivariate model that involves the
required climatic variables. We include the price of electricity in our model in order
to evaluate the profitability of the system through its expected income. In addition,
we investigate the optimal choice between these two production technologies via
Markowitz’s classic portfolio selection theory. To this end, we then consider a port-
folio of the income deriving from both wind and PV production. We determine the
most efficient components that maximize the overall income of our portfolio. This
analysis is enriched by taking into consideration the loss of load hours of efficient
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portfolios. Finally, we make an optimal choice between the two technologies. The
models are validated via Monte Carlo simulations using empirical data.

Keywords: renewable energy; income; Monte Carlo simulation; electricity price; efficient frontier;
loss of load hours (LoLH).

1 INTRODUCTION

The production of renewable energy is destined to continue its expansion in the com-
ing years because it is characterized by, among other things, its reduced environmen-
tal impact. In fact, wind and photovoltaic (PV) power, for example, make it possi-
ble to exploit climatic variables such as wind speed and solar radiation. Renewable
energy also has an important impact on the formulation of electricity prices within
the auction mechanism that characterizes the day-ahead electricity market.

The importance of renewable energy is also highlighted in the 2015 Paris Agree-
ment, settled by the United Nations Framework Convention on Climate Change
(see Framework Convention on Climate Change 2015, Section 7d), which aims
to mitigate climate change by reducing greenhouse gas emissions and thus their
“greenhouse effect”.

Various aspects of the development of renewable energies have been addressed
in the specialized literature. For example, Patlitzianas and Flamos (2016) analyze
renewable energy development in the Gulf Cooperation Council countries; Pekez
et al (2016) show how the expansion of renewable energy sources (RES) is a pos-
sible solution to the emissions associated with climate change. In addition, Das and
Malakar (2021) deal with the uncertainty in the production of wind farms with par-
ticular regard to the profit margin in the Indian energy market. Hybrid systems using
wind generators and PV panels are increasingly used (see, for example, Ferrer-Mart{
et al 2013; Domenech et al 2019). These systems are very complex and involve
different technologies for energy production.

The themes we develop in this work are detailed below.

(1) We aim to model the overall energy production of a hybrid wind—photovoltaic
system in a given location. Suppose we know the technical characteristics
and the nominal value of the wind turbine and the photovoltaic panel. To this
end, we should model the main stochastic climatic variables involved in this
process: solar radiation, wind speed and temperature.

(2) After estimating the overall energy produced in a given period, we determine
the expected income in that period by including the electricity price. We must
therefore model the zonal electricity price linked to the chosen location.
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(3) Finally, we focus on the optimal choice between the two production tech-
nologies. To do this, we use the classic Markowitz portfolio selection theory
(Markowitz 1952). We consider a portfolio consisting of the expected income
from both wind and PV production and determine the optimal mix that maxi-
mizes the total income of our portfolio. In addition, we consider another typi-
cal risk indicator of energy production: the loss of load hours (LoLH), which
gives the total number of hours for a given horizon for which the production of
energy is lower than that planned. Once we have determined the set of efficient
portfolios using financial techniques based on Markowitz theory, we select the
most efficient portfolio, which has the desired value for the L.oLH indicator.

Below we examine how these aspects have been addressed in the recent, special-
ized literature as well as their limitations, which we intend to address.

1.1 Climatic variables

The literature on temperature modeling includes Benth and Benth (2011), Huang
et al (2018), Lee and Craine (2012), Tiirkvatan et al (2020) and Zapranis and Alexan-
dridis (2011). These surveys highlight the main characteristics of the temperature (eg,
seasonality and autoregressive features).

Regarding wind speed, we refer the reader to the following contributions to the
literature. Caporin and Pre§ (2012) show that the autoregressive fractionally inte-
grated moving average—fractionally integrated generalized autoregressive condition-
ally heteroscedastic (ARFIMA-FIGARCH) process models wind speed efficiently.
Chang (2011) applies the Weibull distribution (which fits the typical distribution
shapes of the wind speed characteristics), with parameters estimated with the max-
imum likelihood estimation method. D’ Amico et al (2015a) simulate wind speed
through indexed semi-Markov chains. Sim et al (2019) initially apply a particu-
lar distribution to the data and then apply autoregressive integrated moving average
processes.

Solar radiation was studied by Saoud et al (2018) through a quaternion-valued
neural network for short-term forecasting purposes. Some works use neural net-
work techniques to determine PV energy production (see, for example, Monteiro
et al 2017; Yousif et al 2017, Graditi et al 2016). Benth and Ibrahim (2017)
apply a continuous-time process, and Lingohr and Miiller (2019) apply a nonlinear
continuous-time autoregressive process to model PV production. The efficiency of a
PV panel has been studied by several authors. For the determination of the modular
temperature of a PV panel, we follow Faiman’s law (Faiman 2008). To establish the
technical characteristics of the PV panel in our study, we refer to Huld et al (2011),
Koehl et al (2011) and Urraca et al (2018). The impact of temperature on PV pan-
els’ production was examined by Dubey et al (2013), Singh and Ravindra (2012)
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and Barykina and Hammer (2017). For this reason, we should include temperature
among the stochastic variables to be modeled. However, we observe that the impact
of temperature on PV production is small, so we will only consider its deterministic
component.

For PV energy, for a fixed set of defined technical characteristics (size, semicon-
ductor material, inclination, azimuth angle, etc), a panel’s efficiency depends on the
incident solar radiation and, to a certain extent, on other climatic variables such as
wind intensity and temperature, while wind energy mainly depends on the intensity
of the wind, and the energy produced can be quantified through the power curve that
characterizes the turbine.

A hybrid plant makes it possible to exploit very different situations: during the
night the plant will be able to produce only wind energy, while in the daytime there
will be mixed production, dependent on the meteorological conditions.

The models we use for the individual climatic variables do not differ from those
highlighted in the literature concerning their specific characteristics. We refer the
reader to the relevant sections for more details. The innovative aspect of this paper
is that we model the aforementioned variables using a multivariate model that can
take into account the complex dependence structure between these variables. In this
regard, we use a vector autoregressive (VAR) model. Our aim is to show that, with
this approach, the total energy production from a mixed wind—photovoltaic plant can
be faithfully reproduced, while the same level of production obtained by modeling
the climatic variables independently yields a distorted result.

1.2 Electricity price modeling

A considerable amount of literature has been produced on the modeling of electricity
prices. Fundamental references are Weron (2014) and Nowotarski and Weron (2018)
(see also the references therein). In a recent contribution, Giordano and Morale
(2021) apply a fractional Brownian—Hawkes model to the Italian electricity market.

The income from renewable energy sources is scarcely studied in the literature.
An application to wind farms was carried out by Benth et al (2018), who applied
an Ornstein—Uhlenbeck process to model wind speed and energy production and
a normal inverse Gaussian process to represent the electricity log prices. One of the
aims of our paper is to model effectively the dependence between wind speed and the
price of electricity. Another application in the same sector was studied by Casula et al
(2020a), who apply a multivariate VAR process to jointly represent the wind speed
and electricity price. From this point of view, the link between climatic variables and
power price is highly relevant. For example, Matsumoto and Endo (2021) aimed to
forecast the price of electricity based on the forecast of climatic variables.
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To effectively model the income of a hybrid plant, we extend the approach
described in the abovementioned references and consider a multivariate model in
which we include (in addition to the climatic variables) the price of electricity via
a VAR model. This feature again represents the innovative aspect of our proposal.
In this way, we can take into account the complex dependence structure between
the price of electricity and climatic variables. A note of caution, however, is that the
income on a given horizon is correctly represented by our model, but if we model the
individual stochastic variables independently, we obtain a significantly worse result.

1.3 Portfolio selection techniques

Portfolio selection techniques in the energy sector have been addressed by several
authors. Cucchiella et al (2017) carry out an economic analysis to evaluate the prof-
itability of investments in RES in the Italian market, in terms of incentives. Cunha
and Ferreira (2014) apply the classical mean—variance approach to a portfolio of RES
(ie, hydroelectric, wind and PV) in the Portuguese market. deLlano-Paz et al (2017)
review the literature on applications of portfolio theory to energy planning and elec-
tricity production. They state that the inclusion of RES reduces portfolio risk. Mufioz
et al (2009) consider a portfolio consisting of wind, PV, mini-hydro and thermoelec-
tric sources in the Spanish market. The associated cashflows are used to set the inter-
nal rate of return, and consequently to minimize the investment risk (and maximize
the return) of the portfolio. Neto et al (2017) apply portfolio theory for hydroelec-
tric, wind and PV assets for the Brazilian market and perform an economic analysis
considering taxation and financing. Further, the need to consider energy portfolios
in terms of mixtures of available generation technologies is extensively investigated
by Lucheroni and Mari (2017, 2018) concerning minimization strategies for the lev-
elized cost of energy of the portfolio. Li et al (2017) investigate the impact of wind
and PV production on development in China. Yang et al (2016) examine the con-
sumer preference for electricity generation when the share of RES increases. Mahesh
and Sandhu (2015) examine the advantages of considering hybrid wind—-PV energy
systems due to their complementary characteristics. From a more specific point of
view, Carpio (2021) tackles the problem of intermittency in the production of PV
energy through an optimal portfolio selection with a survey conducted in Brazil.

1.4 Our model, and the structure of the paper

The innovative aspects of our paper regarding portfolio selection are that we use a
multivariate model to link climate variables with the price of electricity, we consider
an additional risk measure that is more specific to the energy field (namely LoLH)
and we highlight how LoLH can be effectively estimated using the proposed model.
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We carry out a Monte Carlo simulation of the stochastic variables needed to imple-
ment the models and consider a hypothetical energy plant in Italy. (The data on
solar radiation and climatic variables come from NASA’s MERRA-2 project, and
the data containing historical values of electricity prices come from Gestore Mercati
Elettrici (GME).)

The remainder of the paper is structured as follows. In Section 2 we describe
the production of wind and PV energy as well as the auxiliary variables. Section 3
discusses the modeling of the stochastic variables and we introduce the expected
income. Then, in Section 4, we illustrate the results of the proposed models using
the efficient frontier and LoLH estimation. Finally, Section 5 states our conclusions.

2 MATERIALS AND METHODS

In this section we first present some statistics for the variables involved in our
analysis. Then, we estimate the solar energy produced by a PV panel with given
characteristics and the wind energy produced by a given wind turbine.

2.1 Data set characteristics

The (hourly) time series of the climatic variables were retrieved from NASA’s
MERRA-2 project.! The geographical location chosen (39.5°N,8.75°E) is in cen-
tral Sardinia, Italy, an area that is undergoing development in the field of wind farms.
Obviously, as our main purpose is to obtain real-world data, the location is not very
relevant for the proposed modeling.

Solar radiation is listed on MERRA-2 as the surface incoming shortwave flux
(SWGDN) variable. The data set contains 40 complete years (from January 1, 1980
to December 31, 2019, on an hourly basis) and some statistics are given in Table 1.

We note that the values of solar radiation have an obvious minimum of zero
(between sunset and sunrise), while the maximum value is linked to the location
and the hour and day. We determine the maximum potential value (for each hour
and each day of the year) empirically from the available data (this value is reached
under clear-sky conditions). The actual radiation turns out to be a proportion of the
maximum. Figure 1 shows the maximum radiation.

We represent the effective stochastic radiation R(z) as a fraction K(¢) of the max-
imum radiation R, (¢) depending on the atmospheric situation. Then, for each hour
of the year, we set:

Rinax(t) — R(¢)

KO == @

€01, t=1,...,8760. @.1)

I'URL: https:/gmao.gsfc.nasa.gov/reanalysis/MERRA-2.
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TABLE 1 Solar radiation, temperature, wind speed and electricity price: real values.

Solar Wind Electricity
radiation Temperature speed price
(W/m?2) (°C) (m/s) (€/MWh)

Mean 205.96 17.52 6.54 63.88
Standard deviation 287.70 9.75 3.51 34.19
Skewness 1.22 0.65 0.78 2.49
Kurtosis 3.19 2.96 3.62 12.38
Minimum 0.00 —3.63 0.02 0.00
Maximum 1030.00 49.68 26.08 450.00
Observations 350640 78888 78888 78888

FIGURE 1 Maximum radiation versus day and hour.
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Equation (2.1) holds when Ry« () # 0; otherwise the radiation is zero.

As a consequence, R(f) = Ruax(t)(1 — K(¢)). This process has a seasonal com-
ponent (periods of one year and 24 hours) and an autoregressive component with
two lags. These features are deduced by analyzing the periodogram and the auto-
correlation function (ACF) and partial autocorrelation function (PACF) (Casula et al
2020b).

The temperature is given by the TS variable in the MERRA-2 data set. The data
ranges from January 1, 2009 to December 31, 2017 (some statistics are illustrated in
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FIGURE 2 Mean wind speed versus hour of the day.
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Table 1). The series has a well-known seasonal trend. The seasonal component has
two main periods (one year, and 24 hours) and the autoregressive component is an
AR(3) process. The optimal lag is determined with the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC).

The wind speed components are given in the MERRA-2 data set as the variables
two-meter eastward wind (U2M) and two-meter northward wind (V2M). The data
ranges from January 1, 2009 to December 31, 2017 (some statistics are given in
Table 1).

We deduce from Figure 2 that the mean wind speed is linked to the hour of the
day. The average speed peaks at about 14:00.

Finally, we deduce from the inspection of the ACF and PACF that lags 1 and 2 are
significant, and additionally that the series shows a seasonality of 24 hours and one
year (Casula et al 2020a).

The electricity price data set ranges from January 1, 2009 to December 31, 2017
and is available from the Gestore Mercati Energetici website.> We used the Sardinia
zonal price (some statistics are illustrated in Table 1). We deduce a high value of
kurtosis caused by the numerous price peaks.

The hourly dependence of the price is shown in Figure 3(a). For example, the
highest values are reached at 10:00 and 20:00 and the lowest ones at night (indeed,
energy demand decreases overnight).

We observe (Figure 3(b)) that the mean price depends on the year (highest value
occurred in 2009, and the lowest in 2016). The price trend is compared with the day
of the week in Figure 3(c). We highlight that the average price is lower on Saturday

2 URL: www.mercatoelettrico.org/It/download/DatiStorici.aspx.
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FIGURE 3 Mean electricity price versus (a) hour (b) year, (c) day of the week and
(d) month.
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and Sunday, while on the other days lower average fluctuations occur. The depend-
ence on the month is shown in Figure 3(d). The seasonal component contains three
main periods (one year, one week and 24 hours) and the autoregressive component,
deduced from the inspection of the ACF and the PACF, has two significant lags (see
Casula et al 2020a).

2.2 Photovoltaic energy production

In this section we aim to estimate the PV energy production for a solar panel with
known characteristics, given the necessary climatic factors. To this end, we follow a
procedure developed by Urraca et al (2018). The “standard test conditions” (STC)
apply with a temperature of 25 °C and an irradiation value of 1000 W/m?2. The elec-
tricity generated by a PV panel is a function of the in-plane radiation Geg and the
module temperature 7,04 determined by the Faiman relation (Faiman 2008):

Geir

Twod = Tamp + —————,
mod amb u0+M1WSmOd

(2.2)

where uy and u; are two parameters representing the effect of the radiation on the
module temperature and the cooling by the wind, respectively, Toymb is the ambi-

www.risk.net/journals Journal of Energy Markets
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TABLE 2 Turbine characteristics.

Hub height 95 m

Rated power 2 MW

Cut-in wind speed 4 m/s
Rated wind speed 13 m/s
Cut-out wind speed 25 m/s

ent temperature and WS4 is the wind speed. The solar energy produced, Ppc, in
general conditions is given by (Urraca et al 2018)

Ple = Gle(1 + ki InGlyg + kaIn? Gl + k3 T! 4

+ ks Toa In G + ks Ty In? Gogp + k6 Tg) (2.3)
with
Ppc Getr
Ppe = ——, Gy = ~— Trod = Tmoa — Tstc,
Psrc Gsrc

where Pgtc denotes the nominal power, Gsrc = 1000 W/m? and Tspc = 25 °C.
The parameters k1, .. ., ke characterize the type of panels.

2.3 Wind energy production

We consider a turbine with the characteristics shown in Table 2 (see Casula et al
2020a).

The wind speed is then transformed into wind power through the power curve
¥ (x), which characterizes the turbine:

0 if0<x <4,
21.78x2 — 147.96x + 243.42 if4 < x < 13,
¥(x) = 2.4)
2000 if 13 < x < 25,
0 if x > 25,

with x expressed in m/s and ¥ (x) expressed in kWh. We note that the technical
characteristics of a wind turbine (cut-in and cut-out wind speed, rated power, height,
power curve) can be changed at will without this affecting the mathematical models
used. We have chosen a turbine with given characteristics simply to test the model.
The power curve equation was obtained with a best-fitting analysis on empirical data
(although in general, the power curve is represented by a third-degree polynomial
function, following Betz’s law).

Journal of Energy Markets www.risk.net/journals
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The significantly variable wind energy is linked to the wind speed fluctuations (see
Table 1).

Finally, note that to determine the energy produced by our hypothetical wind tur-
bine we will have to consider the wind speed at the required height. In this regard,
we can use the following formula (see, for example, D’ Amico et al 2015b):

AN A\
Vp = Vp, % with 9 = lng , (2.5)

where vy, denotes the wind speed measured at the height /& of the wind turbine hub,
Vp, is the known value of the wind speed at the specified height 4o (ho = 2 m) and
z¢ is a parameter linked to the morphology of the site.

3 MATHEMATICAL MODELS

3.1 Univariate processes

This section is dedicated to the stochastic modeling of the main variables involved
in this study, which take into account the characteristics illustrated in Section 2.1.
Specifically, we focus on an autoregressive description of a transformation of the
solar radiation process and of the temperature process, a Box—Cox transformation of
the wind speed process and the N -probability integral transform (N -PIT) transfor-
mation of the electricity price process. Finally, the autoregressive component of each
variable has been replaced with a unique VAR process that considers the simultane-
ous evolution of the variables involved in the system. We leave out from the multi-
variate model only the temperature, for which we will take only the deterministic
component.
The stochastic process K(¢) is modeled as

. (27 i 2
K([) =C1 + A1 Sin (ﬁt + Bl) + A2 Sin (%l —+ Bg)

2
+ZaiK(l—i)+€1, (3.1

i=1

with white noise £;.
We define the temperature series as

T() = o+ Crsin (2t + Dy ) + Cosin (2t + D
= C2 1 S 24 1 2 SIn 3760 2

3
+ Y BiT(t—i) + e (3.2)

i=1
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TABLE 3 Solar radiation, temperature and wind speed: simulated series.

Solar Wind
radiation Temperature speed
Indicator (W/m?) (°C) (m/s)
Mean 210.03 17.43 2.81
Standard deviation 279.25 9.69 1.78
Skewness 1.09 0.00 0.99
Kurtosis 2.89 2.42 4.24
Minimum 0.00 —-13.13 0.01
Maximum 999.10 47.95 12.47
Observations 350640 140256 140256

TABLE 4 Parameters of the autoregressive moving average component.

Value p-value

AR(1) 17927  0.0000
AR(2) —1.0739  0.0000
AR(3) 0.2053  0.0000

with white noise ;. The parameters of the AR(3) process are given in Table 4.

Temperature is involved in Faiman’s formula (see (2.2)). We note that the impact
of temperature in PV power generation given by (2.2) is relatively marginal. In fact, if
we only consider its deterministic component, then the energy produced and its vari-
ability vary in a range below 1%. For this reason, we only consider the deterministic
component of the temperature, while for the other three variables (wind intensity,
solar radiation, electricity price) we will build a multivariate stochastic model.

We denote by W(¢) the wind speed process (hourly basis) and perform the Box—
Cox transformation, .

x5 —1
Je(x) :

with the aim of making the distribution more similar to the normal distribution (see
Sim et al 2019; Casula et al 2020a). We define the transformed variable as W(t) =
Jfe(W(t)). The process W (¢) is modeled as

(3.3)

W(t) = c3 + E; si 27Tt+F + Ejsi znt—l—F
= C3 1 SIn 24 1 2 SIn 8760 2

2
+Z§il/f/([—i)+83, (3.4

i=1
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TABLE 5 Yearly values of the parameter &.

Year &

2009 0.5082
2010 0.5136
2011 0.4720
2012 0.4359
2013 0.4350
2014 0.5377
2015 0.4267
2016 0.5372
2017 0.4078
2018 0.4819

with white noise &3.
We then apply the inverse Box—Cox transformation,

[N @) =1+ 05, (3.5)

to restore the starting variable. The yearly values of the parameter & are shown in
Table 5.

The statistics of the simulated climatic series (solar radiation, wind speed and
temperature) given in Table 3 are very close to the empirical data presented in
Table 1.

Finally, let P(¢) be the electricity price process (hourly basis) and apply to it the
N-PIT transformation with the aim of making the distribution more similar to the
normal distribution (Nowotarski and Weron 2018; Uniejewski et al 2019; Casula
et al 2020a,b):

P(1) = G (Fpiy(P(1))), (3.6)

where Fp() is the cumulative distribution function (CDF) of P(¢) and G~!is the
inverse of the standard normal CDF. The new process P () is closer to the normal
distribution and its equation is

2
2w -
M si —t+ N Pt —1 , 3.7
+ 35111(8760 + 3)+i=21y, (t—1i)+ &4 (3.7)

with white noise &4. This process has a seasonal component (periods of one day, one
week and one year) and an autoregressive component with two lags. These features

www.risk.net/journals Journal of Energy Markets
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TABLE 6 Simulated and real electricity price statistics for 2017.

Indicator Real Simulated
Mean 51.80 51.96
Standard deviation 13.37 13.11
Skewness —0.46 —-0.41
Kurtosis 4.83 4.69
Minimum 0.00 0.00
Maximum 113.07 109.57

are again deduced by analyzing the periodogram and the ACF and PACF (Casula
et al 2020b).
Next, we just have to perform the inverse N -PIT transformation

P(t) = Fp(,(G(P(1))).

We omit the parameters’ values for the sake of brevity. The statistics of the simulated
series are shown in Table 6, and they reveal an excellent fit with real data. We observe
that, to determine a simulated trajectory from (3.7), for each time ¢ in the chosen time
horizon, a random number is extracted from the white noise 4.

3.2 The multivariate process

The electricity price, wind speed and solar radiation are the main stochastic vari-
ables involved in this study. In the multivariate model, we modeled the variables
annually, as correlations vary greatly (as can be seen from Table 7). Consequently, in
the deterministic component of each variable, we have omitted the annual seasonality
(periodicity of 8760 hours), as can be seen from (3.9).

From the analysis of the data, we note that the correlations between these variables
vary considerably. We show in Figure 4 the correlations using a one-year rolling
window for the period 2009-2018 (this means that the year-length window is rolled
daily).

We notice some correlation between the price of electricity and both wind speed
and solar radiation. This correlation is casual and not causal. In reality, the price of
electricity is obviously linked to the demand for energy itself.

Next, we show in Table 7 the correlations for each pair of variables and each
year (evaluated from actual data). These correlations change significantly from year
to year. We will need to consider a multivariate model that correctly reflects this
dependency structure. Single-variable processes contain a seasonal component and
an autoregressive component. When moving to the multivariate model, we keep

Journal of Energy Markets www.risk.net/journals
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FIGURE 4 Correlations between electricity price, wind speed and solar radiation for the

years 2009-18.
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TABLE 7 Correlations between electricity price, wind speed and solar radiation for the

period 2009-2017.

Price/ Price/  Radiation/

radiation  wind wind
2009 3292 1157 2.28
2010 29.32 —6.58 0.17
2011 14.37 —4.22 1.50
2012 —9.64 1442 0.44
2013 —-16.54 -11.28 1.16
2014  -26.14 —11.61 713
2015 -1580 —11.21 3.28
2016 —22.47  —-13.38 3.98
2017  -18.73 —6.69 —-0.20

All values are given in percent.

the seasonal component and replace the individual autoregressive processes with a

unique VAR process.

More specifically, we use a VAR(3, 2) process (with three variables and two lags).
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We therefore propose the following model:
2 2 2
Ry =) aiK@—i)+ Y biPt—i)+ Y gW(t—i)+n.
i=1 i=1 i=1

2 2 2
Py=>"diK(t—i)+ Y ePt—)+ > Wt —i)+n. (3.8)

i=1 i=1 i=1

2 2 2
W)=Y mK@—i)+Y niP—i)+> o;W(t—i)+ns.

i=1 i=1 i=1

where 71, 12 and 73 are white noises with associated deseasonalized processes given
by

5 2
K(t) = K(t) —c; — Ay sin (2—Zl‘ + Bl),

N - (27 ) 2r
P(t) = P(t) — c4 — My sin (ﬁt + N1) — M, sin (@t + Nz), 3.9

~ - (27

W) = W(t)—c3+ Eqsin (ﬁt + Fl).
REMARK 3.1  Some of these relationships have no direct interpretation. For exam-
ple, knowing the price gives us approximate information on the time of day and,
consequently, indirect information on the intensity of the wind. For example, if the
price is very low, this corresponds mainly to night hours, when even the wind has
low values.

3.3 The economic study

In this section, we provide a set of tools that will be useful to assess the economic
adequacy of a hybrid wind-PV plant from different perspectives. Specifically, we
first present a profitability investigation based on the income process. Further, we
deal with the optimal mixing of the two energy technologies (wind and PV) valued
using techniques of efficient portfolio selection and the computation of the LoLH,
which measures the risk of an insufficient generating capacity as compared with the
power demand.

3.3.1 Energy production and income

We determine the production of photovoltaic and wind energy, and then we deduct
the joint production and the overall income.
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For photovoltaic energy, we apply (2.2) with the following parameter values from
Koehl et al (2011):

Uy = 26.9 W/°Cm?, up = 6.20 Ws/°Cm?>.

Next, we apply (2.3) with parameter values (given by Huld ef al (2011) in the case
of crystalline silicon panels)

ki = —0.017237, k4 = 0.000149,
ko = —0.040465, ks = 0.000170,
k3 = —0.004702, ke = 0.000005.

Finally, we consider a conventional nominal power Psyc = 1 kW.

Next, we estimate the expected profit coming from the overall production of
electricity for a given horizon. To this end, we consider the electricity prices. The
expected income of the PV panel and the wind turbine from an initial time 7o = O up
to time #o + 7 is given by

Vito,to + 1) = ]E,O[ Z P(to + k)z(to + k)(1 + r)_k:|, (3.10)
k=1

where r is the (constant) risk-free interest rate, P(zo + k) is the electricity price at
time 9 +k, and z (fo+k) is the energy generated at time o+ k. The energy generated
is a combination of both PV and wind energy. We take the following estimator of the
expected income:

n

V(to.to + 1) = %Z > Pilto + k)zi(to + k)(1 +r)7F, 3.11)

i=1k=1

where P; (tp + k) denotes the price process at time ¢y + k for the ith simulated path,
z; (to + k) is the energy process at time o + k for the i th simulated path and # is the
number of paths. Note that, by virtue of the VAR model specification, the processes
P;(to + k) and z; (9 + k) are mutually dependent and z; (¢9 + k) is the summation
of the (dependent) power productions due to wind and solar radiation.

3.3.2 Efficient frontier

We face the problem of the optimal choice between the two energy technologies
(wind and PV energy production). Specifically, a hypothetical investor can choose
between the two production technologies. Some combinations will lead to a higher
income but also a higher risk, measured through volatility. The ultimate goal will
be to determine the set of efficient portfolios in the classic Markowitz sense. Let us
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consider a portfolio composed of weights x; and x, in the two technologies (wind
and PV). The income of this portfolio is the weighted sum of the incomes of both
technologies. We define the expected value and the variance of the income of the two
technologies from an initial time ¢y = O up to time ¢y + T as

i = Eto[z(mo ) — )7 0 + )1+ r>—k},
k=1

Mo = EtO[Z(P(lo + k) — x2)z%(to + k)(1 + r)—k:|’
k=1

g

—

2 _ Var, [Z(P(zo +k)— y)zl(to + k)(1 + r)—k],
k=1

0% = Vary, [Z(P(to + k) — x2)z%(to + k)(1 + r)_k]’
k=1

where y; and y» represent the production costs (z! is the wind energy and z2 is the
PV energy; the superscript “1” is associated with wind energy, and the superscript
“2” is associated with PV energy, while subscript “P” denotes the portfolio).

In the context of Markowitz’s classic portfolio selection theory, we can consider
the constrained optimization problems:

min opp = /X307 + X207 + 2pX1x20102
X1,X2

subject to (3.12)
X1 + Xoptp = [,

X1+ xp = 1,
and

max (prr = X141 + X2 U2
X1,X2

subject to
(3.13)

252 4 1252 —5
\/x101 + X505 + 2pX1X20102 = 0,

X1+ x2 =1,

where p is the correlation between the expected incomes of wind and PV produc-
tion. The solutions of these optimization problems will be the composition weights
of the efficient portfolios. Obviously, the riskiness of the portfolios depends on the
riskiness of the individual factors (given by volatility) and on the correlation between
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the factors themselves. In the mean—variance plan we will therefore obtain an effi-
cient frontier of the classic parabolic type, for which portfolios with higher expected
income will clearly have a greater overall risk.

3.3.3 The loss of load hours

The risk measure LoLH is the expected number of hours, for a fixed horizon, when
the energy generating capacity is lower than the demand. This risk measure is more
specific in the field of electricity generation than the more classic volatility of the
Markowitz environment.

The LoLH estimation involves the following steps (see D’ Amico et al 2020).

(1) Fix a horizon of length T'.

(2) Using the Monte Carlo procedure from the abovementioned models, simulate
n trajectories of the energy produced by the plant. These trajectories can be
described by the following matrix:

Z11 Z12 21T
Z21 Z22 -t 22T

,
Znl Zn2 **°  ZnT

where z;; is the energy generated by the hybrid plant at the time j in the ith
simulation.

We set z;. = {zj1,...,z;7} withi = 1,2,...,n and note that the sequences
{z;.}7_, are n independent realizations of the same stochastic process.

(3) Transform the matrix (z;;) via the following indicator function:

1 iij > Zij,

Ij = (3.14)

0 otherwise,
where D; is the energy demand at the time j .

(4) Set LoLH; = Z.].Tzl I;; (ie, the number of hours when demand is not met by
supply). The sequence {LoLH;}7_, is a random sample of size n, as the vari-
ables LoLH; are mutually independent and identically distributed according to

step 2. We use as an estimator the sample mean:

>, LoLH;
=,

LoLH = (3.15)

www.risk.net/journals Journal of Energy Markets

19



20

L. Casula et al

TABLE 8 Correlations between simulated electricity price, wind speed and solar radiation
for the period 2013-17.

Price/ Price/ Radiation/

radiation wind wind
2013 —-19.67 —-12.16 —0.65
2014 —-19.27 —-10.32 —0.30
2015 —-17.10 —11.36 —0.39
2016 —14.84 —-15.00 -1.34
2017 —13.45 -5.27 -1.07

All values are given in percent.

4 RESULTS

In this section, we report the results of the application of the econometric models to
real data in order to estimate the income process and the risk measures discussed in
the previous section. Finally, we compare the real and simulated values to measure
the performance of the applied models. Regarding the parameters of the VAR model
in (3.8), Table Al in the online appendix shows the results referring to 2017, from
which we see that the coefficients are significant. The parameters of the multivariate
model in (3.9) are listed in Table A2 in the online appendix.

4.1 Energy production

Initially, we estimated (see Table 7) the correlations between electricity price,
wind speed and solar radiation for the period 2013-17. Comparison with Table 8
shows that our multivariate model faithfully reproduces the correlations between the
variables.

To compare the wind and PV technologies, the values are reproportioned so that
both have a maximum production capacity of 1 kWh. The results are obtained
annually from 2013 to 2017 and are presented in Table 9.

We find a good correspondence between real values and simulated values.

4.2 Income estimation

Table 10 shows the income (for each technology and overall production) evaluated at
the beginning of each year (with r = 0.01). We compared the results obtained in the
case when the stochastic variables (wind speed, solar radiation and electricity prices)
are simulated independently. As expected, from Table 11 it can be deduced that the
income simulated with the multivariate model provides, in percentage terms, values
closest to the real ones. Conversely, the estimated income in the case of independence
always produces worse results, in terms of both percentages and systematic excess.
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TABLE 9 Simulated versus real energy production (in kW) for the period 2013—17.

PV production
e e

Wind production

Overall production

Simulated Real Simulated Real Simulated Real
2013 0.1924 0.1881 0.2289 0.2345 0.4244 0.4226
2014 0.1955 0.1916 0.2079 0.2075 0.4034 0.3991
2015 0.1957 0.1918 0.1865 0.1903 0.3822 0.3821
2016 0.1954 0.1901 0.2095 0.2141 0.4049 0.4042
2017 0.1986 0.2003 0.1963 0.1989 0.3949 0.3991

TABLE 10 Simulated versus real income (multivariate and independent) in euros for the

period 2013-17.

PV income Wind income Overall income Overall

income

Simulated Real Simulated Real Simulated Real indep.

2013 90924 91993 115055 122320 205979 214313 225408

2014 79114 75395 89 866 89989 168980 165384 177839

2015 81481 80744 79766 80222 161247 160966 171062

2016 66687 63265 72113 73887 138800 137152 144762

2017 84149 83495 86388 85849 170537 169344 177560
TABLE 11 Percentage variation in the real versus simulated income (multivariate and

independent) for the period 2013-2017.

Year Multivariate Independent
2013 -3.89 5.18
2014 217 7.53
2015 0.17 6.27
2016 1.20 5.55
2017 0.70 4.85

All values are given in percent.

The mean absolute percentage error (MAPE) is 1.63% for the multivariate model and
5.88% for the independent model. We again see that the multivariate model produces

a better fit.
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4.3 Efficient frontier, LoLH and optimal choice

In this application, we consider y; = 0.056 per kWh and y, = 0.085 per kWh
(International Renewable Energy Agency 2019).

As an example, we estimated the efficient frontier for 2017 (the last year of our
data set) and this is plotted in Figure 5(a). The estimated parameters are y©; =
86282.8, up = 84027.2, 0y = 5706.36, 0, = 1131.11 and p = 9.87%. We
also examined the sensitivity of the result by changing the correlation by £10%. We
note that with a negative shift in correlation the new efficient frontier dominates the
previous one. A lower risk configuration is therefore logically obtained. As might be
expected, we find that the efficient portfolios with higher expected returns will also
have greater riskiness. The choice between these efficient portfolios will therefore
depend on the investor’s risk aversion. Of all the efficient portfolios, the “optimal”
portfolio will be the one that maximizes the investor’s utility function (although we
do not address the problem here).

To calculate the efficient frontier, we first determined its vertex, obtained at
o = 1125.5. Then, we maximized the return with a fixed value of o, starting from
the minimum value obtained earlier, in increments of 25 (for a total of n = 180
discrete values). Finally, we imposed a constraint on the weights, included in the
interval (0, 1). Figure 5(b) shows the PV weights with respect to # (the number of
efficient portfolios).

We note that near the vertex of the efficient frontier (the less risky portfolios)
the weights are unbalanced in favor of the PV component. As we climb the effi-
cient frontier the weights rebalance, while in the terminal part of the efficient fron-
tier (riskier portfolios) the weights are skewed in favor of the wind component. The
weights of the two components are in equilibrium when n = 73, corresponding to
up = 85 150 (the extreme values of the efficient frontier correspond to up = 84 166
and pup = 86250).

To perform a realistic estimate of LoLH, we calculate the real load for electricity,
using data obtained from the GME website (together with electricity price data).
In this way, we can consider real fluctuations in demand (so these data are not the
result of a stochastic model); for example, we note that at night the energy demand is
low, as is the production of energy due to climatic factors in general. The load values
were then all reproportioned to have the same order of magnitude as our hypothetical
energy plant. We then compared the real and simulated LoLH for a one-year horizon
(Table 12). We found good agreement between real and empirical data (the MAPE
is 4.22%).

Concerning the efficient frontier determined earlier, we can calculate the value of
LoLH for each efficient portfolio (in this regard see Figure 6, which represents the
relationship between up and LoLLH values for efficient portfolios).
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FIGURE 5 Efficient frontier for 2017 and correlation sensitivity PV weights for this efficient
frontier.
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(a) Upper (lower) efficient frontier with —10% (4-10%) correlation shift. (b) PV weights.

TABLE 12 Real versus simulated LoLH (hours) for the period 2013-17.

Real Simulated Difference (%)

2013 1744 1692 3.0
2014 1648 1595 3.2
2015 1865 1780 4.6
2016 1660 1566 5.7
2017 1858 1771 4.7
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FIGURE 6 Relationship between up and LoLH values for efficient portfolios in 2017.
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We note that the less risky efficient portfolios (with a lower expected income)
have a higher LoLH. Therefore, there is a greater risk of lower energy production
than required. Indeed, it is reasonable to observe that a low LoLH is associated with
a high expected income: the higher the expected income, the greater the production
must be, and therefore the possibility of not satisfying the demand decreases. The
opposite happens for low values of the expected income.

The choice of the “optimal” portfolio should therefore stem from the compari-
son of these two risk measures. For example, the investor might choose the optimal
portfolio as an efficient portfolio with the desired LoLH.

5 DISCUSSION

As renewable energy use is destined to increase in the future, it is necessary to
develop theoretical models in order to correctly estimate the quantity of electricity
produced, its economic convenience and the associated risk (understood as volu-
metric and market risk). This estimate obviously covers the estimate of the climatic
variables involved and the zonal price of electricity. In this paper, we dealt with the
generation of energy from a mixed wind-PV plant with given characteristics and in
a given location. To obtain a reliable estimate of the total energy produced and the
expected income, we applied a multivariate model that links the climatic variables
(solar radiation and wind speed) and the electricity price, allowing us to simultane-
ously reproduce the dependence structure between these variables. We validated the
model by verifying that the results obtained are better than modeling the individ-
ual stochastic variables independently. Further, we verified that the results obtained
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through Monte Carlo simulations are significantly more reliable than those obtained
from the empirical data. More precisely, first we examined the good fit of the cli-
matic variables and the price of electricity, from which we deduced the production
of wind and PV energy, and then we examined the income deriving from the produc-
tion itself. For example, regarding the estimate of annual income and LoLH, the low
MAPE value highlights the reasonable ability of the multivariate model to faithfully
reproduce the analogous empirical values.

This multivariate model is one of the innovative elements that we have contributed
to the literature.

Finally, we applied an original portfolio selection for the two technologies by
considering a classic Markowitz approach (maximization of the overall expected
income) and the LoLH. We observed that the use of LoLH as an additional measure
of risk allows us to improve on the traditional portfolio selection method intrinsic to
the classic theory of Markowitz. The goal, in fact, is to be able to choose, among all
the efficient portfolios, those that meet certain requirements in terms of LoL.H.
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