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Abstract

Deep learning techniques and tools have experienced an enormous growth and a widespread

diffusion in recent years. At the same time, the need for tools able to explore, understand and

possibly manipulate the internal structure of a deep learning model has strongly emerged. In

this paper, we provide a contribution in that direction. In particular, we propose an approach to

map a deep learning model into a multilayer network. Our approach is thought for a very common

family of deep learning networks, namely Convolutional Neural Networks (CNNs), but can be easily

extended to other families. As a second main contribution, in order to show how our approach

enables the exploration and manipulation of deep learning networks, we illustrate an approach for

compressing a CNN. It detects whether there are convolutional layers that can be pruned without

losing too much information and, if so, returns a new CNN obtained from the original one by

pruning such layers. This paper is completed with an experimental campaign aimed at verifying

the appropriateness and effectiveness of the proposed approaches.

Keywords: Deep Learning; Convolutional Neural Networks; Complex Networks; Multilayer Net-

works; Mapping CNNs into Multilayer Networks; Convolutional Layer Pruning

1 Introduction

In recent years, deep learning models have been introduced in different application areas for their

ability to solve different kinds of optimization problem, such as document and text processing, object

recognition in images and videos, image generation, speech and language recognition and translation

[15]. Due to the increasing complexity of these tasks, more demanding models have been required

in order to achieve the best performances, such as residual networks [21], inception networks [59]

and dense networks [28]. For these models, it is important to use more computational power with

Graphical Processing Units (GPU) for speeding up the time-consuming training process. Furthermore,

in real-time decision making, a deep model with many parameters requires more time and resources
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to process its input, with further requirements in terms of energy and space. Finally, in mobile and

edge devices, deep learning is a big opportunity but, at the same time, a big issue because, in this

scenario, the computational power, storage capacity and energy are limited [49, 13].

Several authors have begun to highlight the importance of reducing the size of deep networks and

accelerating the models in terms of network structure and knowledge [11, 12, 45]. Accordingly, most

effort has been performed to introduce efficient and reduced-in-size ad-hoc deep network architectures,

such as Mobile networks [27], SqueezeNet [30], ShuffleNet [68] and ESPNet [48]. Furthermore, different

methods for reducing the model size whilst preserving the loss of performance have been proposed.

The latter refers to four main categories of methods, i.e., (i) pruning, (ii) quantization, (iii) low-rank

factorization, and (iv) knowledge distillation [13, 60].

To maximize the effectiveness of these methods, it is extremely important to be able to explore

the various layers and components of a deep learning architecture. Such an exploration should allow

for the identification of the most important components, the detection of interesting patterns and

features, the tracking of information flow, the understanding of which parts of the network can be

preserved, which can be replaced or removed, and so forth.

In this paper, we want to make a contribution in this setting. In particular, we believe that complex

networks, and specifically multilayer networks, can be a very useful tool to represent, analyze, explore

and manipulate deep learning networks. Based on this intuition, we first propose an approach to map

deep learning networks into complex networks and then we use the latter to explore and manipulate

the former. More specifically, we focus on one family of deep learning networks, namely Convolutional

Neural Networks (hereafter, CNNs) [34], although the proposed approach could be extended to other

ones. The complex network we use is a multilayer network [37]; it is sufficiently articulated to capture

all aspects characterizing CNNs. Our mapping approach, which is the first main contribution of this

paper, aims to map every aspect of a CNN (nodes, layers, filters, weights, etc.) in the four main

components of a multilayer network, namely nodes, arcs, arc weights and layers.

Once we have applied our mapping approach and obtained a multilayer network, the latter can

be used for various, both exploratory and manipulative, purposes. To give an idea of its potential,

we will use it as a support structure for a convolutional layer pruning approach [9]. The objective of

this approach is identifying whether there are layers of a CNN that can be pruned without losing too

much information and, in the affirmative case, returns a new CNN obtained from the original one by

pruning these layers. Such a pruning approach represents the second main contribution of this paper.

The outline of this paper is as follows: in Section 2, we present the Related Literature. In Section

3, we illustrate our approach for mapping a CNN into a multilayer network. In Section 4, we describe

our CNN layer pruning approach based on the multilayer network. In Section 5, we present the

experiments we performed to evaluate our approach. Finally, in Section 6, we draw our conclusion

and indicate some possible future developments of our research efforts.

2 Related Literature

In the last years, different approaches have been introduced in the literature for the pruning, the

quantization, the low-rank factorization of neural networks, as well as for extracting knowledge from

them. Pruning methods can be classified as: (i) weight pruning, where redundant connections, or
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connections having a weight below a threshold, are pruned; (ii) neuron pruning, where redundant

neurons, together with incoming and outgoing connections, are pruned; (iii) filter pruning, where the

least relevant layers, according to a given ranking, are pruned; (iv) layer pruning, where pruning of

some layers is performed [13, 64]. In this research area, the approach of [58] prunes network connections

according to their impact on the training error. Specifically, it removes the connections units with

the least impact on the error; after this, it adopts the back-propagation algorithm for re-training the

network. The approach of [56] also removes redundant neurons by pruning the weights providing the

minimum change in the output activation of neurons. Sparsely connected networks are introduced in

[6]. The approach described in this paper randomly deletes connections from a dense layer using a

new sparse weight matrix. Furthermore, it proposes an efficient hardware architecture for reducing

memory usage. In [7], the authors propose an approach for an efficient pruning of parameters based

on the correlation between neuron activations in the inner layer and the increase of neuron correlation

through additional output nodes. Furthermore, various techniques for reducing the parameters of

a fully connected layer have been proposed. They replace this layer with an Adaptive Fastfood

transform with non-linearity [61] and a global average pooling layer [42, 59]. In CNNs, pruning

is mainly performed by deleting redundant filters from convolutional layers and parameters of fully

connected layers to reduce the storage and computational overhead of the network [13]. A new method

for deleting redundant connections is proposed in [19]. It consists of two iterative steps, namely: (i)

pruning, where redundant connections are deleted, and (ii) splicing, where deleted connections that

are considered important are recovered. Also, the authors of [40] present an approach for pruning the

convolutional layer filters having a low ranking, computed according to their L1-norm, and weakly

affecting the model accuracy. They also show that the resulting model is fine-tuned/re-trained. In

[50], the authors propose an approach that prunes and fine-tunes a network until a trade-off between

accuracy and model size is obtained. Instead, the authors of [22] propose an approach that identifies the

most relevant filters using the lasso regression method; then, it prunes irrelevant filters and reconstructs

the output using unpruned filters and applying linear least squares. The inter-filter and intra-filter

redundancy is investigated in [44], where the authors convert the operations of the convolutional layer

into sparse matrix multiplication to process by means of a new efficient algorithm. In [71], the authors

introduce a method based on gradual pruning of small magnitude weights in the training phase.

Finally, the authors of [9] propose a method for pruning convolutional layers, which differs from the

previous works of neuron, weight or filter pruning. Specifically, it identifies redundant connections

based on the features learned in the convolutional layers; then, it prunes the involved layers.

As for quantization methods, they can be used during the training process, or after it, for an

efficient inference [13]. In this context, the authors of [10] propose to use a hash function for randomly

grouping weight connections into buckets; all the connections falling in the same bucket have the same

weight; obtained weights are fine-tuned during the training process. In several studies, network weights

are binary values (e.g., +1 and -1) during the training forward and backward phases [14] in such a

way as to substitute multiply-accumulate operations with only accumulations. Instead, with quantized

backpropagation [43], network weights fall in the ranges [-1, 0] and [0, +1]; in this way, multiplications

in the forward and backward steps are avoided. An approach to also binarize activations is proposed in

[29], whereas the authors of [26, 25] examine the effects of binarization and ternarization on the loss. In

[70], the authors propose not only the quantization of weights and activations, but also the stochastic
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quantization of gradients. The authors of [41] apply singular value decomposition on the filters of

binarized CNNs to reduce both the parameters and the dimension of a network. In [20], the authors

apply a new method on the pre-trained model; first it deletes redundant weight connections; then,

it performs weight quantization using k-means; afterwards, it applies a re-training step to improve

accuracy; finally, it uses the Huffman coding on the quantized model to decrease its size. In [5], the

authors introduce pruning at different granularity levels and scales. In order to detect candidates for

pruning, they use particle filtering, where the misclassification rate affects the weight of configurations.

To further lower the model size, they adopt a fixed-point optimization.

As for knowledge distillation, the authors of [23] prove that the knowledge acquired by a large

model, for which the extraction of features is easy, can be moved on a smaller model in order to

facilitate the deployment operation. Specifically, they adopt a temperature for creating the soft output

from the teacher model. Then, they use this temperature for training the student model from the

teacher one with the objective of minimizing the error between the outputs of the two models. The

authors of [52] propose a new method for training deep neural networks. Here, the training of the

student model is driven by the middle layer of the teacher model, which is used not only for outputs but

also to increase the accuracy of the student model. In [35], the authors paraphrase the knowledge of

the teacher model into a simpler form using convolution operations involving the paraphraser and the

translator. This knowledge is then moved on a student model and allows the latter to learn more easily

the knowledge from the teacher model. The authors of [57] propose to match the gradients, instead

of the soft outputs, for moving the knowledge from the teacher model to the student one. In [51], the

authors propose an approach that generates a student model with low-precision (quantization) from the

knowledge of the teacher one. Then, it uses stochastic gradient descend for optimizing the quantized

elements in order to improve fitting with the teacher model. The authors of [38] introduce On-the-fly

Native Ensemble (ONE). This method is first trained by creating a multi-branch variant of the target

neural network through the addition of auxiliary branches. Then, it generates the teacher model as

an ensemble of all the branches; each branch is trained using two loss terms, namely softmax cross-

entropy loss and distillation loss. In [63], the information flow through a neural network is captured

by a new representation called relational graph. The authors prove that the clustering coefficient and

the average path length of this graph affect the neural network’s predictive performance. Thus, there

is a sweet spot of relational graphs leading to neural networks with an improved performance. Finally,

in [1] the authors represent a social network graph as an artificial neural network and, then, explore

the internal dynamics of the latter.

As far as the low-rank factorization is concerned, the authors of [53] propose to factorize the weight

matrix of the final weight layer, of size m × n and rank r, in two matrices of size m × r and n × r,
to decrease the number of parameters of a deep neural network by a factor p such that p > r·(m+n)

m·n .

In order to decrease the number of computations in both the convolutional and the fully connected

layers, the authors of [16] adopt a low-rank approximation; they obtain a noticeable reduction in

terms of memory usage for the weights in both convolutional and dense layers. In order to decrease

the number of parameters of a CNN, the authors of [32] use singular value decomposition which

decompose a tensor for speeding-up the deep neural network. The authors of [36] introduce a new

approach for compressing the network model; it performs rank selection, low-rank tensor decomposition

and fine-tuning and minimizes the tensor’s reconstruction error. Low-rank decomposition of filters
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learned from scratch during the training, instead of pre-training, is proposed in [31, 2]. Also, in [69],

the authors introduce a new method for compressing and accelerating very deep CNNs; it performs

network approximation in terms of non-linear units, instead of linear responses or filters. Generalized

singular value decomposition, instead of stochastic gradient descend, has been used for solving non-

linear problems. The authors of [39] propose a constrained-based optimization approach for detecting

an optimal low-rank approximation of a trained CNN. The adopted constraints are the number of

multiply-accumulate operations and the memory usage of the model.

In the past literature, different approaches have been introduced for interpreting deep learning

models [62]. Some of them provide an explanation of the deep networks through the visualization

and the localized inspection of high-level representations of graphs. In particular, the authors of [33]

present ActiVis, which is able to visualize how neurons are activated by user-specified instances, or

instance subsets, for explaining how a model generates its predictions. They provide a graph-based

representation of the model allowing the local inspections of the activations at each layer codified as

a node. The authors of [24] propose SUMMIT, an interactive tool aiming to detect relevant neurons

and their relationships in the network. SUMMIT is based on an attribution graph that represents

and summarizes important neuron connections and network substructures determining the model’s

outcome. In [65], the authors perform the interpretation of a CNN through the generation of an

explanatory graphs representing the hidden knowledge embedded in it. Each node of the graph

corresponds to a part pattern codified in a filter, while each edge maps co-activation and spatial

relationships between patterns. In [67], the authors propose to use a decision tree to interpret the role

of filters in a convolutional layer for prediction; it also determines at which extent filters contribute to

prediction and which object parts mainly affect the latter. The authors of [66] propose a method to

build a model for hierarchical object recognition based on the semantics hidden in the convolutional

layers of a pre-trained CNN. This method extracts an interpretable And-Or graph with four layers

in order to explain the semantic hierarchy hidden in a CNN. In [46], the authors propose a visual

analytics system called CNNVis, aiming to interpret and understand a CNN model. CNNVis uses a

direct acyclic graph to explore the internal learned representations in terms of multiple facets of the

neurons, their features and their interactions.

3 Mapping a Convolutional Neural Network into a multilayer net-

work

In this section, we describe our approach for mapping a CNN into a multilayer network, which repre-

sents the first main contribution of this paper. The multilayer network thus obtained can be employed

to represent, analyze and manipulate the corresponding CNN.

3.1 Class network definition

In this subsection, we provide a description of a CNN in terms of a single-layer network, called class

network. Formally, a class network is a weighted directed graph G = (V,E,W ), where V is the set of

nodes, E is the set of arcs, and W is the set of arc weights.
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3.1.1 Node definition

A CNN consists of M convolutional layers, each characterized by a number x of filters (also called

“kernels”). In a convolutional layer, each filter slides over the input with a given stride to create a

feature map. The input I is the original image for the first convolutional layer, or a feature map for

the next convolutional layers. The application of a filter at the position (i, j) of I (hereafter, I(i, j))

provides a new element O(i, j) of the output feature map O. Figure 1(a) shows the application of a

filter of size 3 × 3 at position I(8, 8), whereas Figure 1(b) shows the new produced element O(8, 8)

(red colored). The area of the filter is green colored.

(a) (b)

Figure 1: (a) Application of a filter of size 3 × 3 (green colored) to I(8, 8); (b) the new produced

element O(8, 8) (red colored)

From all aforementioned, the set V of the nodes of G consists of a set {V1, V2, ..., VM} of node

subsets. Here, the subset Vk denotes the contribution of the kth convolutional layer ck, obtained by

applying the xk filters of this layer to the input of ck. As a consequence, a node p ∈ Vk represents the

output obtained by applying the xk filters of ck at some position (i, j) of the input.

3.1.2 Arc definition

Since the application of a filter at I(i, j) generates a new element O(i, j) (see Figure 1), a direct

connection between I(i, j) and O(i, j) is straightforward. Actually, in order to keep the context

information, a direct connection is provided not only between I(i, j) and O(i, j), but also between

I(i, j) and each element adjacent to O(i, j) within the filter area. Figure 2 shows the direct connections

between I(8, 8), on which a filter of size 3× 3 is applied, and the elements O(8 + a, 8 + b), −1 ≤ a ≤ 1

and −1 ≤ b ≤ 1.

Considering the set of xk filters of a convolutional layer ck, there are xk sets of direct connections

(like the ones of Figure 2) between I(i, j) and Ok(i, j), one for each filter xk. In particular, Figure

3 shows the direct connections between I(8, 8), where three different filters of size 3×3 are applied,
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Figure 2: Direct connections (dashed lines) between I(8, 8) and the elementsO(8+a, 8+b), −1 ≤ a ≤ 1

and −1 ≤ b ≤ 1 (red and green colored)

the new produced elements O1(8, 8), O2(8, 8) and O3(8, 8) of the three feature maps, and their eight

neighbors at positions Oh(8 + a, 8 + b), −1 ≤ a ≤ 1, −1 ≤ b ≤ 1 and 1 ≤ h ≤ 3 of each feature map.

Figure 3: Direct connections (dashed lines) between I(8, 8) and Oh(8 + a, 8 + b), −1 ≤ a ≤ 1 and

−1 ≤ b ≤ 1, 1 ≤ h ≤ 3 obtained by applying three filters (yellow, blue and green colored)

Since the set of xk filters is applied to the input with a given stride, a set of similar connections

towards the feature maps is generated for different positions of the input.

As for the pooling layer, it shrinks the input feature maps and, in our approach, leads to the

increase of the number of connections between the input and the output. This is accomplished by
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sliding the filter over the input with a given stride and selecting the maximum value for each filter

window. Since the maximum values are anyway elements of the feature map provided in input,

the next application of a convolutional layer to the feature map returned by the max-pooling layer

generates connections between the maximum values and the elements of the feature map returned

by the convolutional layer. Specifically, direct connections exist between the maximum values of the

feature map provided in input to the max-pooling layer and the adjacent elements of the feature map

generated by the next convolutional layer.

Figure 4 shows a sample procedure of direct connection generation for a pooling layer. On the

left, a pooling filter of size 2× 2 and stride 2 is applied to the input; the selected maximum values are

visible in the feature map as colored elements. On the right, the next application of a convolutional

filter of size 3×3 at position I(2, 2) generates 9 direct connections between I(2, 2) and O(2+a, 2+ b),

−1 ≤ a ≤ 1, −1 ≤ b ≤ 1.

Figure 4: Example of direct connection generation for a pooling layer. The filter is of size 2× 2 with

stride 2. For each filter application, a colored element corresponds to the maximum value. At right, the

9 direct connections between the maximum value at position I(2, 2) and the elements O(2 + a, 2 + b),

−1 ≤ a ≤ 1, −1 ≤ b ≤ 1 are represented by dashed lines.

3.1.3 Weight definition

The application of a filter to the element I(i, j) generates a new element O(i, j), whose value is given

by the following convolution operation:

g(i, j) = f(i, j) ∗ I(i, j) =

a∑
s=−a

b∑
t=−b

f(s, t)I(i+ s, j + t), (1)

where f is the filter of size (2a+ 1)× (2b+ 1).

Accordingly, the direct connections generated between I(i, j) and O(i + s, j + t), −a ≤ s ≤ a,

−b ≤ t ≤ b are labeled with the same weight g(i, j), which is the convolution result. Figure 5 shows

that the application of a filter of size 3× 3 to I(8, 8) returns O(8 + a, 8 + b), −1 ≤ a ≤ 1, −1 ≤ b ≤ 1.

The weight is the convolution result g(8, 8) = f(8, 8) ∗ I(8, 8) = (0 · 7) + (−1 · 6) + (0 · 6) + (−1 · 4) +

(5 · 4) + (−1 · 2) + (0 · 3) + (−1 · 3) + (0 · 7) = 5.
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Figure 5: Application of a filter of size 3× 3 to I(8, 8) (red colored) and computation of the weights

for the direct connections between I(8, 8) and O(8 + a, 8 + b), −1 ≤ a ≤ 1, −1 ≤ b ≤ 1

For a number x of filters, the direct connections between I(i, j) and Oh(i+ a, j + b), −1 ≤ a ≤ 1,

−1 ≤ b ≤ 1, 1 ≤ h ≤ x are weighted with the values of the corresponding convolution results

g1(i, j), g2(i, j), . . . , gx(i, j). Figure 6 shows the application of three filters of size 3 × 3 (green, blue

and yellow colored, respectively) to I(8, 8). It also reports, for each filter fh, the weighted direct

connections generated between I(8, 8) and Oh(8 + a, 8 + b), −1 ≤ a ≤ 1, −1 ≤ b ≤ 1, 1 ≤ h ≤ 3.

The three weights are the following convolution results: g1(8, 8) = f1(8, 8) ∗ I(8, 8) = 5; g2(8, 8) =

f2(8, 8) ∗ I(8, 8) = −2; g3(8, 8) = f3(8, 8) ∗ I(8, 8) = 11.

In order to generate the arcs of the graph G from the weights of the direct connections of the x

filters, we adopt some statistical descriptors. The ultimate goal is having only one set of arcs from the

node corresponding to I(i, j) to the node corresponding to O(i+ s, j + t), −a ≤ s ≤ a, −b ≤ t ≤ b1.

The weight of an arc from I(i, j) to O(i + s, j + t) is obtained by applying a suitable descriptor

parameter to the weights of gh(i, j), 1 ≤ h ≤ x.

The two statistical descriptors used in this context are: (i) the mean, and (ii) the median, which

revealed to achieve the best performance results. Accordingly, the weight of the direct connections

from I(i, j) to O(i+ s, j + t) can be obtained as:

gmean(i, j) =

∑x
h=1 gh(i, j)

x
, (2)

gmedian(i, j) =

g[x2 ](i, j) if x even
g[x−1

2 ](i,j)+g[x+1
2 ](i,j)

2 if x odd
(3)

1Here and in the following, we will use the symbols I(i, j) and O(i, j) to denote both the elements of the feature maps

and the corresponding nodes of the class network.
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Figure 6: Application of three filters of size 3 × 3 (green, blue and yellow colored, respectively) to

I(8, 8) and computation, for each filter, of the weights for the direct connections between I(8, 8) and

Oh(8 + a, 8 + b), −1 ≤ a ≤ 1, −1 ≤ b ≤ 1, 1 ≤ h ≤ 3

where gmean(i, j) is the mean value, and gmedian(i, j) is the median value.

Figure 7 shows the direct connections between I(8, 8) and O(8+a, 8+b), −1 ≤ a ≤ 1, −1 ≤ b ≤ 1,

whose weights are the mean value (see Figure 7(a)) and the median value (see Figure 7(b)) of the

connections for the three filters depicted in Figure 6. The mean value is computed as 5−2+11
3 = 4.67,

whereas the median value between 5, -2 and 11 is equal to 5.

From all aforementioned, the set E of the arcs of G is a set of subsets E = {E1, E2, ..., EM−1}.
Here, Ek denotes the set of arcs connecting nodes of Vk to nodes of Vk+1. Analogously, the set W of

the weights of G consists of a set of subsets W = {W1,W2, ..., WM−1}, where Wk is the set of weights

associated with the arcs of Ek.

3.2 Mapping a CNN into a multilayer network

In the previous subsection, we have illustrated how it is possible to construct a class network rep-

resenting a CNN. In this section, we show how, starting from the class network and a dataset on

which the corresponding CNN should be trained and tested, it is possible to construct a more complex

structure called multilayer network.

Roughly speaking, a multilayer network is a set of t class networks, one for each target class of the

dataset. Formally speaking, given a dataset D consisting of a t target classes Cl1, Cl2, . . . , Clt, and

given a Convolutional Neural Network cnn, the multilayer network G = {G1, G2, ...Gt} corresponding

to cnn is a set of t class networks. The class network Gh, 1 ≤ h ≤ t, corresponds to the hth target class

of D. Figure 8 shows a sample multilayer network G characterized by three layers, each corresponding

to a generated class network. The top (resp., middle, bottom) class network is denoted as G1 (resp.,

G2, G3). Figure 9 shows the generation of a portion of the multilayer network G shown in Figure 8.

It is obtained by extracting the feature maps of three target classes from cnn. In this last network a

bank of filters of size 3 × 3 with stride 1, sliding over positions (3, 2) and (4, 2) of the feature maps,
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(a) mean (b) median

Figure 7: Weights of the arcs from I(8, 8) to O(8 + a, 8 + b), −1 ≤ a ≤ 1, −1 ≤ b ≤ 1, obtained

by applying the mean (on the left) and the median (on the right) as statistical descriptors of the

corresponding direct connections

generates some arcs for the class networks of G. The weights of these arcs are computed as described

in Section 3.1.3. In particular, the mean statistical descriptor is applied. Specifically, for the class

network G1 (resp., G2, G3), two sets of arcs of weights 5 (resp., 1, 3) and 4 (resp., 7, 6) are generated

between the first and second feature maps, and the set of arcs of weights 2 (resp., -2, 4) and 8 (resp.,

9, -1) are generated between the second and the third feature maps.

3.2.1 Algorithm for building the multilayer network

In this section, we illustrate our algorithm to construct a multilayer network from a CNN and a

dataset D consisting of a set of t target classes. It consists of two steps, namely: (i) creation of a

list of patch lists, which represents a support data structure for the next step; (ii) creation of the

multilayer network from the list of patch lists. We have defined an appropriate function for each of

these steps.

The function corresponding to the first step, called CREATE_PATCHES, is reported in Algorithm 1.

It receives a Convolutional Neural Network cnn and a target class Clh, 1 ≤ h ≤ t, and constructs a list

of patch lists. CREATE_PATCHES operates on the feature maps provided in input to each convolutional

layer of cnn. A patch is a part of a feature map; in particular, it has the same size as the filters applied

by the next convolutional layer and will give rise to a node in the multilayer network.

CREATE_PATCHES proceeds as follows. It uses a list conv layers that initially contains the sequence

of the convolutional layers present in the reference CNN. It iterates over all elements of conv layers,

providing in input the images of Clh. During each iteration, it takes the current element as the source

and the next element as the target. The feature map returned as output from source represents the

input to target; the latter receives this input and processes it as specified below.

At the beginning of each iteration, CREATE_PATCHES determines the starting and ending points

of the output of source. In particular, the starting (resp., ending) points imgws (resp., imgwe) and

imghs (resp., imghe) represent the center of the first (resp., last) application of the convolutional filters
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Figure 8: Sample multilayer network G composed of three layers corresponding to class networks G1

(top), G2 (middle), and G3 (bottom).

applied by target on the output of source. After this, CREATE_PATCHES iterates on the output of source

and creates a patch for each application of the convolutional filter on an element. For each patch it

stores its identifier, the coordinates of its center, its width and height expressed in pixels, and the

corresponding source and target. At the end of the iteration, it stores the patches corresponding to a

convolutional layer in a list called patch list.

The lists corresponding to all the convolutional layers of cnn are stored in a list of lists called

list of patch lists, which represents the output of CREATE_PATCHES.

The function corresponding to the second step, called CREATE_LAYER_NETWORK, is shown in Al-

gorithm 2. It receives a Convolutional Neural Network cnn and a target class Clh, 1 ≤ h ≤ t, and

returns a layer (specifically, the hth layer Gh) of the multilayer network G.

First, CREATE_LAYER_NETWORK calls the function CREATE_PATCHES, described in Algorithm 1, which

returns the list of patch lists corresponding to cnn when trained with the images of the target class

Clh. Then, it creates an initially empty network Gh. Afterwards, it iterates over the list of patch lists

returned by CREATE_PATCHES considering two lists at a time. In particular, it considers the current

list as source and the next one as target.

At the beginning of each iteration, CREATE_LAYER_NETWORK adds to Gh a node for each patch

present in source and a node for each patch present in target, if they are not already present in Gh.

Then, it computes a pair of parameters called wratio and hratio. In fact, as we have seen in Section

3.1.2, a pooling layer can exist between two consecutive convolutional layers, which reduces the image
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(a) Class network G1

(b) Class network G2

(c) Class network G3

Figure 9: Generation of a portion of the class networks G1, G2 and G3 corresponding to the layers of

the multilayer network G depicted in Figure 8

size. If this happens, the area covered by a filter in target is greater than that covered in source (see

Figure 4). The parameters wratio and hratio allow us to model this phenomenon, as we will see below.

At this point, CREATE_LAYER_NETWORK stores in wbound (resp., hbound) half the width (resp., height)

in pixels of the filter associated with the convolutional layer. Indeed, as we have seen in Section 3.1.2,

the application of convolutional filters is done with reference to the center of the filter, and therefore

of the patch. For this reason, CREATE_LAYER_NETWORK iterates over the source and target nodes on

which the filter acts and whose coordinates are determined from those of the center of the filter,

its width and its height. More specifically, given a node nodet with coordinates (nodetx , nodety),

CREATE_LAYER_NETWORK considers all the nodes of source that can be processed by the filter whose
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Algorithm 1 Function CREATE PATCHES
Input

� cnn: a Convolutional Neural Network

� Clh: a target class

� get convolutional layers: a function that receives a CNN and returns the list of its convolutional layers

Output

� list of patch lists: the list of the patch lists

1: function create patches()

2: list of patch lists = ∅
3: conv layers = get convolutional layers(cnn)

4: for i = 0 to len(conv layers)-1 do

5: patch list = ∅
6: source = conv layers[i]

7: target = conv layers[i+ 1]

8: imgws =
⌊
target[“filterwidth”]

2

⌋
9: imghs =

⌊
target[“filterheight”]

2

⌋
10: imgwe = source[“width”]− imgws
11: imghe = source[“height”]− imghs
12: for i = imgws to imgwe do

13: for j = imghs to imghe do

14: patch = (id, center, width, height, source, target)

15: Add patch to patch list

16: Add patch list to list of patch lists

17: return list of patch lists

center falls into the rectangle defined by the coordinates of the patch of nodet (this rectangle is

determined thanks to wbound and hbound) and, for each of them, adds an arc from it to nodet in Gh.

Once this arc has been inserted, CREATE_LAYER_NETWORK computes the corresponding weights by

applying the formulas seen in Section 3.1.2. For this purpose, it first considers the feature map of

source and selects the portion of this map relative to the inserted arcs. This portion consists of a

rectangle comprised between the top left corner (nodesx − wbound, nodesy − hbound) and the bottom

right corner (nodesx + wbound, nodesy + hbound). These two pairs of coordinates correspond exactly to

the ones of the application of a filter to the patch of nodes, whose output is connected to nodet. Note

that, for each arc, both the weight based on the mean (see Equation 2) and the one based on the

median (see Equation 3) are stored.

At the end of its iterations, CREATE_LAYER_NETWORK has created the hth layer Gh, corresponding

to the the target class Clh, of the multilayer network G. Applying CREATE_LAYER_NETWORK t times,

once for each target class of the dataset D, we obtain the final multilayer network.

We end this section by pointing out that the Algorithms 1 and 2 are general and can be applied

to many kinds of CNN.
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Algorithm 2 Function CREATE LAYER NETWORK
Input

� cnn: a Convolutional Neural Network

� Clh: a target class

� get feature maps: a function that receives a CNN and a target class Clh and returns the list of the feature maps

for each layer of cnn when trained with Clh

Output

� Gh: the hth layer of the multilayer network G

1: function CREATE LAYER NETWORK()

2: f maps = get feature maps(cnn, t)

3: list of patch lists = CREATE PATCHES(cnn,Clh)

4: Gh = ∅
5: for i = 0 to len(list of patch lists)-1 do

6: source = list of patch lists[i]

7: target = list of patch lists[i+ 1]

8: Add nodes from source and target to Gh if they are not present therein

9: wratio = source[“width”]
target[“width”]

10: hratio = source[“height”]
target[“height”]

11: wbound =
⌊
target[“filterwidth”]

2

⌋
12: hbound =

⌊
target[“filterheight”]

2

⌋
13: for nodet in target do

14: (nodetx, nodety) = nodet[“center coordinates”]

15: for nodes in source do

16: (nodesx , nodesy ) = nodes[“center coordinates”]

17: if (nodesx − wbound) · wratio ≤ nodetx ≤ (nodesx + wbound) · wratio then

18: if (nodesy − hbound) · hratio ≤ nodety ≤ (nodesy + hbound) · hratio then

19: Add an arc from nodes to nodet in Gh

20: map = f maps[source[“name”]]

21: Select the portion of f maps starting from the top left corner (nodesx−wbound, nodesy−hbound)
to the bottom right corner (nodesx + wbound, nodesy + hbound) and store it in nodemap

22: Add the mean and the median of nodemap as weights of the arc from nodes to nodet

23: return Gh

4 Applying the multilayer network model to compress a CNN

In the previous section, we proposed an approach to map a CNN in a multilayer network. The

network thus obtained represents the tool we use to analyze and manipulate the corresponding CNN.

The operations that can be performed in a CNN thanks to the multilayer network thus obtained

are many and various. To give an idea of their potential, in this section, we illustrate one of them,

namely the compression of a CNN, which represents the second main contribution of this paper. In

particular, we first provide a description of the proposed compression approach, along with an example

of its behavior. Next, we present a formalization of this approach through the use of a pseudocode

algorithm.
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4.1 Methodology

Consider a multilayer network G and let Gh be its hth layer. Gh consists of a weighted directed graph.

Therefore, given a node v of Gh, we can define: (i) the indegree of v as the sum of the weights of

the arcs of Gh incoming into v; (ii) the outdegree of v as the sum of the weights of the arcs outgoing

from v; (iii) the degree of v as the sum of its indegree and its outdegree. In the following, we use the

symbol dh(v) to denote the degree of v in Gh. Instead, we use the symbol δ(v) to indicate the overall

(weighted) degree of v in Gh. As we will see below, δ(v) is an important indicator of the effectiveness

of the filter represented by v.

As we have seen above, a multilayer network G = {G1, G2, . . . , Gt} has a layer for each target class.

As a consequence, we can think that the overall degree δ(v) of the node v in G can be obtained by

suitably aggregating the degrees d1(v), d2(v), · · · , dt(v) of v in the t layers of G. More specifically:

δ(v) = F(d1(v), d2(v), ..., dt(v)) (4)

where F is an aggregation function.

Let dtot(v) =
∑t

h=1 d
h(v) be the sum of the degrees of v in the t layers of G. Our approach adopts

the following entropy-based aggregation function for determining the overall degree δ(v) of v in G [47],

[8]:

δ(v) = −
t∑

h=1

dh(v)

dtot(v)
log

(
dh(v)

dtot(v)

)
, (5)

This function refers to the well-known concept of information entropy introduced by Shannon in

[54]. The definition of δ(v) in Equation 5 favors a uniform distribution of the degree of v in the different

layers while it penalizes the presence of a high degree of v in few layers. The rationale underlying it is

to favor those nodes whose feature extraction is balanced for different target classes [18]. Conversely,

it penalizes those nodes that make a significant contribution in only few target classes.

Our compression approach aims to select a subset of the nodes of G with the highest values of the

overall degree δ. Selecting such a subset allows us to determine the best convolutional layers that will

form the compressed CNN.

In particular, our approach selects the nodes of G whose values of overall degree δ are higher than

a certain threshold:

thδ = γ · δ, (6)

Here, δ is a statistical aggregation of the values of the overall degree δ of all nodes in G. In

particular, our approach allows the adoption of two statistical aggregators, namely mean and median.

Our choice fell on these two operators because they are the ones that allowed us to achieve the best

experimental results. γ is a scaling factor whose value belongs to the real interval [0,+∞). It allows

us to tune the contribution of δ.

After the subset of the nodes of G having an overall degree δ higher than thδ has been selected,

our approach determines the set of the convolutional layers from which these nodes were extracted.
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(a) Layer 1 (b) Layer 2 (c) Layer 3

Figure 10: Flattened representation of a portion of the multilayer network G depicted in Figure 8

Then, it creates the compressed CNN from these convolutional layers. Once this task is completed, a

new training task must be performed to adjust the weights of the compressed network.

Figure 10 shows a flattened representation of a portion of the multilayer network G = {G1, G2, G3}
depicted in Figure 8. Here, all the nodes are numbered from 1 to 26.

In order to compute the threshold thδ, δ is first determined as the mean of the overall degrees

δ of the nodes of G. For a node v, δ(v) is computed according to Equation 5. For instance, δ(2) is

computed as follows:

δ(2) = −
[
d1(2)

dtot(2)
log

(
d1(2)

dtot(2)

)]
−
[
d2(2)

dtot(2)
log

(
d2(2)

dtot(2)

)]
+

[
d3(2)

dtot(2)
log

(
d3(2)

dtot(2)

)]
=

= −
[

36

153
· log

(
36

153

)]
−
[

63

153
· log

(
63

153

)]
−
[

54

153
· log

(
54

153

)]
=

=0.34 + 0.36 + 0.37 = 1.07

(7)

where d1(2), d2(2) and d3(2) are the degrees of node 2 for G1, G2 and G3, respectively, whereas

dtot(2) = 153 is the total degree of this node.

Analogously, the overall degree δ of the other nodes are: δ(1) = δ(3) = δ(4) = δ(5) = 0.94,

δ(6) = δ(8) = δ(9) = δ(11) = 1.09, δ(12) = δ(13) = δ(14) = 1.07, δ(18) = δ(19) = δ(20) = δ(21) =

δ(22) = δ(23) = 1.00. Finally, nodes 7, 10, 15, 16, 17, 24, 25, and 26 do not give any contribution,

since the log in Equation 5 has no meaning for negative numbers.

Observe that δ(2) = 1.07 < δ(11) = 1.09, because the degree distribution of node 11 (i.e., d1(11) =

9, d2(11) = 8, and d3(11) = 9), is more balanced over the three network layers than the one of node 2

(i.e., d1(2) = 36, d2(2) = 63, and d3(2) = 54) – see Figure 10.

The value of δ, adopting the mean as statistical aggregator, is computed as follows:

δ =
[(0.94 · 4) + (1.07 · 4) + (1.09 · 4) + (1.00 · 6)]

26
=

18.40

26
= 0.71 (8)

Let the scaling factor γ be equal to 1.50. Then, the threshold thδ will be computed as thδ = γ ·δ =

1.50 · 0.71 = 1.06. The nodes with degree δ > thδ are 2, 6, 8, 9, 11, 12, 13, 14. They are located in the
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first and second feature maps (see Figures 9 and 10). Hence, the compressed CNN model consists of

the first and second convolutional layers, while the third convolutional layer is pruned from the model.

4.2 Approach formalization

In this subsection, we present the formalization of the CNN compression approach that we described in

the previous subsection. The corresponding pseudocode can be found within the function COMPRESS_

CNN shown in Algorithm 3.

This function receives: (i) the Convolutional Neural Network cnn that we want to compress; (ii)

the multilayer network G associated with cnn and computed by applying the approach described

in Section 3.2; (iii) the scaling factor γ that we have seen in Equation 6; (iv) the type aggrtype of

statistical aggregation function used in the computation of δ in Equation 6. At present, the possible

types are “mean” and “median”.

It also uses some support functions, namely:

• compute overall degrees, which computes the value of the overall degree δ of each node of G.

• get convolutional layers, which receives a CNN and returns the list of its convolutional layers.

• mean (resp., median), which receives the set of overall degrees δ of the nodes of G and computes

δ which is their mean (resp., median).

• remove convolutional layers, which receives a Convolutional Neural Network cnn and a list re-

movable layers of convolutional layers to be pruned from cnn and returns a compressed Convo-

lutional Neural Network cnn, in which the layers of removable layers have been pruned.

First, COMPRESS_CNN creates an empty list preserving layers; it will contain all the layers of cnn to

be preserved in cnn. Then, it calls the function compute overall degrees to compute the list δ of the

overall degrees of the nodes of G. Afterwards, it computes the threshold thδ by applying Equation 6

and taking aggrtype into account.

At this point, for each node v of G, COMPRESS_CNN checks whether its overall degree δ(v) is greater

than thδ. In the affirmative case, it adds the convolutional layer associated with v to the list preserv-

ing layers. This way of proceeding implies that a convolutional layer is preserved if it has at least one

node that makes a significant contribution to the operation of cnn.

Once all preserving layers have been identified, COMPRESS_CNN obtains the prunable layers by calling

the function get convolutional layers with cnn as input and subtracting from the layers returned by it

those present in the list preserving layers.

After determining the layers to be pruned, COMPRESS_CNN calls the function remove convolutional

layers giving it cnn and removable layers as input. The latter function prunes all the layers of remov-

able layers from cnn thus obtaining cnn, which is also the output of COMPRESS_CNN.

5 Experiments

In this section, we evaluate the performances of our approaches. We pointed out that they are general

and can be applied to several kinds of CNN. In our experiments, we decided to apply it to VGG16
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Algorithm 3 COMPRESS CNN
Input

� cnn: a CNN to compress

� G: the multilayer network associated with cnn

� γ: a real number representing the scaling factor in the computation of thδ

� aggrtype: the statistical aggregation function chosen for the computation of the overall degrees

� compute overall degrees: a function that computes the overall degree δ of each node of G
� get convolutional layers: a function that returns the list of the convolutional layers of a CNN

� median: a function that returns the median of a list of values

� mean: a function that returns the mean of a list of values

� remove convolutional layers: a function that prunes a list of convolutional layers from a CNN

Output

� cnn: a compressed version of cnn

1: function COMPRESS CNN()

2: preserving layers = ∅
3: δ = compute overall degrees(G, aggrtype)
4: if aggrtype = “mean” then

5: δ = mean(δ)

6: else if aggrtype = “median” then

7: δ = median(δ)

8: thδ = γ · δ
9: for each node v of G do

10: if δ(v) > thδ then

11: Add the convolutional layer associated with v to preserving layers

12: removable layers = get convolutional layers(cnn) \ preserving layers
13: cnn = remove convolutional layers(cnn, removable layers)

14: return cnn

[55]; indeed, it is a benchmark vision CNN that won the ILSVR (ImageNet) competition in 2014.

We tested the effectiveness of our approach in two well-known computer vision tasks, namely: (i)

handwriting character recognition, and (ii) object recognition. In that sense, the image datasets used

for the experiments are MNIST and CALTECH-101, which are considered well suited benchmarks for

testing CNN architectures in these tasks [3, 4].

MNIST2 consists of 60,000 training and 10,000 test images representing binary handwritten digits

categorized into 10 target classes, which correspond to the digits from 0 to 9. Images from MNIST

represent a portion of the larger NIST3, a well-known dataset for evaluating computer vision and

pattern recognition approaches. Each image of MNIST is of size 28 × 28 pixels in bitmap (.bmp)

format, centered and size-normalized.

CALTECH-1014 is a dataset with 9,146 colored pictures of different objects belonging to 101

semantic classes (e.g. chair, ant, watch, pizza). Each class comprises from 40 to 800 images. All

images are in JPEG (.jpg) format. The original size of each image is about 300× 200 pixels but, in

2http://yann.lecun.com/exdb/mnist/
3https://www.nist.gov/srd/nist-special-database-19
4http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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our case, it was normalized to 128× 128 pixels.

In our campaign, we first trained the VGG16 model from scratch. Then, we generated the layers

of the multilayer network from the target classes of the dataset. For each target class, we computed

the average of the feature maps over the image set before proceeding with the compression and use

them as the weights of the arcs. As for MNIST, we used the predefined training and test sets and

the predefined classes. As for CALTECH-101, we performed an holdout validation which used 80% of

images for training and 20% of them for testing. Furthermore, we adopted a stratification method on

the test set for keeping the same number of images per class. Finally, we employed a trial and error

procedure, which determined the following best parameter values for VGG16: (i) batch size equal to

128 for MNIST and 64 for CALTECH-101; (ii) learning rate η equal to 0.0001; (iii) Adam optimizer;

(iv) epoch number equal to 100; (v) 10% of training data for validation. For limiting the overfitting,

we monitored the validation loss and stopped the training when no more changes of the validation

loss occurred for three iterations.

We first performed a sensitivity analysis for studying the impact of the scaling factor γ on the

compression performances of our approach when also varying the statistical aggregation function (i.e.

mean and median) used in the computation of δ (see Section 4.1). Then, we compared the results

obtained by our approach with the best combination of γ and statistical aggregation function with

the ones obtained by another competing method on the same datasets.

We carried out our experiments on the free version of Google Colab, which provided a GPU

NVIDIA Tesla K80, 12 GB RAM, and 2 Intel Xeon CPUs 2.30GHz. The programming environment

consisted of Python 3.7, Tensorflow 2.6, and NetworkX 2.6.3.

5.1 Reference Convolutional Neural Network

The VGG16 [55, 17] network is characterized by five convolutional blocks, named as Convi, 1 ≤ i ≤ 5,

five max pooling layers (red colored), and three fully connected layers (green colored), as shown in

Figure 11. Each convolutional block consists of two or three convolutional layers with a given number

of filters of size 3 × 3 and stride 1. One of the configurations also includes convolutional filters of

size 1 × 1, which can be considered as a linear transformation of the input channels. Padding in the

convolutional layers with filters of size 3× 3 preserves the spatial resolution after the convolution and

is fixed to 1 pixel. The convolutional blocks are interleaved with max pooling layers with filters of size

2 × 2 and stride 2. This configuration of convolutional and max pooling layers is consistent through

the whole network structure. It is followed by three fully connected layers; the first two have the

same number of channels, while the third one has a number of channels equal to the number of target

classes. The final part corresponds to the softmax layer, which returns the output. All the hidden

layers are characterized by the rectification non-linearity (ReLU).

In the standard VGG16 network architecture, i.e., the one shown in Figure 11, the input is an

RGB image of size 224×224. Also, the first two fully connected layers are composed of 4096 channels,

while the third one has 1000 channels, which correspond to the target classes of the ILSVRC-2012

dataset competition [55]. Finally, VGG16 has about 138 million parameters. In our specific case, the

input to VGG16 can be an image with size different from 224× 224. Thus, the number of parameters

of our VGG16 is varied accordingly.
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Figure 11: The VGG16 network architecture

5.2 Obtained results

5.2.1 Tuning and performances

In Figure 12 (resp. Figure 13) we show some measures obtained by VGG16 when the input is MNIST

(resp., CALTECH-101). In particular, we report the values of accuracy, precision, recall, mean time per

epoch (in seconds) of the CNN training phase, number of CNN parameters and number of convolutional

layers pruned by our compression method. The scaling factor γ varies from 0.25 to 2.00 with steps of

0.25. This revealed as the best working range for our approach. Recall that γ = 0 corresponds to no

compression.

We report the values of the above metrics when the statistical aggregation function for computing

δ is the mean or the median and when the arc weight is based on the mean or the median. As a

consequence, we have four possible combinations that we represent as (δmean, gmean), (δmedian, gmean),

(δmean, gmedian) and (δmedian, gmedian), respectively.

Figure 14 (resp., Figure 15) shows the VGG16 convolutional layers preserved and pruned by our

compression approach for the first (resp., last) two configurations when the input is MNIST. Figures

16 and 17 show the same data when the input is CALTECH-101. In these figures, green circles denote

preserved layers whereas red crosses indicate pruned ones.

Note that the accuracy, precision and recall of MNIST are higher than 0.97 for all configurations.

In particular, the highest values of these parameters are obtained for the configuration (δmedian, gmean)

and γ greater than 0.75. In this case, the accuracy is higher than 0.99 whereas precision and recall

are up to 0.99 when γ ranges between 1.00 and 1.50. With these configurations, our compression

approach prunes the first two layers of Conv3 and the first layer of Conv4. Pruning also the third

layer of Conv3 and the first layer of Conv2 leads to a slight decrease of accuracy, precision and recall.

The configuration (δmedian, gmean) guarantees the best performances but it also requires the highest

mean epoch time and the highest number of parameters. It also leads to the lowest number of pruned

convolutional layers that gradually increases when γ increases.

The configuration (δmean, gmean) leads to lower values of accuracy, precision and recall than the
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Figure 12: Accuracy, precision, recall, mean epoch time (in seconds) of the training phase, number of

CNN parameters, and number of pruned convolutional layers obtained by our compression approach

when MNIST dataset is given in input to VGG16

previous configuration when γ is higher than 0.75. The highest values of these parameters are obtained

for γ = 1.25. When γ ranges between 0.75 and 1.25, Conv3 and the first layer of Conv4 are pruned.

When γ = 1.25 also the first layer of Conv2 can be pruned without a significant decrease of the

performance values. Instead, if also the second layer of Conv2 is pruned, the accuracy, precision

and recall start to decrease and become lower than 0.99. If compared with (δmedian, gmean), this

configuration leads to an average decrease of the mean epoch time of 4.9s and of the number of

parameters of 1.06 million. It also leads to an increase of the number of pruned convolutional layers

of 1.5.

Analogous trends can be observed for the configuration (δmedian, gmedian). In this case, the values
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Figure 13: Accuracy, precision, recall, mean epoch time (in seconds) of the training phase, number of

CNN parameters, and number of pruned convolutional layers obtained by our compression approach

when CALTECH-101 is given in input to VGG16

of accuracy, precision and recall are up to 0.99 for γ between 1.50 and 2.00. This configuration leads

to the pruning of the first layer of Conv2 and Conv4, the first two layers of Conv3 and the third layer

of Conv4 and Conv5. If compared with the configuration (δmean, gmean), this one leads to an average

decrease of: (i) the mean epoch time of 1.3s, (ii) the number of parameters of 1.89 million, and (iii)

the number of pruned convolutional layers of 0.87.

Finally, as for the configuration (δmean, gmedian), the accuracy, precision and recall reached the

lowest values. For instance, the accuracy value is below 0.985 whereas precision and recall are up

to 0.98 when γ ranges between 0.50 and 1.00. On the other side, this configuration leads to a rapid

decrease of the mean epoch time below 30s and of the number of CNN parameters below 25 million;

23



Figure 14: Convolutional layers of VGG16 preserved and pruned by our compression algorithm for

MNIST (arc weights based on mean)

Figure 15: Convolutional layers of VGG16 preserved and pruned by our compression algorithm for

MNIST (arc weights based on median)

at the same time, there is an increase of the pruned layers up to 8. In this case, the compressed

CNN model only preserves the whole Conv1, the second layer of Conv4 and the first two layers of

Conv5. Interestingly, pruning also the second layer of Conv4 does not lead to a significant decrease

of accuracy, precision and recall if γ is higher than 1. At the same time, this choice further reduces

the mean epoch time and the number of CNN parameters.

As far as CALTECH-101 is concerned, the highest values of the performance measures are obtained

when γ ranges from 0.75 to 1.50. More specifically, the highest value of accuracy (resp., precision,

recall) is 0.661 (resp., 0.527, 0.599) and is reached when γ = 1 for the configuration (δmedian, gmean).

With this configuration, when γ ranges between 0.75 and 1.50, the mean epoch time and the number

of CNN parameters gradually decrease, whereas the number of pruned convolutional layers rapidly

increases. This trend can be observed in Figure 16, where the convolutional layers are rapidly pruned

until the CNN model consists of the first layer of Conv1 and the third layer of Conv4. Interestingly,
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Figure 16: Convolutional layers of VGG16 preserved and pruned by our compression algorithm for

CALTECH-101 (arc weights based on mean)

Figure 17: Convolutional layers of VGG16 preserved and pruned by our compression algorithm for

CALTECH-101 (arc weights based on median)

in spite of the presence of only two layers, the performance measures keep the same or higher values

than the ones obtained with no compression (i.e., with γ = 0).

The configuration (δmean, gmean) shows closely related trends with the configuration (δmedian, gmean)

in all measures.

By contrast, the performance measures of (δmean, gmedian) diverge from the ones obtained by the

other configurations. In fact, they show an increasing trend against γ and their value becomes even

higher than the ones obtained with no compression when γ is high. On the other side, the mean epoch

time is on average 12.6s higher, the number of CNN parameters is 13.5 million higher and the number

of pruned convolutional layers is 4.12 less than the previous two configurations. This is justified by

the reduced number of convolutional layers pruned with this configuration, which gradually comprises

the two blocks Conv1 and Conv2, the second layer of Conv4 and the first two layers of Conv5.

Finally, the configuration (δmedian, gmedian) does not provide any compression, and all the six
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measures into consideration do not show any change against γ.

From all previous reasoning, we can conclude that the configuration that guarantees the best

tradeoff between costs and benefits is (δmean, gmean) with γ = 1.25. In fact, in this case, the values

of the performance measures are higher than the corresponding ones without compression for both

datasets. At the same time, the mean epoch time and the number of CNN parameters are acceptably

low, whereas the number of pruned convolutional layers is high.

From a cross comparison of the layer distributions, the best tradeoff between costs and benefits

corresponds to pruning Conv2, Conv3 and the first layer of Conv4.

Clearly, if we are not interested to the best tradeoff, but we are willing to sacrifice costs (i.e., to

accept a high mean epoch time and a high number of CNN parameters) in order to maximize benefits

(i.e., high values of accuracy, precision and recall) the best configuration is (δmedian, gmean).

5.2.2 Comparison results

In order to highlight the importance of adopting a multilayer network for supporting the representation

and manipulation of CNNs, we compare our compression method with an analogous one based on a

single-layer network. This approach considers each target class as a single contribution to the CNN

compression. As a consequence, given a class network Gh, it first computes δh, 1 ≤ h ≤ t, as

a statistical aggregation of the values of the degree δ of all the nodes of Gh. Then, it calculates

thhδ = γ · δh, 1 ≤ h ≤ t. Afterwards, it selects the subset of the nodes of Gh, 1 ≤ h ≤ t, having a

degree δ higher than thhδ . Finally, it determines the set of nodes from which the convolutional layers

of the compressed CNN are extracted by computing the intersection of these t subsets.

Table 1 shows the performance measures obtained by VGG16 when the input dataset is MNIST

(resp., CALTECH-101). In particular, we report the values of accuracy, precision, recall, mean time per

epoch (in seconds) of the CNN training phase, number of CNN parameters and number of convolutional

layers pruned obtained by applying our multilayer network based (indicated by “m”) compression

approach and the single layer network based one (denoted by “s”) described above. In order to make

the comparison as objective as possible, we identified the best configuration also for the single-layer

network based approach and adopted it in the comparison. This configuration states that the statistical

aggregation function adopted in the computation of δh, 1 ≤ h ≤ t, is the mean, the arc weight is based

on the mean (gmean), and γ = 1.25.

Performance

measures
Accuracy Precision Recall

Mean epoch

time (s)
#parameters

#pruned

layers

multilayer (m)

single-layer (s)
m s m s m s m s m s m s

MNIST 0.990 0.987 0.988 0.984 0.987 0.983 38.0 44.1 2.9 · 107 3.1 · 107 5 3

CALTECH-101 0.641 0.51 0.509 0.315 0.546 0.326 33.1 19.0 5.6 · 107 2.5 · 107 8 12

Table 1: Performance measures obtained by our compression approach based on a multilayer network

(m) and a single-layer one (s) when MNIST and CALTECH-101 are provided in input

As for MNIST, we observe that the compression method based on multilayer network obtains the

highest values of accuracy, precision and recall, whereas the mean epoch time is 6s lower, the number

of CNN parameters is 2 million lower, and the number of pruned convolutional layers is 2 more than

26



the ones obtained by adopting a single-layer network.

As for CALTECH-101, we observe that the compression method based on single-layer network

obtains better values of mean epoch time, number of CNN parameters and number of pruned convo-

lutional layers than the one based on multilayer network. However, the former leads to much lower

results than the latter for accuracy (0.641 against 0.510), precision (0.509 against 0.315) and recall

(0.546 against 0.326).

5.3 Discussion

In this section, we draw some considerations on the approaches presented in this paper. First, we

observe that our approach to map a CNN into a multilayer network is general and can be applied to

most classical CNN architectures, such as LeNet, AlexNet, GoogLeNet, VGG19 and so forth.

Another advantage of our multilayer network based representation is that it provides important

insights about what is happening under the hood of the CNN. In fact, it allows us to identify the

best performing nodes and describe how they interact with their neighbors. We can observe how

information flows through the arcs of the multilayer network, which is a representation of how the

corresponding CNN filters process images. The ability of our approach to identify the most important

convolutional layers of a CNN derives exactly from this observation capability. In turn, the ability to

identify the most important convolutional layers represents the starting point for several tasks, one of

which is the CNN compression of a CNN that we have seen in detail in this paper.

Our compression approach prunes entire layers; this reduces the number of parameters to be trained

and speeds up both training and inference times. Interestingly, pruning a whole layer does not disrupt

the nature of the CNN model itself, as it could happen with the cutting of redundant connections (see

Section 2).

As for compression, we can draw further considerations by looking at which layers are typically

pruned by our approach. With regard to this, we must preliminarily recall an important behavior

typical of CNNs, i.e., the fact that the first convolutional layers extract high-level patterns from images

(e.g., the shape of a dog), while the last ones focus on in-depth patterns (e.g., details of the dog, like its

ears or its nose). From Figures 14 - 17, we can see that our compression approach does not generally

cut the first convolutional layers, which are the ones close to the input; in fact, this cut is performed

only when γ is high. One reason of this behavior concerns the fact that these layers probably extract

generic patterns that are always useful for analyzing input images. This characteristic makes them

essential, and so they are hardly cut off from our approach. Instead, the most pruned layers are the

middle ones. This could depend on the excessive number of convolution operations applied on a fine

feature map. Indeed, it could happen that the first 3-4 convolutional layers extract a meaningful

pattern from images, which then undergoes other 7-8 convolutions and loses its significance. Finally,

the last layers of VGG16, i.e., the ones close to the classification output, are cut off less than the middle

layer but more than the initial ones. The reason for this behavior is not so obvious, and requires a

further study in the future.

Although our multilayer network based representation has several interesting properties, it still

has some limitations. For instance, it does not take into account the residual connections typical

of ResNet architectures; therefore, ResNet cannot be represented through it. However, this kind of
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connection can be easily added to our model, and we plan to make this task in the next future.

Another limit concerns the view of the filters of a convolutional layer as a single unit. Indeed, our

mapping approach aggregates all the computation results of the convolutional filters through a mean

or a median. This aggregation keeps the multilayer network size low, but it loses information about

single filters. Of course, this is a tradeoff between the computation time required to process a larger

multilayer network, and the need for an in-depth analysis. However, this implies that we cannot

prune any filter from the convolutional layers because we do not have the corresponding data within

the multilayer network model. Actually, this issue can be addressed by making the multilayer network

bigger, and then by developing a compression algorithm (similar to the one proposed here) to identify

the most performing filters from the convolutional layers of a CNN.

Another limit concerns the datasets we employed here. MNIST and CALTECH-101 are surely two

important benchmarks, and are heavily used by the research community. However, both of them are

not as big as ImageNet, CALTECH-256, CIFAR100, which are much more complex and require much

more computational power. We are confident that our approach can show good performances with all

datasets, but it surely will be interesting to study its behavior on huge ones.

6 Conclusion

In this paper, we addressed the problem of representing a deep learning model in order to enable its

next analysis, exploration and manipulation. In particular, we focused on a family of deep learning

architectures, namely CNNs, and used a multilayer network, for their representation. Therefore, we

proposed an approach to map each element of a CNN into the constructs of a multilayer networks,

namely nodes, arcs, arc weights and layers. Then, in order to give an idea of the potential of the

proposed representation approach, we used it in the context of a layer pruning method for a CNN.

Finally, we presented an extensive experimental campaign aimed at showing the suitability of the

proposed approach and at evaluating its performance.

Everything we have seen in this paper should not be considered as an endpoint but, on the contrary,

as a starting point for further efforts in this research field. Indeed, at the end of the previous section,

we have already seen some limitations of the approaches proposed in this paper. We have also seen

how their overcoming provides the inspiration for one or more possible future developments of our

research efforts.
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