Meta-Analysis

Chrononutrition and metabolic health in children and adolescents: a systematic review and meta-analysis

Giulia Fiore (**b**^{1,2,†}, Serena Scapaticci (**b**^{3,†}, Costanza R. Neri (**b**³, Hatim Azaryah (**b**^{4,5}, Mireia Escudero-Marín (**b**^{4,5,6,7}, Martina C. Pascuzzi (**b**¹, Alice La Mendola (**b**¹, Chiara Mameli (**b**^{1,8}, Francesco Chiarelli (1)^{3,‡}, Cristina Campoy (1)^{4,5,6,7,9}, Gianvincenzo Zuccotti (1)^{1,8}, and Elvira Verduci
^{1,2,‡}*

¹Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy

⁶Instituto de Investigación Biosanitaria de Granada (Ibs-GRANADA), San Cecilio University Hospital, Granada, Spain

- ⁷Neurosciences Institute Dr. Federico Oloriz, University of Granada, Granada, Spain
- ⁸Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy

⁹Spanish Network of Biomedical Research in Epidemiology and Public Health (CIBERESP), Granada's Node, Institute of Health Carlos III, Madrid, Spain

*Correspondence: E. Verduci, Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Street L. Castelvetro, 32, 20154 Milan, Italy. E-mail: Elvira.verduci@unimi.it.

[†]G.F. and S.S. contributed equally to this work.

[‡]F.C. and E.V. share senior authorship.

Context: Obesity has emerged as a global health issue for the pediatric population, increasing the need to investigate physiopathological aspects to prevent the appearance of its cardiometabolic complications. Chrononutrition is a field of research in nutritional sciences that investigates the health impact of 3 different dimensions of feeding behavior: regularity of meals, frequency, and timing of food intake. **Objective:** We carried out a systematic review and meta-analysis to investigate the association between chrononutrition in children and adolescents and the risk of overweight/obesity or a cluster of metabolic abnormalities related to alucose and lipid metabolism, blood pressure, and cardiovascular disease risk. Data **Extraction:** A literature search was performed using PubMed, EMBASE, and The Cochrane Library for relevant articles published before August 2022. Data Analysis: A total of 64 articles were included in the narrative synthesis (47 crosssectional and 17 cohort studies), while 16 studies were included in the metaanalysis. Meta-analysis showed that non-daily breakfast consumers ($\leq 6 d/wk$) had a higher risk of overweight/obesity (odds ratio [OR], 1.45; 95% confidence interval [CI], 1.08–1.82] compared with daily breakfast eaters (7 d/wk). Similarly, irregular breakfast consumption (only 0-to-3 times/wk) increased the risk of abdominal obesity (waist-to-height ratio > 0.5) compared with regular consumption (5-to-7 times/ wk) (OR, 1.38; 95% CI, 1.26–1.49). There was evidence to suggest that a regular fre*quency of meal consumption (>4 times/d) is preventive against overweight/obesity* development compared with fewer meals (<3 times/d) (OR, 0.83; 95% CI, 0.70-0.97). In the narrative synthesis, snacking habits showed controversial results, while food timing was the most understudied dimension. Conclusion: Overall, our data

© The Author(s) 2023. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

²Department of Health Sciences, University of Milan, Milan, Italy

³Department of Pediatrics, University of Chieti "G. D'Annunzio", Chieti, Italy

⁴Department of Pediatrics, School of Medicine, University of Granada, Granada, Spain

⁵EURISTIKOS Excellence Centre for Pediatric Research, Biomedical Research Centre (CIBM), University of Granada, Granada, Spain

indicate a potential implication of chrononutrition in affecting pediatric metabolic health; however, the evidence of this association is limited and heterogeneous. Further prospective and intervention studies with a consistent approach to categorize the exposure are needed to elucidate the importance of chrononutrition for pediatric metabolic health.

Key words: *abdominal obesity, breakfast habits, children and adolescents, childhood obesity, chrononutrition, meal frequency.*

INTRODUCTION

Over the past decades, obesity, cardiovascular diseases (CVDs) and other noncommunicable diseases have emerged as a global issue, with a very large impact on the health of both adult and pediatric populations. It is known that modern societies often experience an irregular sleep–awake and fasting–feeding cycles, due to social plans, work, and unhealthy habits. This can result in a disturbance of physiological rhythm, set by the hypothalamus, that regulates lipid and glucose metabolism and blood pressure (BP), and can lead to an increased risk of developing type 2 diabetes and CVD.¹

Recently, the role of chrononutrition on cardiometabolic health has been investigated. Chrononutrition is an emerging field of research involving 3 dimensions of feeding behavior: regularity of energy intake in meals throughout the day, frequency (numbers of meals per day), and timing of food intake (actual time of meals).¹⁻³ Some authors have studied whether the timing and regularity of food intake could play a significant role in obesity, diabetes, and CVD.^{4,5} Despite previously controversial results,⁶⁻⁸ a recent systematic review and meta-analysis has elucidated the role of regular breakfast consumption on weight and cardiometabolic risk in an adult population.9 In line with this, the negative impact of breakfast skipping on adiposity was also shown in children and adolescents.¹⁰ Accordingly, another dimension of feeding behavior-namely, later eating rhythm-is under consideration for its impact on overweight and obesity risk in both adults and children.^{11,12} Circadian misalignment resulting from impaired chrononutrition can alter leptin concentrations, together with glucose and insulin levels and mean BP.13,14 Given the potential cardiometabolic health implications closely related to chrononutrition and the limited evidence from studies in children and adolescents, a comprehensive evaluation is needed to explore this association.

The aim of the present study was to conduct a comprehensive systematic review and meta-analysis on the association between chrononutrition in children and adolescents and overweight/obesity (OW/OB) or a cluster of metabolic abnormalities related to glucose and lipid metabolism, BP, or CVD risk.

METHODS

This review was developed in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement and a PRISMA checklist was followed (see Table S1 in the Supporting Information online).¹⁵

Data sources and search strategies

The literature search was conducted using 3 databases, including MEDLINE/PubMed, EMBASE, and The Cochrane Library. The review was developed and structured according to the PICOS (Population, Intervention/ Exposure, Comparisons, Outcomes, and Study design) methodology to define the research question (Table 1):

Population. Studies involving children and/or adolescents, aged 1 to 18 years old were included. Studies conducted on groups of children with pre-existing pathological conditions (eg, type 1 and type 2 diabetes, obesity, polycystic ovary syndrome, attention-deficit/hyperactivity disorder, eating disorders) were excluded.

Intervention/exposure. As noted in the Introduction, chrononutrition involves 3 aspects of feeding behavior (regularity of meals, frequency of meals per day, and timing of food intake). Therefore, at least 1 wrong dimension of eating behavior was considered as the "exposure": irregularity in meal routine (eg, skipping breakfast or fasting during meals); frequency of eating (eg, low number of meals, ≤ 3 times/d, or snacking frequency); and clock time eating (eg, late night eating or meal timing). Studies on Ramadan were excluded due to the frequent lack of relevant comparison groups. Moreover, the characteristics of Muslim fasting are highly different among populations according to cultural habits and local climatic conditions.

Comparisons. The 3 dimensions of adequate eating behavior were considered as comparisons: regular meal routine (eg, daily breakfast consumption [7 days a week]); appropriate meal frequency (eg, ≥ 4 meals/d); and adequate meal timing (eg, diurnal clock time eating).

Parameter	Criterion
Population	Children and/or adolescents (1–18 y)
Intervention/exposure	At least 1 of the 3 wrong dimensions of eating behavior (irregularity in meal routine, eg, skipping breakfast or fasting; frequency of eating, eg, low number of meals <3 times/d or snacking frequency; clock time eating, eg, late-night eating or meal timing)
Control	Adequate dimensions of eating behavior (regular meal routine, eg, daily breakfast consumption [7 days a week]; appropriate meal frequency, eg, \geq 4 times/d; adequate meal timing, eg, diurnal clock-time eating)
Outcomes	Four different outcomes:
	A. Overweight and obesity
	B. Glucose metabolism
	C. Lipid markers and CVD risk
	D. Blood pressure
Study design	Observational studies and randomized controlled trials
Abbreviation: CVD, cardiovascu	ar disease.

Abbreviation. CVD, Caldiovasculai disease.

Outcomes. To investigate the impact of chrononutrition on pediatric metabolic health, 4 lines of outcomes were identified prior to starting the electronic search. The 4 different outcomes were (A) overweight or obesity, (B) glucose metabolism, (C) lipid markers and CVD risk, and (D) BP. Studies on obesity-related outcomes were included if they reported at least 1 of the following: body mass index (BMI), BMI z scores or BMI percentiles, waist circumference (WC), waist-to-height ratio (WHtR), and body fat (%). Studies on glucose metabolism were included if they evaluated blood glucose, insulin levels, or homeostasis model assessment (HOMA) index. Similarly for the lipid markers and CVD risk outcome, studies were included if they collected at least 1 of the following: total cholesterol (TC), high-density-lipoprotein (HDL) cholesterol, lowdensity-lipoprotein (LDL) cholesterol, triglycerides (TGs), as well as overall metabolic syndrome (MetS) risk. Last, studies on BP outcome were included if they collected systolic BP (SBP), diastolic BP (DBP), and related percentiles.

Study design. Observational studies (cohort studies, cross-sectional studies, and case-control studies) and randomized controlled trials were included in the search strategy. Literature reviews, meta-analyses, case-series, and any other type of publication were excluded.

Search strategy

A systematic search of the studies published between 2007 and August 2022 was conducted using 3 electronic databases: The Cochrane Library, Embase, and Pubmed/MEDLINE. The complete search strategy terms are listed in Table 2. Only studies written in English were included in the review. To be eligible, studies had to be original articles conducted in children and/or adolescents (1–18 years).

Identification of relevant studies

The Rayyan reference management software (Rayyan Systems Inc.) package was used to manage all of the records. After duplicates were removed, title and abstract were initially screened independently by 2 pairs of authors in a double-blinded fashion. The first pair of authors were assigned the study selection for outcomes A and D, while the second pair of authors screened articles for the outcomes B and C. Disagreements on the eligibility of articles were resolved by a third author. The third reviewer decided whether the articles should be kept or excluded. The fulltext selection of potentially relevant articles was performed independently by the 2 pairs of authors. In addition, reference lists of the selected studies were searched manually to identify further potentially eligible publications. Moreover, selected articles with more than 1 outcome were included in more than 1 category. Reasons for exclusion were recorded and are listed in Fig. 1-namely, wrong exposure, wrong outcome, wrong publication type, wrong population, foreign language, and insufficient/missing data.

Data extraction

Data extraction was performed in parallel by 2 independent authors in a double-blinded fashion. Selected articles were fully analyzed to extract the following information: authors, publication year, country, study design, sample size, sample age, exposure variable assessed and type of assessment, outcome investigated, and details about the method, confounders, and main results.

Quality assessment

Critical appraisal checklists for cross-sectional and cohort studies proposed by the Joanna Briggs Institute were used to assess the methodological validity of the selected studies.^{16,17} The checklist for cross-sectional studies included 8 question items, assessing several

Exposure	"Snacks" [MeSH] OR "Circadian rhythm" [MeSH] OR "Feeding behavior" [MeSH] OR "Eating hab- it" OR "Nocturnal eating" OR "Meal routine" OR "Food intake" OR "Meal timing" OR "Chrononutrition" OR "Chronotype" OR "Chronobiology" OR "Breakfast skipping" OR "Meal skipping" OR "Meal frequency" OR "snacking"
Outcomes	
Group A: overweight and obesity	"obesity" OR "high caloric intake" OR "body composition" OR "body weight" OR "excessive weight gain" OR "BMI" OR "overweight" OR "body fat" OR "excessive fat accumulation" OR "adiposity"
Group B: glucose metabolism	"diabetes" OR "glycemia" OR "postprandial state" OR "insulin" OR "fasting blood glucose" OR "fasting blood glucose level" OR "hemoglobin a1c" OR "glycated hemoglobin" OR "homeostasis model assessment" OR "homa index"
Group C: lipid markers and CVD risk	"high density lipoprotein" OR "high density lipoprotein cholesterol" OR "low density lip- oprotein" OR "low density lipoprotein cholesterol" OR "cholesterol blood level" OR "cholesterol" OR "triglycerides blood levels" OR "triacylglycerol" OR "metabolic disorder" OR "metabolic syndrome" OR "cardiovascular disease" OR "cardiovascular risk" OR "cardiovascular risk factor"
Group D: blood pressure	"blood pressure" OR "systolic blood pressure" OR "diastolic blood pressure" OR "hypertension" OR "elevated blood pressure" OR "blood pressure monitoring"

Terms

domains: population characteristics, exposure, confounders, outcomes, and statistical analysis. For each item, 4 possible responses are provided: yes, no, unclear, or not applicable. Studies that answered at least 4 out of 8 questions with "yes" answers were considered as having acceptable quality to be included in this systematic review.¹⁸ The checklist for cohort studies included 12 question items, also including follow-up to the already reported domains. At least 6 out of 11 questions answered with "yes" answers were considered as having acceptable quality to be included.¹⁸ The synthesis of the risk-of-bias assessment for each study was conducted by applying the Risk-of-bias VISualization (robvis) tool (see Fig. S1 in the Supporting Information online).¹⁹ The quality assessment of the articles excluded to due quality control is reported in Table S2 (see the Supporting Information online).

Statistical analysis

The association between chrononutrition and OW/OB, glucose profile, lipid metabolism and CVD risk, or BP was discussed through narrative synthesis and, only when applicable, was studied by means of meta-analysis. Given the variety of definitions of chrononutrition, studies included in the current review were divided into 4 categories: breakfast consumption, meal frequency, snack frequency, and meal timing. Studies to be included in the meta-analysis needed to fulfill the following criteria:

- 1. Present data with sufficient detail for the pooled analysis
- 2. Have a similar definition of the exposure and measurement of the outcome
- 3. Include odds ratios (ORs) and confidence intervals (CIs)

Meta-analysis was performed when at least 3 articles were available for each subset and a dichotomization of the exposure variable could be identified.

Detailed descriptions of exclusion from analysis are presented in Tables S3–S10 (see the Supporting Information online). As a result, only for outcome A "overweight and obesity" were all criteria met and 3 primary meta-analyses were conducted as follows:

- 1. Non–daily breakfast consumption (≤6 d/wk) vs daily breakfast consumption (7 d/wk; reference category) and association with OW/OB
- 2. Regular meal frequency (≥4 times/d) vs low number of meals (≤3 times/d; reference category) and association with OW/OB
- 3. Irregular breakfast consumption (0-to-3 times/wk) vs regular consumption (5-to-7 times/wk; reference category) and association with an abdominal obesity measure (WHtR)

With regard to the outcome OW/OB, studies were included in the meta-analysis if the BMI categorization was based on any of the following definitions: World Health Organization (WHO) z scores, the International Obesity Task Force cutoff points of Cole et al,²⁰ or the Centers for Disease Control and Prevention (CDC) percentiles. For abdominal obesity measures, a WHtR ≥ 0.5 was considered as the abdominal adiposity marker.²¹

Odds ratios and CIs were extracted from the included studies when available. Adjusted ORs were selected over unadjusted ORs, and in case of multiple models of adjustments, the most-adjusted model was chosen.²² A reference group was identified for each meta-analysis. To ensure consistency across studies, in case of an opposite reference group, both ORs and CIs were appropriately adjusted to change the direction and align with other studies. Both the reciprocal OR and the new CIs for a reversed OR were calculated.^{22,23} Articles that included multiple exposure points opposite to the reference group underwent sub-meta-analyses to obtain an overall value relative to the individual

Figure 1 Flow diagram of the literature search process. Abbreviation: CVD, cardiovascular disease.

study (see Figs. S2 and S3 in the Supporting Information online). The merged OR and CI were then included in the final meta-analysis.

The "Metafor" package from R (R Foundation for Statistical Computing) was used to perform the metaanalyses. After assessing heterogeneity, random-effects models were performed with restricted-maximumlikelihood estimation. Subgroup analysis on sex categories, age group, or different study design were unlikely to be performed due to insufficient data. In case of high heterogeneity, a subanalysis was performed only on European countries to assess the possible bias from other continents.

The strength of the overall body of evidence for each meta-analysis was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology.²⁴

Sensitivity analysis

Sensitivity analyses were carried out to assess the robustness of the meta-analysis results. The main

analyses using unadjusted or adjusted ORs were repeated excluding low-quality studies.

RESULTS

Initially, a total of 22 501, 9765, 5854, and 6068 articles published between 2007 and August 2022 were retrieved for outcomes A, B, C, and D, respectively (Fig. 1).

The flowchart of the literature search and exclusion process is shown in Fig. 1. After removal of duplicate records, articles were screened for title in each group. Next, irrelevant articles were discarded based on abstract. Among the reasons for abstract removal were as follows: wrong exposure, wrong outcome, wrong publication type, and wrong population. The remaining 147, 57, 37, and 18 articles in groups A, B, C, and D, respectively, were assessed for full-text eligibility. All studies underwent quality assessment, as described above, and those considered as having overall sufficient methodological quality were included in the narrative synthesis (see Fig. S1 in the Supporting Information online). A total of 64 articles out of 86 were included in the narrative synthesis: 47 studies were cross-sectional and 17 studies were cohort studies. No case-control or randomized controlled trials were found. Some articles evaluated multiple outcomes. Thus, the included articles were divided as follows according to the health outcome under investigation: 61 in the "obesity/overweight" group (A), 10 in the "glucose metabolism" group (B), 13 in the "lipid markers and CVD risk" group (C), and 10 in the "blood pressure" group (D). All of the studies fit into 4 exposures developed from the 3 aspects of chrononutrition dimensions. Sixteen studies were included in the meta-analysis examining the relationship between 2 of the exposures and OW/OB outcome (14 cross-sectional and 2 cohort studies). Two of the studies included examined 2 exposures each.^{25,26} The numbers of articles included in the narrative synthesis and metaanalysis by exposure are shown in Fig. 2.

Almost all studies included in the narrative synthesis (95.7%) identified confounding factors and strategies to address them, whereas only 4.7% (n = 3) were unadjusted. Socioeconomic factors were considered as potential confounding factors in approximately 70% of the articles, while physical activity was considered in approximately 57% of articles (see Table S11 in the Supporting Information online). With regard to dietary assessment methods, food diaries were collected in only 17% of the studies analyzed (16/94), while self-administered questionaries were the most used procedure (37%), followed by 24-hour recall (16%), researcher-administered questionnaire (12%), validated/standardized questionnaires (12%), and food-frequency questionnaires (6%). Results are presented according to different outcomes.

Association between chrononutrition and obesity/ overweight

The association between chrononutrition and obesity or overweight was investigated in 82 studies, of which only 61 had sufficient quality to be included in the final review while 21 were eliminated (see Table S2 in the Supporting Information online).^{27–47} The association between the 4 exposures and OW/OB was studied according to BMI, anthropometric measure and index (WC, WHtR), or body fat (%).

Overall, 35 studies evaluated obesity outcome by means of BMI assessment alone, of which 24 were cross-sectional studies^{25,48–70} and 11 were prospective studies^{71–81} (Table $3^{25,48–81}$), and 26 articles assessed obesity according to anthropometric measurements or body composition, of which 21 were cross-sectional studies^{26,82–101} and 5 were prospective studies^{102–106} (Table $4^{26,82–106}$).

In 3 studies BMI was self-reported,^{48,54,72} and in 3 studies BMI was not standardized for sex and age. 53,83,102 The remaining studies classified children as overweight and/or obese (OW/OB) referring to CDC, International Obesity Task Force, or WHO, or using percentiles obtained from sex- and age-specific national growth charts. Among studies evaluating anthropometric parameters, obesity risk has been assessed principally by means of BMI in combination with WC and WHtR in 22 studies. In addition, 1 study evaluated body composition by dual-energy X-ray absorptiometry,¹⁰⁶ while 4 studies used bioelectrical impedance.^{88,93,98,99} Moreover, 4 studies evaluated skinfold thickness.^{82,88,96,103} The majority of studies collected data from large cohorts of both school-age children and adolescents, while evidence on preschool-age children was reported in 15 studies.^{50,51,61,62,65,67,74,77-80,89,91,95,103} Only 1 study examined the effects of feeding time in a cohort of singletons aged 12 to 24 months,⁷⁸ while a Japanese longitudinal study evaluated the risk of childhood OW/OB in toddlers who skipped their breakfast using a 10.5-year follow-up.⁸⁰

Regularity of meals and overweight/obesity. Irregularity in meals, especially in breakfast consumption, was the dimension of chrononutrition most investigated.^{25,26,49,50,55,56}, 58,60,63-65,69,73,74,80,83,85-88,90,93,96-98,100,104-106 Three studies investigated longitudinally the increased risk of being overweight and obesity (according to BMI) and the regularity in breakfast consumption,^{72,74,80} while only 3 prospective studies evaluated this association in combination with WC,104 WHtR,¹⁰⁵ or body fat.¹⁰⁶ Using a cohort of 43 663 Japanese toddlers followed until 12 years of age, Okada et al⁸⁰ showed that children who skipped breakfast had an increased risk of OW/OB than children who do not skip breakfast. The prevalence of OW/OB according to the International Obesity Task Force criteria decreased as the frequency of breakfast consumption increased. In contrast, this association has not been demonstrated longitudinally in younger children followed from 2 to 5 years of age.⁷⁴ With regard to other obesity parameters, Wennberg et al¹⁰⁴ showed that poor breakfast habits in adolescence predicted abdominal obesity in adulthood (defined according to WC). Similarly, Traub et al¹⁰⁵ showed that skipping breakfast in school-age children led to increased changes in WHtR. Interestingly, in the study of Cayres et al,¹⁰⁶ non-skipping breakfast adolescents demonstrated an inverse relationship with absolute changes in body fat (dual-energy X-ray absorptiometry assessment) and this relationship was not mediated by physical activity.

Some studies reported differences between sexes. Particularly, Barrett et al,⁶⁰ using a subsample of adolescents (n = 1894) belonging to the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study conducted in 10 European cities, observed that male

Figure 2 Studies included in the narrative synthesis and meta-analysis according to exposure and outcome. *Abbreviations*: CVD, cardiovascular disease; OW/OB, overweight/obesity.

skippers were significantly more likely than nonskippers to have OW/OB (adjusted OR [aOR] = 2.34; 95% CI, 1.40–3.90), but this was not observed among females (aOR = 0.89; 95% CI, 0.59–1.34). Conversely, Aanesen et al⁶³ showed an association between skipping breakfast and OW/OB only in girls (OR, 1.71; 95% CI, 1.20–2.42) but not in boys, with a slight reduction after adjustments for potential confounders.

The first meta-analysis was based on 8 studies (see Supporting Table **S**3 in the Information online),^{25,26,48,50,55,70,74,100} which compared the odds of OW/OB in non-daily breakfast consumers ($\leq 6 d/wk$) vs those who daily consume breakfast (7 d/wk), and yielded a pooled OR of 1.45 (95% CI, 1.08-1.82) (Fig. $3A^{25,26,48,50,55,70,74,100}$). There was elevated statistical heterogeneity, with an I^2 of 95% (P < 0.0001). After exclusion of low-quality studies in sensitivity analysis,^{25,74} the pooled OR was 1.39 (95% CI, 1.13–1.65), with an I^2 of 90% (P < 0.0001) (Fig. 3B^{26,48,50,55,70,100}). Last, a subgroup meta-analysis among European countries was conducted, which yielded nonsignificant results (OR, 1.26; 95% CI, 0.95-1.58) and less heterogeneity ($I^2 = 88\%$; P < 0.0001), which, nevertheless, remains high (see Fig. S4 in the Supporting Information online).

A second meta-analysis of 3 studies (see Table S4 in the Supporting information online),^{26,87,90} was carried out to assess the odds of abdominal obesity (WHtR \geq 0.5) for irregular breakfast consumption (defined as 0 to 3 times/wk) compared with regular consumption (defined as 5 to 7 times/wk). The pooled OR of 1.38 (95% CI, 1.26–1.49) demonstrated a significantly higher risk of abdominal adiposity in breakfast skippers compared with regular consumers (Fig. $3C^{26,87,90}$). Analysis yielded very low heterogeneity ($I^2 = 0.04\%$, P = 0.43).

According to the GRADE system, the certainty of the evidence was very low for both meta-analyses.

Frequency of meals and overweight/obesity. The second dimension that was more investigated was the frequency of meals, classified into 2 different exposures: meal frequency and snack consumption. In total, 23 studies evaluated meal frequency in the narrative synthesis.^{25,26,52,54,57,59,66-68,} 71,75,76,79,82,86,89,91,92,94,95,97,99,102 The majority of crosssectional studies confirmed a positive relationship existing between lower daily eating frequency and the risk of developing OW/OB, according to BMI. Evidence from longitudinal studies evaluating this exposure was weaker.^{71,75,76,79,102} In addition, this association appears to be lacking during the first years of life. In this regard, the prospective study of Taylor et al⁷⁹ reported that eating frequency at 2 years was not associated with current or subsequent change in BMI. Similarly, BMI at age 1 year did not predict eating frequency at 2 years of age.⁷

Six studies demonstrated an inverse association between adiposity (evaluated with multiple methods namely, WC, WHtR, dual-energy X-ray absorptiometry, and skinfold thickness) and eating frequency,^{82,84,86,92,102,103} whereas 3 studies did not find any relationship.^{91,95,97} In particular, a longitudinal 10-year follow-up cohort study demonstrated greater increases in BMI and WC in females adolescents with lower eating frequency.¹⁰²

Seven studies were included in the third metaanalysis (see Table S5 in the Supporting Information online),^{25,52,54,57,67,76,92} which investigated the odds of

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
Franko et al, 2008, USA ⁷¹	Longitudinal population- based cohort	At baseline, 1209 Black girls and 1166 White girls (9- 10 y)	Meal frequency assessed with 3-d food records (2 weekdays and 1 weekend day) collected annu- ally for visits 1–5 and then again at visits 7, 8, and 10	CDC growth charts: BMI z scores	 Participants who ate >3 meals on more days had lower BMI <i>z</i> scores (main effect of meal frequency, <i>P</i> < 0.0001) For each additional day of eating 3+ meals (holding constant the other variables in the model), BMI <i>z</i> scores were estimated to decrease by 0.05 (95% Cl: 0.3–0.6) The main effect for meal frequency was not significant (<i>P</i> = 0.20), but there was a significant race-by-meal frequency interaction (<i>P</i> = 0.02). This indicates that, on average, Black girls who ate 3+ meals on more days exhibited a decreased likelihood of overweight; for each additional day consuming 3+ meals, Black girls were 1.23 times (95% Cl: 1.05–1.50) less likely to be overweight. In contrast, there was no effect of meal frequency on overweight for White girls (OR: 1.02; 95% Cl: 0.84-1.18)
Timlin et al, 2008, USA ⁷²	Longitudinal population- based cohort and cross- sectional	2216 middle- and high- school students partici- pating in Project EAT (mean age, 14.9 ± 1.6 y)	Breakfast frequency assessed with a self-reported questionnaire using the question, "During the past week, how many days did you eat breakfast?" Responses included never, 1 to 2 days, 3 to 4 days, 5 to 6 days, and every day	BMI absolute values, based on self-reported weight and height	 Compared with daily breakfast eaters, a higher BMI was observed in those who ate breakfast intermittently or never. Similar associations were observed at time 2. The inverse associations between breakfast frequency and BMI remained largely independent of all confounding and dietary factors and were similar for boys and girls (<i>P</i> < 0.10 for gender × breakfast interaction). The frequency of eating breakfast was inversely associated with BMI in a dose-response manner (<i>P</i> < 0.01).
Croezen et al, 2009, Netherlands ⁴⁸	Cross-sectional	Over 35 000 adolescents in grade 2 (13–14 y old) and grade 4 (15–16 y old)	Breakfast skipping assessed with a self-reported questionnaire assessing the frequency of eat- ing breakfast during a week (ranging from 0–7 d/wk)	OW/OB classification: IOTF cutoff criteria for BMI val- ues, from self-reported weight and height	 In grade 2, adjusted ORs for the association with overweight were 2.17 (95% CI: 1.66–2.85) for skipping breakfast. Statistically significant associations with overweight were also found in grade 4.

Table 3 Studies included in the qualitative synthesis for outcome A, considering BMI as an overweight/obesity outcome

(continued)

Table 3 Continued

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
					 Dose-response relations were found between skipping breakfast and overweight. Breakfast skipping showed the strongest relation with overweight (OR: 1.68; 95% CI: 1.43–1.97 for grade 2; OR: 1.32; 95% CIL 1.14–1.54 for grade 4) and obesity.
Würbach et al, 2009, Germany ⁴⁹	Cross-sectional	2054 schoolchildren and adolescents aged 7-14 y	Validated questionnaire to assess meal patterns during a week: School lunch participation ("daily," "1–4 per week," and "no participation"); breakfast consumption ("2 daily," "1 dai- ly," and "no breakfast"; "2 daily" means early breakfast at home + a late breakfast at school); meal frequencies, ranging from 2 to 5/d	 National growth charts (German): BMI percentiles and <i>z</i> scores OW/OB group classified as >90th percentile 	 Greater meal frequency was related to decreasing BMI <i>z</i> scores No significant associations with breakfast consumption
Dubois et al, 2009, Canada ⁵⁰	Cross-sectional	1520 preschool children with a mean age of 49 mo and a range from 44 to 56 mo	Breakfast consumption assessed through a standardized eating behavior questionnaire and a 24-h dietary recall. Parents were asked: "Does your child eat breakfast in the morning?" Responses included (1) yes, every morning; (2) regularly, but not every day; (3) only on occasion; and (4) never. Breakfast skippers classified as <7 d/wk.	 CDC growth charts: BMI percentiles OW/OB classification: IOTF cutoff criteria for BMI values 	OR of being overweight at 4 y was double for breakfast skippers compared with those who ate breakfast every day in all models (crude OR: 2.00; 95% CI: 1.20-3.35; aOR: 2.50; 95% CI: 1.45–4.31)
Eng et al, 2009, USA ⁵¹	Cross-sectional	11 072 children and adoles- cents aged 2-18 y in the National Health and Nutrition Examination Survey (NHANES) 1999– 2004	The time and occasion of food consumption through 24-h recalls	CDC growth charts: BMI z scores	The proportion of total daily energy consumed in the latter part of the day was associated positively with being classified as overweight in the 6–11-y-old group, but negatively in the overweight 12–18-y-old group.
Toschke et al, 2009, Germany ⁵²	Cross-sectional	4642 children aged 5-6 y	Meal frequency and breakfast con- sumption assessed by self- administered parental question- naire. How many meals per day (breakfast, lunch, tea, dinner, other snacks containing fruit or sandwiches/packed lunch, but	OW/OB classification: IOTF cutoff criteria for BMI values	 Children who regularly consume 4 meals or >5 meals daily have a lower risk of obesity than a reference group (<3 meals/d; aOR: 0.71 [95%CI: 0.50– 1.01] and 0.57 [95% CI: 0.37–0.88], respectively)

(continued)

Nutrition Reviews® Vol. 00(0):1–46

Table 3 Continued

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
Lehto et al, 2010, Finland ⁵³	Cross-sectional	656 schoolchildren and adolescents, aged 9-11 y	not sweets, crisps, or related products) does your child con- sume? Possible answers: 1/2/3/ 4/5/>5 and "do not know." Meals regularity assessed with a WHO Health Behavior of School- aged Children (HBSC) study questionnaire asking breakfast/ school lunch/dinner consump- tion in 5 school days (regular meal patterns comprises usual consumption of breakfast, school lunch, and/or dinner dur- ing all 5 d)	BMI absolute value	 Any additional meal decreases the OR for obesity to 0.72 (95% CI: 0.58–0.90), which remained significant also after adjustments Irregular consumption of breakfast was associated with a higher BMI in all the statistical models. The regularity of school lunch, dinner or family dinner was not associated with the children's BMI. Irregular meal patterns were associated with a higher BMI in all statistical models.
Vik et al, 2010, Norway ⁵⁴	Cross-sectional	2870 students (mean age 15.5 y)	Number of meals eaten the day before assessed with a self- reported questionnaire (yes and no responses, giving a scale ranging from zero to 4 meals/d)	OW/OB classification: IOTF cutoff criteria for BMI val- ues from self-reported weight and height	 The proportion being overweight related to number of meals eaten were: 10% (0–1 meals), 18% (2 meals), 14% (3 meals), and 10% (4 meals), <i>P</i> < 0.001. ORs for being overweight were 0.8 (95% Cl: 0.3–1.9), 1.8 (95% Cl: 1.2–2.7), and 1.6 (95% Cl: 1.2–2.3), respectively, for eating 0–1, 2, and 3 meals vs 4 meals. Eating 4 meals/d was significantly neg-
Veltsista et al, 2010, Finland and Greece ⁵⁵	Cross-sectional	6468 16-y-old Finnish ado- lescents and 2842 17- and 18-y-old Greek adolescents	Breakfast consumption assessed with a self-reported question- naire assessing the frequency of eating breakfast during the pre- vious year (daily, 1–3 times/wk, 1–3 times/mo, and never/rarely)	OW/OB classification: IOTF cutoff criteria for BMI values	 atively related to being overweight Among boys, daily breakfast consumption was inversely associated with weight status in both cohorts (<i>P</i> < 0.001 for Greeks and Finns), but no association was found among girls. The odds of overweight/obesity were 40% lower in Finnish and 30% lower in Greek boys who had a daily breakfast compared with those who did not. Among girls, no significant associations were found
Sandercock et al, 2010, United Kingdom ⁵⁶	Cross-sectional	4326 adolescents aged 10– 16 y	School-day breakfast habits assessed by a single question: "On how many school days per week do you normally eat breakfast at home," with numer- ical responses	 National growth charts (UK): BMI z scores OW/OB classification: IOTF cutoff criteria for BMI values 	 Participants who sometimes ate breakfast were more likely to be obese than those who always did (<i>P</i> < 0.05). Compared with boys who always ate breakfast, boys who sometimes ate breakfast were more likely to be obese (<i>P</i> = 0.002). There was a trend towards

(continued)

Table 3 Continued						
Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results	
Tin et al. 2011	Longitudinal population-	68,606 primary-school chil-	Breakfast consumption assessed	OW/OB classification: IOTE	 an increased likelihood of obesity in boys who never did so (<i>P</i> = 0.18). Girls who never ate breakfast were nearly twice as likely to be obese compared with those who always did. Breakfast skippers bad a bipher mean 	
China ⁷³	based cohort and cross- sectional	dren (mean age = 9.85 y)	using a questionnaire ("I usually have breakfast at "). Children who chose "home," "fast food stall/cafeteria/restaurant," or "some other places" in response were classified as "breakfast eat- ers" and those who chose "no breakfast at all" as "breakfast skippers."	cutoff criteria for BMI values	BMI than did eaters both at baseline and at follow-up ($P < 0.001$). • Compared with breakfast eaters, break- fast skippers experienced a larger mean BMI increase over 2 y ($P < 0.001$) and this association was stronger among lunch skippers than eaters (P for interaction = 0.04).	
Antonogeorgos et al, 2012, Greece ⁵⁷	Cross-sectional	700 adolescents aged 10- 12 y	Meal frequency and breakfast con- sumption assessed with a semi- quantitative FFQ included in the PANACEA survey	OW/OB classification: IOTF cutoff criteria for BMI values	Children who consumed >3 meals per day and also consumed breakfast daily, were 2 times less likely to be overweight or obese.	
Coppinger et al, 2012, United Kingdom ⁶⁶	Cross-sectional	264 adolescents aged 10– 13 y	Self-report measures of dietary intake via 3-d food/drink diaries (Friday to Sunday). An eating frequency chart was created for each participant.	National growth charts (UK): BMI <i>z</i> scores	 Breakfast consumers had significantly lower BMI <i>z</i> scores compare with irregular breakfast consumers (0.18 vs 0.57; <i>P</i> = 0.036) In multiple linear regression, there was no association between BMI <i>z</i> score, eating frequency, and breakfast consumption 	
Küpers et al, 2014, Netherlands ⁷⁴	Longitudinal population- based cohort	1488 children examined at age 2 y and 13 666 chil- dren at 5 y	Breakfast frequency assessed with a questionnaire answered by parents about breakfast con- sumption classified as "eating breakfast daily" (7 times/wk) or "not eating breakfast daily" (<7 times/wk)	 National growth charts (Dutch): BMI z scores OW/OB classification: IOTF cutoff criteria for BMI values 	 At 2 y, 8.3% of children were overweight and 3.0% did not eat breakfast daily. At 5 y, 13.2% children were overweight and 5.3% did not eat breakfast daily. No association between skipping breakfast and overweight, either at age 2 (OR: 1.85; 95% CI: 0.61–5.64) or at age 5 (OR: 0.46: 95% CI: 0.19–1.11). 	
Evans et al, 2014, USA ⁷⁵	Longitudinal population- based cohort	155 schoolchildren and adolescents aged 9–15 y in the Daily D Study	Eating frequency assessed using 2 nonconsecutive weekday 24-h dietary recalls during the 3-mo study period. First collected in- person, the second by phone 3– 21 d after the first recall.	CDC growth charts: BMI <i>z</i> scores (changes baseline vs 6 mo vs 1 y)	 Cross-sectional analysis at baseline suggests that BMI <i>z</i> score was 0.23 units lower for each additional reported eating occasion (regression coefficient = -0.23; 95% Cl: -0.44, -0.07). From baseline to 6 mo, BMI <i>z</i> score increased by 0.03 units for each 	

(continued)

Tahlo	2	Continued

12

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
					 additional reported eating occasion (regression coefficient = 0.03; 95% CI: 0.01, 0.05). This relationship was no longer statistically significant at 1 y (regression coefficient = 0.01; 95% CI: -0.01, 0.03).
Stea et al, 2015, Norway ⁷⁶	Longitudinal population- based cohort	428 children and adoles- cents examined at age 9–10 y and 12–13 y	Meal frequency and regularity during the last 6 mo assessed with a retrospective modified validated FFQ. Parents reported habitual consumption of main meals (breakfast, lunch, dinner and evening meal); meal fre- quencies registered with 8 response alternatives ranging from "never/rarely" to "daily"	OW/OB classification: IOTF cutoff criteria for BMI values	 The number of children eating 4 main meals per day (regular meal frequency decreased from the fourth grade (47%) to the seventh grade (38%). Those who ate regular meals in the fourth grade but not in the seventh grade had higher odds of being overweight in the seventh grade after adjusting for gender, maternal education, and physical activity.
Wünstel et al, 2015, Poland ⁷⁰	Cross-sectional	1700 adolescents aged 13- 18.9 y, with analysis car- ried out in 3 age groups: 13-14.9, 15-16.9, and 17- 18.9 y	Breakfast consumption assessed with a validated Block question- naire. The categories of con- sumption were expressed as regular consumption (every day), irregular consumption (1– 6 times/wk) and hardly ever (<1 time/wk)	OW/OB classification: IOTF cutoff criteria for BMI values	In the youngest group (13–14.9 y), there is a higher chance of being overweight among adolescents less frequently eating breakfast than among adolescents regularly con- suming breakfast
Saikia et al, 2016, India ²⁵	Cross-sectional	752 adolescents aged 10– 14 y	Dietary habits assessed with a self- administered questionnaire on food frequency (breakfast eat- ing frequency, meal frequency, number of extra snacks, exclud- ing morning tea and evening snacks), per week	WHO growth reference data: BMI <i>z</i> scores; OW/ OB group classified as ≥ +2 <i>z</i> scores	 18.2% overweight/obese adolescents had less than 3 meals/. Normal-weight adolescents (57.6%) were found to have their meals more regularly than overweight and obese adolescents (44.6%). 14.9% of OW/OB adolescents skipped breakfast for >3 d/wk in comparison to 4% of normal-weight adolescents. In OW/OB adolescents, 17.4% were having ≥3 snacks/d as compared to 7.1% of normal-weight adolescents. 62.0% of normal-weight adolescents did not have any extra snacks.
Taillie et al, 2016, China ⁷⁷	Longitudinal population- based cohort	964 children and adoles- cents whose age was 2– 13 y in 2006 (2–6 com- pared with 7–13 y of age)	Snacking frequency assessed with 3 consecutive 24-h dietary recalls	 WHO growth reference data: BMI z scores OW/OB classification: IOTF cutoff criteria for BMI values 	 In children who were underweight at baseline, snacking in the top tertiles was associated with increases in BMI z scores from 2006 to 2011 (+1.2 and +1.1 BMI z-score units for ages 2–6 and 7–13 y, respectively; P < 0.05).

(continued)

Table 3 Continued					
Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
					• In overweight/obese 2- to 6-y-old chil- dren at baseline, being in the lowest snacking tertile was associated with declines in BMI <i>z</i> score (23.3), whereas in overweight 7- to 13-y-old children, being in the top tertile of snacking was associated with the greatest decline in BMI <i>z</i> score (22.1) ($P < 0.05$).
Cheng et al, 2016, Japan ⁷⁸	Longitudinal population- based cohort	349 singletons examined from 12 to 24 mo of age	Feeding time assessed with a vali- dated multi-pass 24-h recall (5 steps) to record food intakes and feeding times on the pre- vious day	WHO growth reference data: BMI <i>z</i> scores	Compared with predominantly day- time feeding, predominantly night- time feeding was associated with a higher BMI <i>z</i> -score gain from 12 to 24 mo of age (adjusted $\beta = 0.38$; 95% Cl: 0.11, 0.65; $P = 0.006$) and increased risk of becoming over- weight at 24 mo of age (adjusted OR: 2.78; 95% Cl: 1.11, 6.97; $P = 0.029$)
Coulthard and Pot, 2016, United Kingdom ⁵⁸	Cross-sectional	768 children aged 4–10 y and 852 adolescents aged 11–18 y belonging to the UK's National Diet and Nutrition Survey Rolling Programme (2008–2012)	Dietary assessment (the timing of the evening meal) through a 4- d estimated (unweighed) food diary. The food diary included time period in which the food was eaten (the diary was pre- structured into 7 different time periods).	 National growth charts (UK): BMI percentiles OW/OB classification: OW >85th and OB >95th percentile 	There was no association between eve- ning meal timing and risk of obesity or risk of overweight and obesity combined in either the 4–10-y age group (obesity: OR, 1.43; 95% Cl, 0.49–4.13; OW/OB combined: OR, 1.33; 95% Cl: 0.53–3.33) or the 11– 18-y age group (obesity: OR, 0.50; 95% Cl, 0.24–1.02; OW/OB combined: OR, 0.83; 95% Cl, 0.50–1.38), split by sex or as combined
Silva et al, 2017, Brazil ⁵⁹	Cross-sectional	708 children and adoles- cents aged 7-14 y	Meal frequency assessed with a structured questionnaire report- ing usual frequency of meals (breakfast, morning snack, lunch, afternoon snack, dinner, and evening snack) categorized according to the mean value as risk (<4 meals) and no risk (≥4 meals)	WHO growth reference data: BMI <i>z</i> scores	In the age range of $10-14$ y, individuals with fewer meals showed a higher chance of having elevated BMI (PR = 1.33; 95% CI: 1.02–1.74; P = 0.032).
Taylor et al, 2017, New Zealand ⁷⁹	Longitudinal population- based cohort and cross- sectional	371 children aged 1–3.5 y in the Prevention of Overweight in Infancy (POI) Study	Eating frequency at 2 y of age cal- culated from a feeding diary completed over the course of 2 full days. The mean total num- ber of eating occasions per day was calculated as the average	WHO growth standards: BMI <i>z</i> scores	 Eating frequency at 2 y was not associated with current (difference in BMI z score per additional eating occasion: -0.02 [95% Cl: -0.10, 0.05]) or subsequent change (0.02 [-0.03, 0.06]) in BMI.

(continued)

14

Table 3 Continued

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
			from meals and snacks com- bined across the 2 days.		 Similarly, BMI at age 1 y did not predict eating frequency at 2 y of age (differ- ence in eating frequency per additional BMI z-score unit: -0.03; 95% Cl: -0.19, 0.13).
Liu et al, 2017, China ⁶⁷	Longitudinal population- based cohort and cross- sectional	42 531 children aged 4-5 y old participating in Jiaxing Birth Cohort (JBC) study	Eating frequency collected through a questionnaire at in- person interviews by trained nurses/doctors during the clinic visit	WHO growth standards: BMI z scores	Children with meal/snack frequency ≥ 6 times/d (compared with 3 times/d) were associated with 0.12 (95% CI: 0.03, 0.2) higher BMI <i>z</i> score, and this association was significant only in boys, not girls.
Okada et al, 2018, Japan ⁸⁰	Longitudinal population- based cohort	42 663 children aged 1.5 y in the "Longitudinal Survey of Newborns in the 21st Century–Japan" followed until 12 y of age	Breakfast skipping evaluated through 12 surveys (corre- sponding to the children's age from 2.5 to 12 y), whereas breakfast skipping is classified as a binary variable (yes or no)	OW/OB classification: IOTF cutoff criteria for BMI values	Compared with children who did not skip breakfast, children who skipped breakfast had 18–116% increased risk of OW/OB; the multivariable ORs were 1.18 (95% Cl: 1.05–1.32) and 2.16 (95% Cl: 1.55–2.99), respectively.
Tee Siong et al, 2018, Malaysia ⁶⁹	Cross-sectional	5332 children and adoles- cents aged 6-12 y and 3000 adolescents aged 13-17 y	Breakfast consumption assessed with a self-reported question- naire. For children aged 6 to 9 y, the questionnaires were answered by their parents. Breakfast frequency was catego- rized into 3 groups—namely, breakfast skippers (0–2 d/wk), irregular breakfast eaters (3– 4 d/wk), and regular breakfast eaters (5–7 d/wk).	WHO growth reference data: BMI <i>z</i> scores	Compared with regular breakfast eat- ers, primary school boys who skipped breakfast were 1.71 times (95% CI = 1.26-2.32, $P = 0.001$) more likely to be overweight/obese, while the risk was lower in primary school girls (OR = 1.36, 95% CI = 1.02-1.81; P = 0.039) and secondary school girls (OR = 1.38, 95% CI = 1.01-1.90; P = 0.044).
Barrett et al, 2018, Europe ⁶⁰	Cross-sectional	1894 adolescents aged 12- 17 y in the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study population	Breakfast consumption assessed with two 24-h dietary recalls and "Food Choices and Preferences Questionnaire" (question: "I often skip break- fast"). Scoring system went from 1 "strongly disagree" to 7 "strongly disagree" to 7 "strongly agree". Classification was 5–7 scores "skippers," 1–3 scores "non-breakfast skippers," and 4 score excluded	OW/OB classification: IOTF cutoff criteria for BMI values	Male skippers were significantly more likely than non-skippers to be over- weight/obese (aOR = 2.34; 95% Cl, 1.40–3.90), but this was not observed among females (aOR = 0.89; 95% Cl, 0.59–1.34].
Kachurak et al, 2018, USA ⁶¹	Cross-sectional	54 669 children aged 1 to 5 y in the 2005 to 2014 National Health and Nutrition Examination Survey (NHANES)	Snacking assessed by two 24-h dietary recalls. Two main occa- sion-based definitions of snack- ing were used: (1) only those occasions identified by the	 <2 y, WHO growth standards: weight-for- length percentiles; OW classified as ≥97.7th percentile 	 Among children <2 y of age, snacking more frequently than recommended by AAP was significantly associated with increased odds of OW/OB

(continued)

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
			caregiver as a snack and (2) snack occasions plus all other foods/beverages consumed between meals as given by "beverage" and "extended con- sumption" occasion labels. Each of these definitions (snacks, beverages, and extended con- sumption) were evaluated with and without occasion of trivial energy consumption (<5 kcal). The AAP recommendations were considered as the refer- ence group (2–3 small snacks daily for toddlers and 2 snacks daily for preschool-aged children).	 >2 y, CDC growth charts: BMI <i>z</i> scores. OW classi- fied as ≥85th percentile 	 (P < 0.01), particularly when excluding <5-kcal occasions. Among children 2 to 5 y old, odds of OW/OB did not differ between children who snacked within recommendations versus more frequently than recommended, regardless of the snacking definition used. When taking into account all EOs between meals (including <5-kcal occasions), children 2 to 5 y old who snacked infrequently (0-1 times daily) were less likely to have OW/OB compared with children who snacked within recommendations (P < 0.05).
Charvet, 2018, USA ⁶²	Cross-sectional	197 children aged 3-4.9 y participating in the Broward County Special Supplementation Nutrition Program for Women, Infants, and Children (WIC)	Frequency of snacks and meals assessed with a previously vali- dated researcher-administered questionnaire	 CDC growth charts: BMI percentiles OW/OB classification: OW ≥85th and OB ≥95th percentile 	 There was no significant correlation between the number of EOs or SF and the prevalence of overweight or obe- sity, but a trend in which the preva- lence of overweight and obesity decreased as the number of EOs per day increased. Similarly a marginally significant trend was found for more frequently con- sumed nutrient-poor snacks and a higher prevalence of OW/OB
Vilela et al, 2019, Portugal ⁶⁸	Cross-sectional	517 children aged 3–9 y participating in the "National Food, Nutrition and Physical Activity Survey of the Portuguese population, 2015–2016"	Dietary intake (snacking and eat- ing frequency) estimated as the mean of 2 nonconsecutive days of food diaries, followed by face-to-face interviews	WHO growth reference data: BMI <i>z</i> scores	 Having <3 snacks/d was positively associated with being overweight/ obese (OR = 1.98; 95% CI: 1.00-3.90), compared with having ≥3 snacks/d. A higher eating frequency, maintaining the same energy intake, seems to contribute to a healthy body weight in children
Vilela et al, 2019, Portugal ⁸¹	Longitudinal population- based cohort	1961 children 4 y of age from the population- based birth cohort Generation XXI	Three-day food diary (2 weekdays and 1 weekend day) to assess time-of-day energy and macro- nutrient intake at 4 y of age and the effect on weight status at 7 y of age. Identification of 3 patterns: "Mid-afternoon"; "Lunch&Dinner"; "Lunch&Evening" according to energy intake distribution.	WHO growth reference data: BMI <i>z</i> scores	After adjustment, higher scores in the pattern "Mid-afternoon" ($OR = 1.18$, 95% $CI = 1.05-1.34$) and "Lunch&Evening" ($OR = 1.19$, 95% $CI = 1.05-1.34$) for energy intake at 4 y were associated with a higher odds of being overweight/obese at 7 y (model 1).

(continued)

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
Aanesen et al, 2020, Iceland ⁶³	Cross-sectional	4752 first-grade children aged 5.6 to 7.4 y who participated in the annual health examina- tion in leeland during 2016 and 2017	Breakfast skipping was measured by asking "Have you eaten breakfast today?" with binary responses (yes/no). Skipping breakfast was assessed as not eating breakfast on the day of the assessment.	OW/OB classification: IOTF cutoff criteria for BMI values	 No evidence emerged to support an association between skipping breakfast and OW/OB in boys, regardless of coming from the unadjusted (OR: 1.08; 95% CI: 0.68–1.72) or adjusted analysis (OR: 1.02; 95% CI: 0.63–1.63). Girls who skipped breakfast were significantly more likely to have OW/OB than girls who had eaten breakfast (unadjusted OR: 1.71; 95% CI: 1.20–2.42). Adding potential confounders reduced only slightly the OR to 1.66.
Champilomati et al, 2020, Greece ⁶⁴	Cross-sectional	1728 adolescents aged 10– 12 y	Breakfast consumption assessed through self-administered, anonymous questionnaires and categorized in the following cat- egories: (1) never/almost never, (2) 1–2 times/wk, (3) 3–4 times/ wk, (4) 5–6 times/wk, (5) every day	OW/OB classification: IOTF cutoff criteria for BMI values	The frequency of breakfast consump- tion was not associated with child- hood OW/OB, including after adjustments.
Guimarães et al, 2021, Brazil ⁶⁵	Cross-sectional	463 children aged 24 to 59 mo	Breakfast consumption assessed with interviews conducted by parents previously trained through a standardized ques- tionnaire asking the frequency of breakfast consumption dur- ing a week (every day, 3–6 d/ wk, 1–2 d/wk, rarely or never). Breakfast skippers were defined as those who eat breakfast <7 d/wk.	WHO growth standards: BMI z scores; OW/OB group classified as $\geq +2$ z scores	 The prevalence of OW/OB decreased as the frequency of breakfast consumption increased (<i>P</i> = 0.035). A relationship between skipping breakfast and children with OW/OB was not observed when performing the multivariate regression.

Abbreviations: AAP, American Academy of Pediatrics; aOR, adjusted odds ratio; BMI, body mass index; CDC, Centers for Disease Control and Prevention; CI, confidence interval; EO, eating occasion; FFQ, food-frequency questionnaire; IOTF, International Obesity Task Force; OR, odds ratio; OW/OB, overweight/obesity; SF, snacking frequency; PANACEA, Physical Activity, Nutrition and Allergies in Children Exposed in Athens; WHO, World Health Organization.

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
Zerva et al, 2007, Greece ⁸²	Cross-sectional	151 schoolchildren and adolescents aged 9-11 y	Dietary intake assessed with 3-d food records. Eating frequency was cal- culated for each child as the mean daily number of eating episodes (including all meals and snacks). Youth were categorized in tertiles according to the daily number of eating episodes.	BMI; skinfolds tricipital, bicipital, sub- scapular, supra-iliac; trunk to extremity ratio (TER), an index of body fat distribution; % body fat was estimated from triceps and subscapular skinfolds from which fat mass and fat-free mass were calculated	 The number of eating episodes was inversely associated (<i>P</i> < 0.05) with the sum of skinfolds (<i>r</i> = -0.17) and % body fat (<i>r</i> = -0.18) after controlling for age and sex. Frequent eaters presented lower total (<i>P</i> < 0.05) and central adiposity (<i>P</i> < 0.01) compared with the infrequent eaters.
Smith et al, 2010, Australia ⁸³	Longitudinal cross- sectional	6559 children and adolescents aged 9-15 y and a fol- low-up of 2184 adults aged 26- 36 y	Skipping breakfast assessed with a self-reported questionnaire report- ing usual breakfast consumption (yes/no response); meal patterns chart reporting data for the pre- vious day, modified FFQ regarding the previous 12 mo, and a food- habits questionnaire in adulthood (classification in 4 groups: skipped breakfast in neither childhood nor adulthood/skipped breakfast only in childhood/skipped breakfast only in adulthood/skipped breakfast in both childhood and adulthood)	BMI; OW/OB classification: IOTF cutoff criteria for BMI values; WC	 Compared with participants who reported eating breakfast at both time points, those who skipped breakfast at both time points had, on average, a 4.7-cm greater WC. Similar associations were observed for BMI. No significant differences in anthropo- metric measurements were observed between those who reported skipping breakfast only in childhood or only in adulthood and those who ate breakfast at both time points.
Keast et al, 2010, USA ⁸⁴	Cross-sectional	5811 adolescents aged 12–18 y	Snacking frequency assessed with a 24-h recalls (0, 1, 2, 3, or 4 snacks/ d)	BMI according to CDC growth charts; WC according to reference percen- tiles for age and sex	 The prevalence of OW/OB and of abdominal obesity decreased with increased snacking frequency (<i>P</i> < 0.01 for trends across snack consumption groups). OR (95% CI) for overweight or obesity and for abdominal obesity ranged from 0.63 (0.48-0.85) to 0.40 (0.29-0.57) and from 0.61 (0.43-0.86) to 0.36 (0.21-0.63) for 2 to ≥ 4 snacks/d, respectively.
Deshmukh-Taskar et al, 2010, USA ⁸⁵	Cross-sectional	4320 children aged 9-13 y and 5339 adolescents aged 14-18 y in NHANES 1999– 2006	Breakfast consumption assessed through 24-h dietary recall. No food or beverage consumption, excluding water, classified as break- fast skippers. RTE group ate ready- to-eat cereals at a breakfast meal occasion (regardless of other foods or beverages consumed at that meal occasion), and other breakfast	BMI <i>z</i> score according to CDC growth charts; obesity classified as >95th percentile; WC	 In children/adolescents, breakfast skippers had higher BMI <i>z</i> scores (<i>P</i> < 0.05) and a higher WC (<i>P</i> < 0.05) than RTE cereal and other breakfast consumers. The prevalence of obesity was higher in breakfast skippers than RTE cereal consumers (<i>P</i> < 0.05) in children/adolescents and was higher in other breakfast consumers than RTE cereal

Table 4 Studies included in the qualitative synthesis for outcome A, considering anthropometric measurements and body composition as the obesity outcome

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
			consumers were defined as those who consumed other foods or bev- erages at the breakfast meal.		consumers only in adolescents $(P < 0.05)$.
Ritchie, 2012, USA ¹⁰²	Longitudinal popu- lation-based cohort	2379 female participants from ages 9–10 to 19–20 y recruited in the 10-y National Heart, Lung, and Blood Institute Growth and Health Study (NGHS) in 1987	Eating frequency (number of meals, number of snacks, and total num- ber of eating episodes [meals+ snacks]) investigated by 3-d food record consisting of 2 weekdays and 1 weekend day, regularly review by trained and certified nutritionists	BMI absolute value; WC	 Among White girls, lower initial snack and total eating frequencies were related to greater 10-y increases in BMI (<i>P</i> = 0.023 and 0.012, respectively) and WC (<i>P</i> = 0.030 and 0.015, respectively). Among Black girls, lower initial meal and snack frequencies were related to greater increases in BMI (<i>P</i> = 0.004 and 0.022, respectively) and WC (<i>P</i> = 0.052 and 0.005, respectively). In addition, among Black girls, lower initial total eating frequency was related to greater increases in WC (<i>P</i> = 0.010).
Jääskeläinen et al, 2013, Finland ⁸⁶	Cross-sectional	3066 boys and 3181 girls aged 16 y in the Northern Finland Birth Cohort 1986 (NFBC1986)	Assessment of meal patterns through self-reported questionnaire includ- ing 5-item questions with dichoto- mous responses (yes/no). The data were categorized as follows: 5 meals/d including breakfast (regu- lar meal pattern), <4 meals/d including breakfast (semi-regular meal pattern), and <4 meals/d not including breakfast (breakfast skippers).	BMI; OW/OB classification: IOTF cutoff criteria for BMI values; WC	 The regular 5-meal-a-day pattern including breakfast was significantly associated with a decreased risk of OW/OB in both genders (OR [95% CI] for boys: 0.41 [0.29-0.58]; girls: 0.63 [0.45-0.89]) and abdominal obesity in boys compared with the breakfast skipping pattern (ie ≤4 meals/d without breakfast; OR: 0.32; 95% CI: 0.16-0.63). The regular 5-meal-a-day pattern was associated with reduced risks of OW/OB and abdominal obesity among boys and girls. Compared with the breakfast skippers (reference group), the reductions in the risk of OW/OB among the adolescents who ate 5 meals per day were 61% in boys and 43% in girls, while those in the risk of abdominal obesity were 73% in boys and 44% in cirls
Shafiee et al, 2013, Iran ⁸⁷	Cross-sectional	5625 adolescents aged 10-18 y	Breakfast consumption assessed with a Likert scale questionnaire (none, 1-2 d, 3-6 d, every day) categorized as 0-2 d/wk (Seldom); 3-5 d/wk (Often); 6-7 d/wk (Regular)	BMI absolute value; WC	 The average of BMI was higher in the "seldom breakfast eater" group (P for trend < 0.001). "Seldom breakfast eaters" were found to have an increased risk of abdominal obesity from 39% to 58% in all models.

Nutrition Reviews® Vol. 00(0):1–46

(continued)

_
N.
¥
'n,
00
bl
þe
fr
0
n
Ę
<u>.</u>
a
â
b
Ť
lic
0
qu
ğ
/r
ΠĹ
ltr
itic
nc
ſe
≦.
θM
/S/
a
20
<u>a</u>
5
φ
ar
fic
Ö
d/
₽.
1
0.10
0.1093
).1093/n
).1093/nut
).1093/nutrit
).1093/nutrit/ni
).1093/nutrit/nua
).1093/nutrit/nuad
).1093/nutrit/nuad12
).1093/nutrit/nuad122/
).1093/nutrit/nuad122/73
0.1093/nutrit/nuad122/7378
0.1093/nutrit/nuad122/73797
0.1093/nutrit/nuad122/7379733
).1093/nutrit/nuad122/7379733 b
0.1093/nutrit/nuad122/7379733 by
0.1093/nutrit/nuad122/7379733 by Ut
0.1093/nutrit/nuad122/7379733 by Univ
0.1093/nutrit/nuad122/7379733 by Unive
0.1093/nutrit/nuad122/7379733 by Universi
0.1093/nutrit/nuad122/7379733 by Università
0.1093/nutrit/nuad122/7379733 by Università di
0.1093/nutrit/nuad122/7379733 by Università di C
0.1093/nutrit/nuad122/7379733 by Università di Chi
0.1093/nutrit/nuad122/7379733 by Università di Chiet
0.1093/nutrit/nuad122/7379733 by Università di Chieti L
0.1093/nutrit/nuad122/7379733 by Università di Chieti ust
0.1093/nutrit/nuad122/7379733 by Università di Chieti user
0.1093/nutrit/nuad122/7379733 by Università di Chieti user or
0.1093/nutrit/nuad122/7379733 by Università di Chieti user on 2
0.1093/nutrit/nuad122/7379733 by Università di Chieti user on 21
0.1093/nutrit/nuad122/7379733 by Università di Chieti user on 21 N
0.1093/nutrit/nuad122/7379733 by Università di Chieti user on 21 Nov
0.1093/nutrit/nuad122/7379733 by Università di Chieti user on 21 Nove
0.1093/nutrit/nuad122/7379733 by Università di Chieti user on 21 Novemi
0.1093/nutrit/nuad122/7379733 by Università di Chieti user on 21 Novembe
0.1093/nutrit/nuad122/7379733 by Università di Chieti user on 21 November 2
0.1093/nutrit/nuad122/7379733 by Università di Chieti user on 21 November 20
0.1093/nutrit/nuad122/7379733 by Università di Chieti user on 21 November 2020

Tahlo A	Continued	
i ubie 4	Continueu	

Nutrition Reviews® Vol. 00(0):1–46

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
					 compared with the usual breakfast eater. In the multivariate model, "seldom breakfast eaters" had a significantly higher risk of general obesity (OR: 1.47 95% Cl: 1.20-1.82), abdominal obesity (OR: 1.39; 95% Cl: 1.04-1.86), and MetS (OR: 1.96; 95% Cl: 1.18-3.27).
Donin et al, 2014, United Kingdom ⁸⁸	Cross-sectional	4116 schoolchildren and adolescents aged 9-10 y	Breakfast consumption assessed with a self-administered questionnaire assessing usual breakfast consump- tion (every day, most days, some days, or not usually)	BMI; skinfolds tricipital, bicipital, sub- scapular, supra-iliac; body composi- tion through bioelectrical impedance	Fat mass index and sum of skinfolds were all lower among children who reported eating breakfast every day and showed evidence of graded and statistically significant associations across the breakfast frequency groups ($P < 0.0001$).
Shroff et al, 2014, Colombia ¹⁰³	Longitudinal popu- lation-based cohort	975 children and adolescents aged 5–12 y	At recruitment in 2006, trained dieti- tians administered an FFQ to moth- ers. The snacking pattern was characterized by intakes of high- energy, low-nutrient-density foods.	BMI <i>z</i> scores according to WHO refer- ence data; triceps and subscapular skinfold thicknesses	 Children in the highest quartile of adherence to the snacking pattern had a 0.09-kg/m² per year higher BMI gain than children in the lowest quartile (<i>P</i> for trend = 0.05). A similar association was observed for mean change in subscapular: triceps skinfold thickness ratio (<i>P</i> = 0.03).
Murakami et al, 2014, United Kingdom ⁸⁹	Cross-sectional	818 children aged 4–10 y and 818 adolescents aged 11–18 y	Dietary intake assessed using a 7-d weighed dietary record. Eating occasions were defined as any occasion when any food or drink was consumed	National growth charts (UK): BMI <i>z</i> scores; WC and WHtR for subjects >11 y	 EF was found to be positively associated with BMI <i>z</i> score in adolescents (<i>P</i> = 0.004), but not in children No associations between EF and WHtR
Wennberg et al, 2015, Sweden ¹⁰⁴	Longitudinal popu- lation-based cohort	889 adolescents aged 16 y with a 27-y follow-up up to 43 y	Breakfast skipping assessed with a self-reported questionnaire answered at age 16 y ("What did you have for breakfast this morning?"). The group "Poor break- fast habits" was defined as those reporting not eating anything or only drinking or eating something sweet.	WC (central obesity defined according to the International Diabetes Federation)	 Poor breakfast habits in adolescence predicted MetS in adulthood (OR= 1.68; 95% Cl: 1.01-2.78). Of the MetS components, poor breakfast habits in adolescence predicted central obesity in adulthood (OR = 1.71; 95% Cl: 1.00-2.92).
Ahadi et al, 2015, Iran ⁹⁰	Cross-sectional	13 486 children and adolescents aged 6-18 y	Breakfast frequency assessed by self- reported questionnaire defining participants as skippers (eating breakfast 0-2 d/wk), semi-skippers (eating breakfast 3-4 d/wk), and non-skippers (eating breakfast 5- 7 d/wk)	BMI percentile according to WHO reference data; WC	Skipping breakfast was associated with a greater risk of abdominal obesity (OR: 1.35; 95% Cl: 1.18-1.53), over- weight (OR: 1.16; 95% Cl: 1.01-1.34), and general obesity (OR: 1.61; 95% Cl: 1.39-1.89).

19

Table 4 Continued	
-------------------	--

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
Murakami and Livingstone, 2015, United Kingdom ⁹¹	Cross-sectional	818 children aged 4–10 y and 818 adolescents aged 11-18 y in the UK National Diet and Nutrition Survey	Dietary intake (eating frequency, vari- ability in eating frequency) assessed using a 7-d weighed diet- ary record. For all dietary variables, mean daily values over 7 d were used in the analysis.	National growth charts (UK): BMI <i>z</i> scores; WC and WHtR for subjects >11 y	There were no associations between EF variability and BMI <i>z</i> score and WHtR.
Kelishadi et al, 2016, Iran ⁹²	Cross-sectional	14 880 children and adolescents aged 6-18 y	Eating frequency assessed with a parent-reported questionnaire answering the sum of the daily consumption frequency of main meals and snacks (between 1 and 9), categorized into 4 groups as $EF \le 3$, $EF = 4$, $EF = 5$, and $EF \ge 6$ according to its distribution.	BMI percentile according to WHO reference data; WC, hip circumfer- ences, waist-to-hip ratio (WHR), and WHtR	 Anthropometric indices, such as weight (45.95 vs 39.66 kg), WC (68.75 vs 65.56 cm), and BMI (19.61 vs 18.17 kg/m²), were higher among those who had an EF of ≤3 compared to students with an EF ≥ 6 (all <i>P</i> values < 0.001). The likelihood of being abdominally obese was higher among boys who had an EF ≤ 3 (22.01%) compared with their counterparts with an EF ≥ 6 (18.30%) (<i>P</i> = 0.030). A significant association was observed between EF and obesity; students who reported an EF of 4 (OR: 0.67; CI: 0.57-0.79), 5 (OR: 0.74; CI: 0.62-0.87), and 6 (OR: 0.54; CI: 0.44-0.65) had a lower likelihood of being obese compared with those who had an EF ≤ 3. The odds of central obesity had a significant inverse association with EF; having an EF of 4 (OR: 0.82; CI: 0.71-0.94), 5 (OR: 0.73; CI: 0.63-0.85) decreased the OR of abdominal adiposity.
Marlatt et al, 2016, USA ⁹³	Cross-sectional	367 adolescents aged 11-18 y	Breakfast consumption assessed with a self-reported validated question- naire including average number of days/week that breakfast was consumed.	BMI percentiles according to CDC growth charts, body composition through bioelectrical impedance	Breakfast consumption was significantly associated with lower BMI and body fat ($P < 0.05$).
Murakami and Livingstone, 2016, United Kingdom ⁹⁴	Cross-sectional	4346 children aged 6–11 y and 6338 adolescents aged 12–19 y participat- ing in the NHANES 2003– 2012	EF, MF, and SF assessed with two 24- h dietary recalls. Eating occasions were defined as any occasion when any food or drink was consumed.	BMI percentiles according to CDC growth charts; WC and WC percen- tiles according to NHANES III to assess abdominal obesity	Higher SF and EF, but not MF, were associated with higher risks of over- weight and abdominal obesity in children, whereas associations varied in adolescents, depending on the definition of meals and snacks.
					(continued)

Table 4 Continued						
Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results	
Murakami and Livingstone, 2016, United Kingdom ⁹⁵	Cross-sectional	818 children aged 4–10 y and 818 adolescents aged 11–18 y in the National Diet and Nutrition Survey (NDNS)	Eating occasions assessed with 7-d weighed dietary record. Definition of meals or snacks on the basis of contribution to energy intake (≥15% or <15%) or clock time	National growth charts (UK): BMI <i>z</i> scores; WC and WHtR for subjects >11 y	All measures of MF and SF showed no association with adiposity measures.	
Traub et al, 2018, Germany ¹⁰⁵	Cohort	1733 children aged 7.08 \pm 0.6 y	Skipping breakfast assessed with a self-administered validated ques- tionnaire of the German KiGGS sur- vey. Breakfast consumption assessed on a 4-point Likert scale (answers dichotomized as "Never and rarely" versus "often and always").	National growth charts (German): BMI percentiles; WHtR	Skipping breakfast led to increased changes in WHtR ($P = 0.007$), weight ($P < 0.001$) and BMI measures ($P = 0.027$).	
Cayres et al, 2018, Brazil ¹⁰⁶	Longitudinal popu- lation-based cohort	86 adolescents aged 11–14 y	Breakfast intake assessed with face- to-face interviews conducted at the baseline and the follow-up time points, accounting for the number of days with breakfast consumption in a typical week (variable ranging from zero to 7 d)	BMI; percentage whole BF and TF were estimated using a densitome- try scanner	 At baseline, adolescents who consumed breakfast regularly presented with lower BMI (P = 0.032), TF (P = 0.019), and BF (P = 0.012) than their counterparts. After 12 mo of follow-up, TF (3.5%; 95% CI: 6.9-0.2) and BF (2.3%; 95% CI: 3.9-0.7) of adolescents who had consumed breakfast regularly decreased more than adolescents who did not. Adolescents stratified as non-skipping breakfast demonstrated an inverse relationship with absolute changes in BF (r = -0.274; 95% CI: 0.498-0.051); however, this relationship was not mediated by physical activity 	
Sila et al, 2019, Croatia ⁹⁶	Cross-sectional	802 adolescents aged 15-16 y	Breakfast consumption assessed with a multi-pass 24-h recall (5 steps) asking about breakfast consump- tion (defined as the intake of foods or beverages before 10:00, contain- ing a minimum of 250 kcal) and number of eating occasions	BMI; OW/OB classification: IOTF cutoff criteria for BMI values; skinfolds tri- cipital, bicipital, subscapular, supra- iliac; assessment of the the sum of 4 skinfolds (S4SF)	 Participants who consumed breakfast had significantly lower body fat % (<i>P</i> = 0.011 for boys; <i>P</i> < 0.001 for girls) compared with breakfast nonconsumers. Breakfast consumption was negatively associated with adiposity only in the boys at the highest tertile of physical activity (<i>P</i> = 0.04). 	

(continued)

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
Wadoloska et al, 2019, Poland ²⁶	Cross-sectional	1566 adolescents aged 11–13 y	Meal frequency, breakfast consump- tion (number of days/week), and school meal consumption (number of days/week) assessed with a questionnaire; breakfast skipping classified as 4–7 times/wk (frequent skipping), 1–3 times/week (skip- ping a few times a week), and 0 times/week (never skipping; ie, every day consumption); school meal skipping classified as 3-5 times/wk (frequent skipping), 1–2 times/week (skipping a few times a week), and 0 times/week (never skipping; ie, every school day consumption)	WC; WHtR; OW/OB classification: IOTF cutoff criteria for BMI values; BMI- for-age >25 kg/m ² as a general adiposity marker; WHtR >0.5 as a central adiposity marker	 Frequent breakfast skippers were more likely to be overweight/obese (OR: 1.89; 95% Cl: 1.38-2.58) and centrally obese (OR: 1.63; 95% Cl: 1.09-2.44), while less likely to fall in the thinness category (OR: 0.52; 95% Cl: 0.29-0.94), in comparison to never-skippers. Breakfast skippers and school-meal skippers a few times a week were more likely to be overweight/obese (OR: 1.37; 95% Cl: 1.06-1.78) in comparison to never skippers.
Suhadi et al, 2020, Indonesia ⁹⁷	Cross-sectional	768 adolescents aged 14-18 y	Eating behaviors assessed with a fre- quency of meals (\leq 3 or >3 times/ d), daily breakfast (always/frequent and rare/never), frequency of snacks (\leq 3 and >3 times/d) col- lected from a face-to-face written interview	BMI percentiles according to CDC growth charts; WC	 Subjects who consumed breakfast tended to have lower BMI (<i>P</i> = 0.006). Female subjects with routine breakfast had better BMI (<i>P</i> < 0.001) and lower WC (<i>P</i> = 0.02). Snack frequency did not affect the cardiometabolic risk parameters (<i>P</i> > 0.05).
Jeans et al, 2020, USA ⁹⁸	Cross-sectional	671 low-income, Hispanic school- children aged 9 y	Breakfast consumption assessed through two 24-h dietary recalls. Subjects were classified as (1) "skippers," having no breakfast EO on either recall day; (2) "intermittent," having a breakfast EO on only 1 recall day; and (3) "regular," having a breakfast EO on both recall days.	BMI percentiles according to CDC growth charts; WC; total body fat (%) assessed with bioelectrical impedance	There were no significant relationships between breakfast consumption groups and adiposity.
Martínez-Lozano et al, 2020, Spain ⁹⁹	Cross-sectional	397 schoolchildren and adolescents aged 8-12 y from the Obesity, Nutrigenetics, Timing, and Mediterranean Junior study	Late eating assessed with a 7-d diet- ary record including food timing, completed daily by children with their parents' help. Children were divided into early-dinner eaters (EDE) and late-dinner eaters (LDE) according to the median of the din- ner time, 21:07. An age-appropriate Spanish version of the Munich Chronotype Questionnaire (MCTQ) was used to define the chronotype.	BMI <i>z</i> score according to WHO growth reference data; WC; total body fat assessed with bioelectrical impedance	 Late dinner eaters (LDE) had higher BMI and WC than EDE and accounted for a higher proportion of overweight/ obese children than early eaters (<i>P</i> < 0.05) (OR = 2.1; 95%CI: 1.33-3.31). Associations between LDE and BMI remained significant when adjusted for objective sleep duration (<i>P</i> = 0.019) and the same trend was obtained when adjusted for time in bed (<i>P</i> = 0.055).
					(continued)

Table 4 Continue	d Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
			·		 When standardizing by sex, these associations remained significant only in girls. No significant associations were found between intraindividual variation variables (of dinner timing and midpoint of food intake) and BMI <i>z</i> scores.
de Souza et al, 2021, Brazil ¹⁰⁰	Cross-sectional	36 956 adolescents aged 12-17 y	Skipping breakfast assessed with a self-administered questionnaire reporting usual breakfast consump- tion ("I don't have breakfast," "I have breakfast sometimes/almost every day/every day"). Breakfast skipping considered as "I don't have breakfast," "I have breakfast sometimes/almost every day."	 BMI z score according to WHO growth reference data; excess body weight classified as: BMI z score ≥1 WC ≥90th percentile for 12-16 y or ≥90 cm for boys and ≥80 cm for girls ≥16 y old 	A higher prevalence of excess body weight (PR = 1.30; 95% CI: 1.18–1.43) and central obesity, both considering WC (PR = 1.27; 95% CI: 1.01–1.61) and WHtR (PR = 1.32; 95% CI: 1.13- 1.54), was found in adolescents who skipped breakfast.
Martínez-Lozano et al, 2021, Spain ¹⁰¹	Cross-sectional	432 children and adolescents aged 8-12 y	Individual chronotype assessed by Cosinor's analysis as an objective biomarker of the individual chrono- type. An age-appropriate Spanish version of the Munich Chronotype Ouestionnaire (MCTO) was used to	BMI absolute value; WC	 Evening-types had a significantly higher BMI. A delay of 1 h in the chronotype was related to a 0.56 increase in BMI (<i>P</i> = 0.036).

with a 7-d dietary record. *Abbreviations*: BF, body fat; BMI, body mass index; CDC, Centers for Disease Control and Prevention; CI, confidence interval; EF, eating frequency; EO, eating occasion; FFQ, food-frequency questionnaire; IAAT, intra-abdominal adipose tissue; IOTF, International Obesity Task Force; KiGGS survey, German Health Interview and Examination Survey for Children and Adolescents; MetS, metabolic syndrome; MF, meal frequency; NHANES, National Health and Nutrition Examination Survey; OR, odds ratio; OW/OB, overweight/obesity; PR, prevalence ratio; RTE, ready-toeat; SAAT, subcutaneous abdominal adipose tissue; SF, snack frequency; TF, trunk fat; WC, waist circumference; WHO, World Health Organization; WHtR, waist:height ratio.

subjectively determine individual chronotype; food timing assessed

Figure 3 Meta-analyses of (A) the relationship between breakfast consumption (non-daily breakfast consumers $\leq 6 \, d/wk$ vs daily breakfast consumers 7 d/wk) and overweight/obesity (8 unique studies); (B) the relationship between breakfast consumption (non-daily breakfast consumers $\leq 6 \, d/wk$ vs daily breakfast consumers 7 d/wk) and overweight/obesity (sensitivity analysis, 6 unique studies); (C) the relationship between breakfast consumption (irregular consumption, defined as 0 to 3 times/wk, vs regular consumption, defined as 5 to 7 times/wk), and abdominal obesity (3 unique studies); and (D) the relationship between meal frequency ($\geq 4 \, times/d \, vs \leq 3 \, times/d$) and overweight/obesity (7 unique studies). Abbreviations: Cl, confidence interval; OR, odds ratio

OW/OB for regular frequency of meals (defined as ≥ 4 times/d) vs a low number of meals (≤ 3 times/d). The pooled OR was 0.83 (95% CI, 0.70–0.97), and yielded low heterogeneity ($I^2 = 29\%$, P > 0.38) (Fig. $3D^{25,52,54,57,67,76,92}$). These results demonstrated that children with higher meal frequency have a lower risk of OW/OB, compared with those with a low meal frequency. According to the GRADE system, the certainty of the evidence was very low.

Conflicting data have emerged regarding the association between snacking frequency and obesity, which was evaluated in 8 studies.^{25,61,62,68,77,84,94,103} There is no consensus on the definition of "snack"; some referred to a snack as any food or drink outside of the 3 main meals.⁷⁷ Using this definition, after longitudinal analysis, it was observed that, in normal-weight children, snacking was not associated with changes over time in WHO BMI *z* score. However, in underweight children, snacking was associated with increases in BMI *z* score (+1.2 and +1.1 BMI *z*-score units for ages 2–6 and 7–13, respectively; *P* < 0.05), while, in overweight children, snacking was associated with larger declines in BMI *z* score (P < 0.05). Similarly, Vilela et al,⁶⁸ using the same definition of snack, showed that having fewer than 3 snacks per day was positively associated with being overweight/obese according to WHO criteria (OR = 1.98; 95% CI, 1.00–3.90), compared with having 3 or more snacks per day. The authors concluded that a higher eating frequency, maintaining the same energy intake, seems to contribute to a healthy body weight in children.

Kachurak et al⁶¹ used 2 main definitions of snacking: (1) occasions identified by the caregiver as a snack and (2) snack occasions plus all other food/beverage consumption between meals. Independently from the definition used, the authors observed that snacking frequency and weight status (according to WHO criteria) were positively associated among US children younger than 2 years old. Snacking more frequently than recommendations (2 small snacks according to the American Academy of Pediatrics) was significantly associated with increased odds of OW/OB among children younger than 2 years but not in children aged 2 to 5 years. Keast et al⁸⁴ showed that the prevalence of OW/OB (according to BMI) and of abdominal obesity (assessed as WC) decreased with increased snacking frequency and with increased percentage of energy from snacks. In particular, a decrease in the OR of abdominal obesity in the "24 snacks/day" group compared with snack consumers who ate 2 snacks per day (OR = 0.36; 95% CI, 0.21–0.63 vs OR = 0.61; 95% CI, 0.43–0.86) proved that they were less likely than non-snackers to have abdominal obesity. However, the quality of snacks provided to children may be crucial in influencing body weight status. Notably, Charvet et al⁶² assigned snack foods to different snack quality scores (from nutrientpoor snacks to nutritious snack items). They showed a nonsignificant trend in which the under/normal-weight children had a higher frequency of intake of the more nutritious snack items when compared with the overweight/obese children (P = 0.090). Similarly, in the study of Shroff et al,¹⁰³ the snacking pattern was characterized by intakes of high-energy, low-nutrient-dense foods (especially soda intake). Children in the highest quartile of snack consumption showed a greater BMI gain and a higher increase in truncal adiposity per year (assessed as subscapular to triceps skinfold thickness ratio) compared with children in the lowest quartile (Ptrend < 0.05).¹⁰³ Overall, the synthesis of results into a meta-analysis was not possible due to inconsistent exposures (see Tables S6 and S7 in the Supporting Information online).

Food timing and overweight/obesity. Only 6 studies assessed the relationship between OW/OB risk and food timing.^{51,58,78,81,99,101} Eng et al⁵¹ examined the timing of energy intake and body weight status according to the CDC BMI-for-age growth charts among 2– 18-year-old US children. The authors concluded that the proportion of total daily energy consumed in the latter part of the day was positively associated with being classified as overweight in the 6–11-year-olds, but negatively in the overweight 12–18-year-olds. These results could be explained by differences in eating frequencies (meals and snacking) and different dietary habits between the 2 groups.

To confirm this association, a recent prospective cohort study evaluated the effect of time-of-day energy and macronutrient intake at 4 years of age on the weight status at 7 years of age being defined as obese/overweight according to WHO *z* scores.⁸¹ At 4 years of age, the patterns "Mid-afternoon," characterized by high loadings of energy intakes in the mid-afternoon (OR = 1.18; 95% CI, 1.05–1.34), and "Lunch&Evening," defined as higher energy intake at lunch and supper but lower energy intake at dinner (OR = 1.19; 95% CI, 1.05–1.34), were associated with a higher odds of being overweight/obese at 7 years. Interestingly, circadian

feeding patterns exert an impact on BMI status from early life, as reported in the longitudinal study on singletons from 12 to 24 months of age. The authors showed that predominantly night-time feeding was associated with a higher BMI z-score gain (WHO Child Growth Standards) from 12 to 24 months of age compared with predominantly day-time feeding (P = 0.006), with an increased risk also of becoming overweight at 24 months of age (aOR, 2.78; 95% CI, 1.11–6.97).⁷⁸ Two studies classified children into 2 different chronotypes (evening types and morning types) on the basis of collection of actigraphy rhythms and administration of the Munich chronotype questionnaire.^{99,101} Interestingly, a delay of 1 hour in chronotype was related to a 0.56 increase in BMI (P = 0.036), which may be explained by several obesogenic behaviors, including insufficient sleep, less physical activity during the day, and late eating.¹⁰¹ Moreover, children aged 8-12 years identified as late dinner eaters according to dinner timing showed significantly higher BMI z score (WHO growth charts), WC, and inflammatory markers, such as interleukin 6 (IL-6; 1.6-fold) and C-reactive protein (CRP; 1.4-fold), than early dinner eaters.⁹⁹ Overall, the subsets of studies focusing on meal timing were too few and heterogeneous to conduct a meta-analysis (see Tables S6 and S7 in the Supporting Information online).

Association between chrononutrition and glucose metabolism

The association between chrononutrition and glucose metabolism was evaluated in 13 studies, 3 of which were considered as not having acceptable quality to be included in this systematic review.^{40,47,107} This collection includes 9 cross-sectional studies^{83,86–88,93,98,100,101,108} and 1 cohort study¹⁰⁹ (Table 5^{83,86–88,93,98,100,101,108,109}).

With regard to the exposure variable, breakfast and/or skipping breakfast habits were assessed in 7 studies,^{83,87,88,93,98,100,109} the frequency of meals and/or snack consumption was evaluated in 2 studies,^{86,108} while only 1 study analyzed chronotype and timing of food intake.¹⁰¹

Half of the studies collected data from large cohorts of school-aged children and adolescents,^{83,88, 98,99,109} while 5 studies focused on the subgroup of adolescents.^{86,87,93,100,108}

Glucose metabolism was evaluated mainly by fasting blood samples; however, the collection of blood samples without fasting was considered a confounder and negatively affected the quality assessment.¹⁰¹ All studies evaluated glycemia as the main outcome,^{83,86–88,93,98,100,101,108,109} 4 studies analyzed glycated hemoglobin (HbA1c),^{88,98,100,109} and 8 studies evaluated insulin concentration.^{83,88,93,98,100,101,108,109} In addition, the HOMA index was evaluated in 4

Population Reference Study design Exposure variable and assessment Outcome and methods Main results 6559 children and adoles-Smith et al, Longitudinal • Skipping breakfast assessed in Fasting blood samples (glucose • Participants who skip breakfast and insulin concentrations). 2010, cents 9-15 v old and childhood by self-questionnaire, in both childhood and adultcross-sectional Australia⁸³ 2184 adults at the follow and in adulthood by a meal pat-Calculation of HOMA index as hood have a significantly higher up (26-36 y of age) terns chart, an FFQ, and a food-[fasting insulin/6.945] \times [fasting fasting insulin (mean difference: $alucose/22.51^{110}$ 2.02 mU/L: 95% CI: 0.75, 3.29 habits questionnaire Classification in 4 groups: mU/L) and HOMA index (mean skipped breakfast in neither difference: 0.47 mU/L; 95% CI: childhood nor adulthood, 0.16, 0.79 mU/L) than those skipped breakfast only in childwho eat breakfast at both time hood, skipped breakfast only in points. adulthood, and skipped break- Fasting glucose is slightly fast in both childhood and higher in those who skip breakadulthood fast in adulthood than in those who eat breakfast. The difference was only statistically significant in those who skipped breakfast only in adulthood. Sesè et al, Cross-sectional 826 adolescents aged 13-Evaluation of the frequency of Calculation of HOMA index as • "Skipping breakfast often" is snacks and meals by means of [fasting insulin/6.945] \times [fasting associated with a higher HOMA 2012, 16 y Spain¹⁰⁸ the Frequency Choice alucose/22.5¹¹⁰ index in males "moderately Questionnaire (FCQ), which agreeing" (P < 0.05) than those includes time of snack conwho are "strongly disagreeing." • "Snack events regularly sumption (eq, in the morning, in the afternoon, after school), throughout the weekend day" is frequency of consumption associated with a higher HOMA (never, sometimes, and often) index (P < 0.05) in females. • HOMA index is higher (P < 0.01) in females who "do not eat regularly a snack in the morning on school day." No significant difference in fast-Jääskeläinen et Cross-sectional 6247 adolescents aged 16 y Meal frequencies and breakfast Fasting blood samples (glucose consumption assessed by ing blood sugar was found al, 2012, old concentration) Finland⁸⁶ means of 5-item self-adminisbetween the groups. tered guestionnaires using the question "Do you usually have the following meals (breakfast, lunch, snack, dinner, evening snack) on weekdays?" (ves/no). Groups were categorized as follows: 5 meals/d including breakfast (regular meal pattern), <4 meals/d including breakfast (semi-regular meal pattern), and

26

(continued)

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
Shafiee et al, 2013, Iran ⁸⁷	Cross-sectional	5625 adolescents aged 10- 18 y	≤4 meals/d not including breakfast (breakfast skippers). Frequency of consumption of breakfast into 3 categories: "regular breakfast eater" (6-7 d/ wk), "often breakfast eater" (3-5 d/wk), and "seldom breakfast eater" (0-2 d/wk). Data collected from the third survey of the CASPIAN-V study (2009-2010)	Fasting blood samples (glucose concentration)	No significant difference in fast- ing blood sugar was found among the breakfast con- sumption groups.
Donin et al, 2014, United Kingdom ⁸⁸	Cross-sectional	4116 children and adoles- cents aged 9-10 y	Breakfast consumption assessed by means of self-administered questionnaire. Groups of break- fast consumption: breakfast daily, most days, some days, and not usually.	Fasting blood samples (glucose, insulin and HbA1c concentrations)	Children who do not usually eat breakfast have higher fasting insulin, insulin resistance (HOMA index), and glucose ($P < 0.0001$) as well as HbA1c ($P = 0.001$) than those who have breakfast daily. These values persist even after adjustment for adiposity.
Marlatt et al, 2015, USA ⁹³	Cross-sectional	367 adolescents aged 11- 18 y	Breakfast assessed by means of self-reported validated ques- tionnaire, expressed as average number of days/weeks that breakfast was consumed.	Fasting blood samples (glucose and insulin concentrations); cal- culation of HOMA index as [fast- ing insulin/6.945] × [fasting glucose/22.5] ¹¹⁰	More frequent breakfast con- sumption was significantly associated with lower insulin, HOMA-IR, and MetS cluster score (P < 0.05).
Martínez- Lozano et al, 2020, Spain ¹⁰¹	Cross-sectional	432 adolescents 8–12 y	Chronotype assessed objectively by actigraphy (recording 7-d rhythms of wrist temperature– physical activity–body position [TAP]) and subjectively (Munich- chronotype self-reported ques- tionnaire). Food timing was col- lected by means of 7-d food diaries.	Collection of saliva samples (glu- cose and insulin concentrations)	 Evening-type children had increased physical activity in the evening, higher body tempera- ture during the day, which sug- gests an increase in sleepiness, less depth of sleep, lower day- night contrast and more irregu- lar habits. Evening-type was associated with higher metabolic risk markers such as glucose and insulin levels (<i>P</i> < 0.05).
Jeans et al, 2020, USA ⁹⁸	Cross-sectional	671 students (mean age: 9 y)	Breakfast consumption, assessed via two 24-h dietary recalls. Breakfast consumption groups defined as (1) skippers, having no breakfast on both recalls; (2) intermittent, having a breakfast	Fasting blood samples (glucose, insulin, and HbA1c concentrations)	There were no significant rela- tionships between breakfast consumption groups and met- abolic parameters.

27

(continued)

Table 5 Continue	able 5 Continued					
Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results	
de Souza et al, 2021, Brazil ¹⁰⁰	Cross-sectional	36956 adolescents aged 12-17 y	only on one; and (3) regular, having a breakfast on both. Skipping breakfast assessed by means of self-administered questionnaire. Breakfast skip- ping estimated from the combi- nation of the categories: "I don't have breakfast," "I have break- fast sometimes," and "I have breakfast almost every day."	Fasting blood samples (glucose, insulin, and HbA1c concentrations)	Breakfast skippers, ranging from having no breakfast to having breakfast almost every day, have significantly higher HbA1c ($P = 0.012$) and insulin levels ($P < 0.001$) than those who consume breakfast every day. In addition, glucose level is higher ($P = 0.062$) among breakfast skippers than break- fast consumers.	
Jeans et al, 2022, USA ¹⁰⁹	Longitudinal study (secon- dary analysis from an RCT)	1417 children and adoles- cents aged 7-12 y	Breakfast consumption through a validated survey at baseline and post-intervention. To the question "How many school days a week do you usually eat breakfast?," the subjects answered: 0-5 ($0 = none$, $1 = 1$ school day, $2 = 2$ school days, $3 = 3$ school days, $4 = 4$ school days, $5 = 5$ school days). To the question "How many weekend days each week do you typically eat breakfast?," the subjects answered: $0-2$ ($0 = none$, $1 = 1$ weekend day, $2 = 2$ weekend	Fasting blood samples (glucose, insulin, and HbA1c concentra- tions); calculation of HOMA index as: fasting glucose in mmol/L × fasting insulin in μU/ mL/22.5 ¹¹⁰	• Breakfast increasers (those who increased $\geq +2 \text{ d/wk}$ the num- ber of breakfast occasions) had lower fasting insulin ($P = 0.01$) and HOMA index ($P = 0.006$) than breakfast decreasers (those who reduced breakfast $\leq -2 \text{ d/}$ wk) • Moreover, for every 1-d increase in breakfast consumption, there was a decrease in fasting insulin ($\beta = -0.44$; $P = 0.003$), HOMA index ($\beta = -0.11$; $P = 0.002$) and HbA1c ($\beta = -0.01$; 0.003).	

days).

Abbreviations: CASPIAN-V Study, Child and Adolescent Surveillance and Prevention of Adult Non-communicable diseases Study; CI, confidence interval; FFQ, food-frequency questionnaire; HbA1c, glycated hemoglobin; HOMA/HOMA-IR, homeostasis model assessment of insulin resistance; RCT, randomized controlled trial.

studies,^{83,93,108,109} using the formula reported in the literature.¹¹⁰

With regard to breakfast consumption, all of the studies reported associations between at least 1 marker of glycemic control (glucose and/or HbA1c) and breakfast habits,^{88,100,109} with the exception of 2 studies.^{83,93} In addition, regular breakfast consumption was associated with lower insulin resistance, both in terms of reduced insulin concentration and/or HOMA index.^{83,88,93,100,109} Particularly in the longitudinal study of Jeans et al,¹⁰⁹ the impact of breakfast frequency was evaluated among children aged 7-12 years. Children who increased the number of breakfast occasions $(\geq +2 d/wk)$ had lower fasting insulin (P=0.01) and HOMA-IR (P = 0.006) than breakfast decreasers (those who reduced breakfast to < -2 d/wk). Moreover, every 1-day increase in breakfast consumption decreased fasting insulin by 0.44 μ IU/mL, HOMA-IR by 0.11, and HbA1c by 0.01% ($P \le 0.03$).

Only 1 study evaluated the impact of meal frequency on glucose metabolism, and no significant differences were found by comparing different meal patterns (5 meals vs \leq 4 meals/d with or without breakfast).⁸⁶ Conflicting results have been reported regarding snack consumption. Sesé et al¹⁰⁸ found a higher HOMA index both among females eating regular snacks throughout the weekend days (P < 0.05) and among females not regularly eating a snack in the morning on school days (P < 0.001). However, the authors did not define the type of snack consumed to allow for conclusions.

Chronotype and food timing were only evaluated by Martínez-Lozano et al,¹⁰¹ as already reported. Children were divided into morning types and evening types; interestingly, evening-type features included increased physical activity in the evening and higher body temperature during the day, which suggests an increase in sleepiness, less deep sleep, lower day–night contrast, and more irregular habits. Evening-type eating was associated with higher glucose and insulin in saliva samples.

Association between chrononutrition and lipid markers and cardiovascular disease risk

The association between chrononutrition and lipid markers or CVD risk was assessed originally in 17 studies, 4 of which were considered as not having acceptable quality to be included in this systematic review.^{40,46,47,107} The final 13 articles comprised only those with a cross-sectional design,^{59,83,86–89,91,93,98,100,101,111} apart from 1 prospective study¹⁰⁴ (Table 6^{59,83,86–89,91,93,98,100,101,104,111}). With regard to the exposure variable, 7 studies assessed as the main outcome breakfast

habits and/or skipping breakfast,^{83,87,88,93,98,100,104} 6 studies evaluated meal frequencies or eating occasions,^{59,86,89,91,101,111} while only 1 study assessed chronotype and food timing.¹⁰¹ The majority of studies collected data from large cohorts of both school-aged children and adolescents, whereas evidence on preschool-age children (3-to-5 year-old children) was reported only in 1 study.¹¹¹ Five articles focused on the subgroup of adolescents.^{86,91,93,100,104} CVD risk was assessed principally by means of fasting blood samples (HDL cholesterol, TC, TGs, and indirect assessment of LDL cholesterol); in addition, 1 study evaluated apolipoprotein A1 and B.¹¹¹ The collection of blood samples without fasting was considered as a confounder and negatively affected the quality assessment.^{101,111} Last, CVD risk profile was investigated by means of heterogeneous MetS scores, such as the International Diabetes Federation consensus definition,^{86,104} Adult Treatment Panel III criteria modified for the pediatric age group,^{87,93} or according to other previous literature.⁸³

With regard to breakfast consumption, all studies reported an association between at least 1 lipid marker (TC, TGs, or LDL cholesterol) and breakfast habits, with the exception of Jeans et al.⁹⁸ Conflicting results were reported for HDL-cholesterol levels.^{87,88,93,98,104} In some cases, breakfast skipping showed a positive association with MetS scores.^{83,87,93,104} Shafiee et al⁸⁷ showed that "seldom breakfast eaters" had a significantly higher risk of MetS (OR, 1.96; 95% CI, 1.18- 3.27); in line with these finding, Marlatt et al⁹³ reported that more frequent breakfast consumption was associated with lower MetS cluster score (P < 0.05). Interestingly, in the prospective study of Wennberg et al,¹⁰⁴ poor breakfast habits at age 16 years were associated with higher odds of MetS at age 43 years (aOR = 1.68; 95% CI, 1.01-2.78). In the longitudinal cross-sectional study of Smith et al,⁸³ breakfast skippers at both time points (childhood and adulthood) had significantly higher TGs, TC, LDL cholesterol, and MetS scores than those who ate breakfast at both time points.

There was no consensus on the definition of regular number of eating occasions or meals. Jääskeläinen et al⁸⁶ considered a regular meal pattern to be 5 meals per day, and the latter was associated with a reduced risk of hypertriglyceridemia (aOR, 0.48; 95% CI, 0.26– 0.89) and low HDL cholesterol (OR, 0.65; 95% CI, 0.47– 0.90) among boys. According to Murakami et al,^{89,91} the number of eating occasions was inversely associated with TC and LDL cholesterol in children (4–10 years) but not in adolescents, while Silva et al⁵⁹ found the pattern "<4 meals" to be associated with a higher prevalence of increased LDL cholesterol among both children aged 5 to 9 years (prevalence ratio = 1.48; 95% CI, 1.02– 2.13; P = 0.037) and adolescents aged 10 to 14 years

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
Smith et al, 2010, Australia ⁸³	Longitudinal cross-sectional	6559 children and adoles- cents 9-15 y old and 2184 adults at the follow up (26-36 y of age)	 Skipping breakfast assessed in childhood by self-questionnaire, and in adulthood by a meal pat- terns chart, an FFQ, and a food- habits questionnaire. Classification in 4 groups: skipped breakfast in neither childhood nor adulthood, skipped break- fast only in childhood, skipped breakfast only in adulthood, and skipped breakfast in both childhood and adulthood. 	 Fasting blood samples (HDL, TC, TG, and indirect assessment of LDL) A continuous MetS score was created by using a previous method described in literature¹¹² 	 Participants who skipped breakfast at both time points had significantly higher TG, TC, LDL, and MetS scores than did those who ate breakfast at both time points No differences were observed between those who skipped breakfast only in childhood and those who ate breakfast at both time points A higher proportion of participants who skipped breakfast at both time points were classified as having high LDL cholesterol (neither, 7.5%; child only, 5.8%; as an adult, 8.6%; both, 18.3%; P = 0.037)
Jääskeläinen et al, 2012, Finland ⁸⁶	Cross-sectional	6247 adolescents 16 y old	Meal frequencies and breakfast consumption assessed by means of 5-item self-adminis- tered questionnaires using the question "Do you usually have the following meals (breakfast, lunch, snack, dinner, evening snack) on weekdays?" (yes/no). Groups were categorised as fol- lows: 5 meals/d including break- fast (regular meal pattern), ≤4 meals/d including breakfast (semi-regular meal pattern), and ≤4 meals/d not including breakfast (breakfast skippers)	 Fasting blood samples (HDL, LDL, TC, TG) MetS defined according to pediatric definition of the International Diabetes Federation (IDF) 	 Five-meal-a-day pattern was associated with reduced risk of hypertriglyceridemia (adjusted OR: 0.48; 95% CI: 0.26, 0.89) and low HDL (OR: 0.65; 95% CI: 0.47, 0.90) among boys compared with "breakfast skippers" pattern Meal skipping combined with regular breakfast was associated with lower risks of hypertriglyceridemia (OR: 0.53; 95% CI: 0.31, 0.90) among boys compared with the "breakfast skippers" pattern
Persaud et al, 2013, Canada ¹¹¹	Cross-sectional	1856 children aged 3–5 y	Number of meals assessed by means of subscales of the NutriSTEP questionnaire. Responses range in score from 0 (no risk) to 4 (risk), an increased score indicates increased nutri- tion risk.	Blood samples (lipid profile apolipoproteins A1 and B)	 Eating behaviors subscore was significantly associated with non-HDL (P = 0.03) For each unit increase in the eating behavior subscore there is an increase of 0.02 mmol/L in non-HDL (95% Cl: 0.002 to 0.05) Eating behaviors subscore was significantly associated with LDL (β = 0.02; 95% Cl: 0.002-0.05)

(continued)

Table 6 Continue	d				
Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
Shafiee et al, 2013, Iran ⁸⁷	Cross-sectional	5625 children aged 10-18 y	Frequency of consumption of breakfast into 3 categories: "regular breakfast eater" (6-7 d/ wk), "often breakfast eater" (3-5 d/wk), and "seldom breakfast eater" (0-2 d/wk). Data collected from the third survey of the CASPIAN-V study (2009-2010).	 Fasting blood samples (HDL, LDL, TC, TG) MetS defined as ≥3 of the Adult Treatment Panel III criteria modified for the pediatric age group 	and apolipoprotein B ($\beta = 0.01$; 95% CI: 0.002-0.01) • TG and LDL were significantly higher and HDL was significantly lower in the "seldom breakfast eater" group than in the "usual breakfast eater" group (<i>P</i> for trend < 0.05) • "Seldom breakfast eater" had the highest prevalence of subjects with elevated TG (9.8%; $P = 0.02$) and elevated LDL (7.7%; $P = 0.02$) vs the other 2 groups
Donin et al, 2014, United Kingdom ⁸⁸	Cross-sectional	4116 schoolchildren aged 9-10 y	Breakfast consumption assessed by means of self-administered questionnaire. Groups of break- fast consumption: breakfast daily, most days, some days, and not usually.	Fasting blood samples (HDL, TC, TG, and indirect assessment of LDL)	 Seldom breakfast eaters were significantly more likely to present MetS than those having breakfast (<i>P</i> = 0.05) "Seldom breakfast eaters" had a significantly higher risk of elevated TG (OR: 1.41; 95% Cl: 1.03-1.93) and MetS (OR: 1.96; 95% Cl: 1.18-3.27) TG and C-reactive protein were all lower and HDL higher among children who reported eating breakfast every day and showed evidence of graded and statistically significant associations across the breakfast frequency groups (also after adjustments). After adjustment for adiposity (third model with sum of skinfolds and fat mass
Murakami and Livingstone, 2014, United Kingdom ⁸⁹	Cross-sectional	818 children and adoles- cents aged 4-18 y	Eating frequencies assessed by means of 7-d weighed dietary record	 Anthropometric parameters including WHtR Fasting blood samples (HDL, TC, TG, and indirect assessment of LDL) 	 index), they were no longer statistically significant. Blood lipids showed no difference across the different breakfast contents. EF was inversely associated with TC (<i>P</i> < 0.01) and LDL (<i>P</i> < 0.04) in children (4–10 y)

3

(continued)

	Downloaded from http
nd s-	ps://acader
el so-	nic.oup.cor
er d en-	n/nutritionre
nts.	eview
ner ed	s/advanc
je	e-article/doi/1
3 y	0.1093/nutrit/n
J-	uad1;
del 2-	22/7379733 k
;	iy Uni
50- r	versità d
	i Chieti u
th	ser on 2
ed)	21 Nov
	/ember 2023

32

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
Murakami and Livingstone, 2015, United Kingdom ⁹¹	Cross-sectional	2479 both children 4-10 y old and adolescents 11- 18 y old	Eating frequencies assessed by means of 7-d weighed dietary record	 Anthropometric parameters including WHtR Fasting blood samples (HDL, TC, TG, and indirect assessment of LDL) 	 No associations between EF and metabolic risk factors in adolescents (10-18 y) In both children and adolescents, after adjustment (model 1), variability in EF was not associated with any metabolic risk factors examined. With further adjustment, larger variability in EF was associated with higher TC and LDL concentrations in children (both <i>P</i> < 0.03) but not in adolescents
Wennberg et al, 2015, Sweden ¹⁰⁴	Longitudinal population- based cohort	889 16-y-old adolescents with 27-y follow-up (43 y)	Breakfast skipping assessed by means of questionnaire ("What did you have for breakfast this morning?"). The group "Poor breakfast habits" was defined as those reporting not eating any- thing or only drinking or eating something sweet.	 Anthropometric parameters including WC Collection of blood samples (HDL, TG) MetS defined according to the International Diabetes Federation (IDF) 	 There were no associations between EF variability and othe metabolic risk factors examined in both groups. For components of MetS at age 43 y, adolescents with poor breakfast habits had a higher prevalence of high TG levels Poor breakfast habits at age 16 y were associated with higher odds of MetS at age 43 y in every model (model 3 adjusted OR = 1.68; 95% CI: 1.01, 2.78) Poor breakfast habits were significantly associated with TG levels at 43 y in the crude mode and model 1, but not in subsequent models (model 1–
Marlatt et al, 2016, USA ⁹³	Cross-sectional	367 adolescents aged 11- 18 y	Breakfast consumption (as average number of days per week) assessed by means of self- reported validated questionnaire.	 Fasting blood samples (HDL, LDL, TG) Assessment of MetS cluster score using modified Adult Treatment Panel III criteria 	 Adjusted OK = 1.85, 95% CI: 1.11, 2.99) No associations for HDL levels More frequent breakfast consumption was significantly associated with lower MetS cluster score (P < 0.05) No significant association for HDL
Silva et al, 2016, Brazil ⁵⁹	Cross-sectional	708 children and adoles- cents aged 7-14 y	Frequency of meals assessed by means of a structured question- naire. Frequency of meals	 Fasting blood samples (HDL, LDL, TC, TG) 	 In children (5-9 y) the pattern "<4 meals" was associated with a higher prevalence of
					(continued

Table 6 Continu	ed				
Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
			categorized according to the mean value as risk (<4 meals) and no risk (\geq 4 meals).	 LDL levels ≥100 mg/dL were considered as risk factors 	 increased LDL (PR = 1.48; 95% CI: 1.02-2.13; P = 0.037) Also among adolescents (10-14 y), the same pattern was directly associated with increased LDL levels (PR = 1.33; 95% CI: 1.00-1.75; P = 0.042)
Jeans et al, 2020, USA ⁹⁸	Cross-sectional	671 students (mean age: 9 y)	Breakfast consumption, assessed via two 24-h dietary recalls, categorized into different groups (BCG) defined as: (1) skippers, having no breakfast on both recalls; (2) intermittent, having a breakfast only on one; and (3) regular, having a break- fast on both.	Fasting blood samples (HDL, LDL, TC, TG)	There were no significant rela- tionships between breakfast consumption groups and met- abolic parameters
Martínez- Lozano et al, 2020, Spain ¹⁰¹	Cross-sectional	432 children and adoles- cents aged 8–12 y	Chronotype assessed objectively by actigraphy (recording 7-d rhythms of wrist temperature– physical activity–body position [TAP]) and subjectively (Munich- chronotype self-reported ques- tionnaire). Food timing of meals collected by means of 7-d food diaries.	Collection of blood samples (TC and TG)	 Evening-type children had increased physical activity in the evening, higher body tempera- ture during the day, which sug- gests an increase in sleepiness, less depth of sleep, lower day– night contrast, and more irregu- lar habits Evening-type was associated with higher metabolic risk markers such as cholesterol and TG levels (<i>P</i> < 0.05); this associa- tion persisted after adjustment Mean values of TG were signifi- cantly higher in evening-chro- notype children compared with morning-chronotype children (<i>P</i> = 0.003)
de Souza et al, 2021, Brazil ¹⁰⁰	Cross-sectional	36 956 adolescents aged 12-17 y	Skipping breakfast assessed by means of self-administered questionnaire. Breakfast skip- ping was estimated from the combination of the categories: "I don't have breakfast," "I have breakfast sometimes," and "I have breakfast almost every day."	 Anthropometric parameters including WHtR and WC Fasting blood samples (HDL, TC, TG, and indirect assessment of LDL) 	 Significant association, after adjustment, between breakfast skipping and TC Adolescents who skipped break- fast had 14% higher prevalence of high TC than those who had breakfast every day

Abbreviations: CASPIAN-V Study, Child and Adolescent Surveillance and Prevention of Adult Non-communicable diseases Study; CI, confidence interval; CVD, cardiovascular disease; EF, eating frequency; FFQ, food-frequency questionnaire; HDL, high-density-lipoprotein cholesterol; LDL, low-density-lipoprotein cholesterol; MetS, metabolic syndrome; OR, odds ratio; PR, Prevalence Ratio; TC, total cholesterol, TG, triglycerides; WC, waist circumference; WHtR, waist:height ratio.

(prevalence ratio = 1.33; 95% CI, 1.00–1.75; P = 0.042). In line with previous data, although with different categorization of eating occasions, another study reported a significant association between eating behavior and LDL cholesterol.¹¹¹

Only Martínez-Lozano et al¹⁰¹ studied the association between CVD risk and chronotype/food timing in children, as previously reported. Overall, evening-type features were associated with higher metabolic risk markers such as TC and TG levels (P < 0.05); in fact, evening-type children had higher mean TG values compared with morning-type children (P = 0.003).

Association between chrononutrition and blood pressure

The associations between chrononutrition and BP in children were originally investigated in 12 studies, but after quality assessment, 2 of them were not considered acceptable to be included in this systematic review.^{46,47} Of the 10 studies, 9 were cross-sectional^{86-90,92,93,97,98} and only 1 study was prospective¹⁰⁴ (Table 7^{86-90,92,93,} ^{97,98,104}). The majority of studies enrolled a large cohort of both school-aged children and adolescents, and 5 studies focused only on adolescents.86,87,93,97,104 With regard to the exposure variable, the main outcome investigated was breakfast consumption^{87,88,90,93,97,98,104}; however, 4 studies also evaluated meal frequency^{86,89,92,97} and 1 study also evaluated snack consumption.97

Blood pressure was measured with a manual or automated sphygmomanometer; none of the studies included 24-hour ambulatory BP monitoring to assess the outcome. Generally, 2 or 3 measures were collected, and the mean value was considered. Only a few studies defined hypertension in children using percentiles,^{86,87,90,92,97} and this was considered in the quality assessment.

With regard to breakfast consumption, 2 studies showed lower SBP levels in regular breakfast consumers (*P* for trend < 0.01 and < 0.02 in Shafiee et al⁸⁷ and Donin et al,⁸⁸ respectively) compared with breakfast skippers. Shafiee et al did not find differences in elevated BP prevalence among groups (defined as BP ≥90th percentile for age, sex, and height),⁸⁷ while in Donin et al, the evidence of higher SBP was no longer statistically significant after adjustments.⁸⁸ Jääskeläinen et al⁸⁶ and Suhadi et al⁹⁷ found a significant association between regular breakfast consumption and BP exclusively in girls. The first showed a lower risk of hypertension only in crude analysis (OR, 0.60; 95% CI, 0.37-0.96), while the association was no longer significant after adjustments. Suhadi et al found lower DBP levels among girls only (P = 0.004). The only longitudinal study reported that adolescents with poor breakfast habits at age 16 years had significantly higher BP levels at 43 years

in the crude model (OR, 1.66; 95% CI, 1.06–2.58) but not in subsequent analysis adjusted for confounders.¹⁰⁴ The other studies did not find this significant association.^{90,93,98}

With regard to meal frequency, in the study of Murakami et al,⁸⁹ eating frequency was inversely associated with DBP levels (P < 0.04) when considering the subgroup of children identified as reliable study participants. In overall analysis, there was no significant association between BP and eating frequency. By evaluating a specific number of eating occasions, Kelishadi and colleagues⁹² found that subjects with an eating frequency of 3 or fewer times per day were more likely to have higher DBP and SBP compared with those with an eating frequency of 6 or more times daily (P < 0.001), regardless of gender. Moreover, in crude analysis, lower odds of elevated BP (defined as values \geq 90th percentile for age, sex, and height) were observed among those who had a higher eating frequency (5 or >6 a day) than those with fewer eating episodes (≤ 3 a day); however, associations were no longer significant after further adjustment for covariates. On the contrary, Suhadi et al⁹⁷ did not find significant associations between meal frequency, or snack frequency, and BP in children. On the other hand, no study assessed the impact of food timing and chronotype on BP outcome.

DISCUSSION

Main findings

To our knowledge, this is the first systematic review to investigate the association between chrononutrition in children and adolescents and OW/OB or a cluster of metabolic abnormalities related to glucose and lipid metabolism, BP, or CVD risk. The results of the present review suggest that children/adolescents who do not eat breakfast daily are more likely to be overweight or obese compared with those who daily consume it. However, these results require cautious interpretation due to the high heterogeneity in meta-analysis. In addition, statistical evidence of a higher risk of abdominal obesity (defined as WHtR \geq 0.5) with irregular breakfast consumption (0 to 3 d/wk) compared with regular breakfast habits (5 to 7 d/wk) in children/adolescents was found, although these homogeneous results were drawn from a small number of studies (n = 3). More convincingly, the present review demonstrates the preventive role against OW/OB of a higher meal frequency (>4 times/d) with respect to a lower consumption of meals ($\leq 3 \text{ times/d}$). Nevertheless, considering the majority of crosssectional studies and the limited number of cohort studies, the overall certainty of the evidence was low according to the GRADE rating scale.

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
Jääskeläinen et al, 2013, Finland ⁸⁶	Cross-sectional	6247 adolescents, 16 y old	Meal frequencies and breakfast consumption assessed by means of 5-item self-adminis- tered questionnaires on meal patterns. Classified into 2 groups according to meal con- sumption: 5 meals/d including breakfast (regular meal pattern) or ≤4 meals/d (meal skipping); the latter including both regular breakfast eaters (semi-regular meal pattern) and breakfast skippers (breakfast skipping).	Blood pressure was measured using an oscillometric pressure meter and the mean of 2 subse- quent measures was taken. Elevated BP has been diagnosed with SBP ≥130 mmHg or DBP ≥85 mmHg.	 The semi-regular meal patter (ie, meal- skipping combined with regular breakfast) was associated with a lower risk of hypertension in girls (OR: 0.60; 95% CI: 0.37-0.96) compared with the "breakfast skippers" pattern In adjusted analysis for early-life factors, this finding remained significant (OR: 0.55; 95% CI: 0.33-0.93), although, in adjusted analysis for adolescents' factors, the association was no longer significant (OR: 0.65; 95% CI: 0.37-1.13)
Shafiee et al, 2013, Iran ⁸⁷	Cross-sectional	5625 adolescents aged 10- 18 y	Breakfast skipping assessed through parental questionnaire about the weekly frequency of breakfast consumed at home. Seldom breakfast eaters have breakfast ≤2 times/wk, while regular breakfast eaters have breakfast >6 times/wk.	Blood pressure was measured using sphygmomanometer 2 times and the mean of 2 subse- quent measures was consid- ered. Elevated BP—either SBP or DBP—at or above the 90th percentile for age, sex, and height.	 SBP was significantly higher in the "seldom breakfast eater" group than in the "usual breakfast eater" group (<i>P</i> for trend < 0.01) No significant difference in elevated BP prevalence among groups (<i>P</i> = 0.09)
Donin et al, 2014, United Kingdom ⁸⁸	Cross-sectional	4116 schoolchildren aged 9-10 y	Breakfast consumption assessed by means of self-administered questionnaire. Groups of break- fast consumption were break- fast daily, most days, some days, and not usually.	Blood pressure was measured twice with a professional sphygmomanometer.	 SBP was lower among children who reported eating breakfast every day (<i>P</i> for trend = 0.02), while results did not show significant differences in DBP among groups (<i>P</i> = 0.28) However, after adjustments for socioeconomic status and sum of skinfolds and fat mass index, the evidence of higher SBP among breakfast consumers was no longer statistically significant (<i>P</i> = 0.25)
Murakami and Livingstone, 2014, United Kingdom ⁸⁹	Cross-sectional	1636 children in total ($n = 818$ children aged 4-10 y and $n = 818$ ado- lescents aged 11-18 y)	Eating frequency (EF) derived from the 7-d dietary records kept by children's parents or children themselves. Eating occasions were defined as any occasion when any food or	Blood pressure was measured using the Dinamap 8100 oscillo- metric monitor 3 times. The measurement is the mean between the second and third measurements taken.	 Higher EF was not associated with all metabolic risk factors examined, including BP. In fact, associations of EF with SBP and DBP in both children and ado- lescents had P values >0.05.

Table 7 Studies included in the qualitative synthesis for outcome D, "blood pressure"

ŵ		
σ		

Table 7 Continued

Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
			drink was consumed, both in and out of home. Subjects were identified as acceptable report- ers (AR), underreporters, or overreporters of El based on their ratio of El to EER.		 In analysis in which only AR children were included (n = 636), EF was inversely associated with DBP (P < 0.04).
Wennberg et al, 2015, Sweden ¹⁰⁴	Longitudinal population- based cohort	889 16-y-old adolescents with 27-y follow-up (43 y)	Breakfast skipping at 16 y was assessed by means of a ques- tionnaire ("What did you have for breakfast this morning?"). The group "Poor breakfast hab- its" was defined as those report- ing not eating anything or only drinking or eating something sweet.	Blood pressure in 43-y-old partici- pants was measured with a standard sphygmomanometer and the average value of 2 sub- sequent measures was taken.	In separate analysis of compo- nents of metabolic syndrome, adolescents with poor break- fast habits at age of 16 y have significantly higher BP levels at 43 y in the crude model (OR: 1.66; 95% Cl: 1.06-2.58), but not in subsequent analysis adjusted for cofounders.
Ahadi et al, 2015, Iran ⁹⁰	Cross-sectional	13 486 children aged 6-18 y	Breakfast skipping assessed orally by trained interviewers. Breakfast skippers have break- fast ≤2 d/wk; semi-skippers, 3- 4 d/wk; and non-skippers, ≥5 d/ wk.	Blood pressure was measured using sphygmomanometer and the average value of 2 subse- quent measures was consid- ered. BP was categorized into 3 groups: normal pressure (<90th percentile), prehypertension (>90th percentile), and hyper- tension (>95th percentile).	 Blood pressure did not differ significantly between breakfast eaters and breakfast skippers (P = 0.1) Breakfast consumption did not affect the risk of elevated BP
Marlatt et al, 2016, USA ⁹³	Cross-sectional	367 adolescents aged 11- 18 y	Breakfast consumption assessed by means of self-reported vali- dated questionnaire, expressed as average number of days/ week that breakfast was consumed.	Seated BP was measured 3 times with a sphygmomanometer and the values averaged.	Elevated BP was not associated with breakfast consumption
Kelishadi et al, 2016, Iran ⁹²	Cross-sectional	14 880 children and adoles- cents, aged 6-18 y	Eating frequency (EF) categorized into four groups as $EF \le 3$, $EF = 4$, $EF = 5$, and $EF \ge 6$, according to parental report about the consumption fre- quency of meals and snacks.	Blood pressure was measured using a sphygmomanometer 2 times within 5 min and the average was considered as the actual value. Diagnosis of ele- vated BP in children was based on the 90th percentile of the distribution of SBP and/or DBP according to gender, age, and height.	 Subjects with EF ≤ 3 were more likely to have higher DBP and SBP compared with those who had EF ≥ 6 daily (<i>P</i> < 0.001), regardless of gender. Subjects with EF ≤ 3 were more likely to have higher DBP compared with those who had EF ≥ 6 daily (<i>P</i> < 0.001). In crude analysis, lower odds of elevated BP were observed among those who had higher EF (EF = 5/≥6) than those with
					(continued)

	9
	\geq
	\supseteq
	0
	ő
	Ð
	Q
	Ť
	9
-	Ц
	Г
-	Ħ
	b D
	0
	ົດ
	b
	d d
	Ť
	<u> </u>
	.0
	2
	5
	ö
	З
	I,
	Ľ
	t
	it:
	0
	٦r
	Ð
	<u></u>
	0
	~
	~
	9G
	<
	<u>a</u>
	5
	ŏ
	du la
	Ē
	0
	Ö
	Š
	ð
	1
	$\overline{}$
	1
	00
	ω
	'n
	5
	Ξ.
	Ę
	Ľ
	ົລ
	Q
	\rightarrow
	N
	5
	ω
	1
	9
	w
	ũ
-	σ
	\leq
	\leq
	y Un
	y Univ
	y Unive
	y Univers
	y Universitä
	y Università
	y Università di
	y Università di C
	y Università di Ch
	y Università di Chie
	y Università di Chieti
	y Università di Chieti u
	y Università di Chieti use
	y Università di Chieti user
	y Università di Chieti user o
	y Università di Chieti user on
	y Università di Chieti user on 2
	y Università di Chieti user on 21
	y Università di Chieti user on 21 N
	y Università di Chieti user on 21 Nov
	y Università di Chieti user on 21 Nove
	y Università di Chieti user on 21 Noven
	y Università di Chieti user on 21 Novemb
	y Università di Chieti user on 21 Novembe
	y Università di Chieti user on 21 November 2
	y Università di Chieti user on 21 November 20
	y Università di Chieti user on 21 November 202

Deferrerse	Cturdur al a siava	Denulation	Evenesues veriable and accordent	Outcome and mathada	
Reference	Study design	Population	Exposure variable and assessment	Outcome and methods	Main results
					fewer eating episodes (EF \leq 3) (EF = 5: OR, 0.68; 95% CI, 0.49- 0.94; EF \geq 6: OR, 0.69; 95% CI, 0.51-0.95); however, associa- tions were no longer significant after further adjustment for potential covariates.
Jeans et al, 2020, USA ⁹⁸	Cross-sectional	671 students (mean age: 9 y)	Breakfast consumption, assessed via two 24-h dietary recalls. Breakfast consumption groups (BCGs) defined as: skippers, hav- ing no breakfast on both recalls; intermittent, having a breakfast only on 1 recall; and regular, having breakfast on both recalls.	Blood pressure was measured via an automated monitor.	No significant relationship was found between BCG and BP.
Suhadi et al, 2020, Indonesia ⁹⁷	Cross-sectional	768 adolescents aged 14- 18 y old	Eating behaviors were collected from a face-to-face written interview. In particular. fre- quency of meals (≤3 or >3 times/d), breakfast consumption (always/frequent and rare/ never), and snack frequency (≤3 and >3 times/d) were assessed.	Blood pressure was measured with a professional sphygmom- anometer and heart rate was also collected. Blood pressure was considered normal (<90th percentile), prehypertension (90–<95th percentile), stage I hypertension (95th percentile to < stage II threshold), and stage II hypertension (99th percentile plus 5 mmHg). Meanwhile, SBP/ DBP was also classified by nor- mal absolute BP <120/ <80 mmHg according to the 2017 ACC/AHA hypertension guideline, and the heart rate threshold was <100 times/min.	 Female subjects with routine breakfast had lower DBP (<i>P</i> = 0.004) SBP was not significantly associated with snack or meal frequency and breakfast consumption Heart rate was not affected by snack or meal frequency or breakfast consumption

Abbreviations: ACC/AHA, American College of Cardiology/American Heart Assocation; BP, blood pressure; CI, confidence interval; DBP, diastolic blood pressure; EER, estimated energy requirement; EI, energy intake; OR, odds ratio; SBP, systolic blood pressure.

Apart from overweight and obesity parameters, it was not possible to conduct a synthesis of the results for other clusters of metabolic alterations. This systematic review shows that the current documented evidence regarding the association between chrononutrition and metabolic parameters in children and adolescents is limited and heterogeneous. Data on chrononutrition in the pediatric age group are fragmented, as no study has evaluated chrononutrition as a whole dimension comprising multiple aspects of feeding behavior (regularity of meals, frequency, and timing).

Regularity in meals: breakfast consumption

This systematic review confirms with more recent data and strengthens the evidence previously reported on breakfast consumption in the pediatric age group.^{10,113–115} Overall, irregularity in meal consumption, particularly breakfast skipping, was the dimension of chrononutrition most studied in the present review. Meta-analyses showed that non-daily breakfast consumption ($\leq 6 \, d/wk$) or irregularity in breakfast habits (consumption 0-3 times/wk) were associated with a higher risk of OW/OB or abdominal obesity (WHtR \geq 0.5) compared with daily and regular breakfast consumption, respectively. In the narrative synthesis, regular breakfast consumption was associated with glycemic control and lowering of at least 1 lipid marker (TC, TGs, LDL cholesterol). Moreover, in some studies, breakfast skipping showed a positive association with MetS scores. The positive effects were reported not only for regular breakfast habits but also in the case of changes in one's habits. For example, increasing the number of breakfast occasions was associated with lower fasting insulin and HOMA-IR values.¹⁰⁹ With regard to the association with HDL-cholesterol values and BP, results lacked consistent associations.

According to the European Society of Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN), skipping breakfast may be a useful predictor of the risk of OW/OB, even if the mechanism of excess weight may be because of a higher energy intake during the following hours in children who skipped breakfast.¹¹⁶ Skipping breakfast is associated with obesity, possibly because of its role in energy balance and dietary regulation. People who skipped breakfast experience a longer period of fasting and a modification in the release of appetite regulation hormones. According to authors, a morning meal can influence satiety and glucose-regulatory hormones-namely PYY-which, in turn, impact appetite throughout the day.^{114,117} Hence, breakfast skippers are more likely to crave high-caloric foods than low-caloric alternatives,¹¹⁸ and the consequent effects on daily energy intake have been discussed.^{114,118}

Eating habits seem to be closely connected to individual chronotype. Individuals with "early" and "neutral" chronotypes show, as a common trait, regular breakfast consumption, while people with late chronotypes usually skip breakfast.¹¹⁹⁻¹²² According to authors, evening-chronotype individuals show a delay in the circadian rhythm and in the release of appetiteregulating peptides, which, in turn, results in reduced hunger stimulation in the morning.¹²³ Sleep patterns are another important issue associated with breakfast habits. In fact, late chronotypes usually go to sleep late and wake up later during the day, which can lead to the tendency to skip breakfast.^{119,120} In children, the morning chronotype is prevalent, with a shift toward eveningness during puberty; thus, strategies to counteract circadian misalignment are of great interest.¹¹⁵

Authors have speculated that eating at the "wrong" time of the day, particularly skipping meals such as breakfast, desynchronize circadian rhythms, with impacts on metabolic health.^{113,121,124} Misalignment of behavioral and circadian cycles induced adverse metabolic consequences. Evidence from randomized controlled trials on healthy individuals showed that regular daily breakfast eaters maintained a more stable glucose response during the afternoon and evening compared with breakfast skippers.^{125,126} Authors have reported breakfast skipping as being also detrimental for insulin sensitivity.^{13,126,127} More interestingly, the potential implication of breakfast skipping has been broadened to include clock-controlled gene expression. Results suggest that breakfast consumption is of high relevance for preserving clock gene activity and the correlated postprandial glycemic response in both healthy individuals and patients with diabetes.¹²⁸

However, few authors have looked further into the role of breakfast consumption focusing on its nutritional composition. Previously, authors have reported ready-to-eat cereal as the most frequent food consumed at breakfast and its consumption was associated with a healthier diet; nevertheless, it might be refined with added sugars.¹²⁹ In line with this, a recent longitudinal multicenter study from 5 European countries referred to breakfast quality as an important issue. In fact, among all of the eating occasions, breakfast was characterized by the largest consumption of high-sugar-content products.¹³⁰ In a recent systematic review of randomized controlled trials, Ricotti et al¹¹⁵ showed that interventions aimed at increasing breakfast consumption in children and adolescents are effective strategies for improving nutrition education and quality. However, data are scarce regarding the impact of breakfast quality on pediatric metabolic health.

Eating breakfast regularly was described as a marker of health, but collinearity with potential

confounding factors has to be addressed. In fact, the observed beneficial effects of consuming breakfast might only reflect a healthy lifestyle per se—for example, breakfast skippers are more likely to be physically inactive than breakfast eaters¹¹⁸ and showed lower adherence to the Mediterranean diet.¹³¹ Overall, breakfast consumption is an indicator of a general health-promoting lifestyle and behaviors.

Meal and snacking frequency

A higher eating frequency, maintaining the same energy intake, seems to contribute to a healthy cardiometabolic state in children and adolescents.⁶⁸ In particular, a large number of the studies analyzed confirmed the positive relationship that exists between lower daily eating frequency and the higher risk of developing OW/OB. In the narrative synthesis, a negative correlation between the number of eating occasions per day and TC, LDL cholesterol, and TGs has been reported, while a positive association with HDL cholesterol has been documented. Moreover, one can speculate about the possibility of an inverse relationship between eating frequency and DBP and SBP levels in children, although results were contrasting. No relationship has been documented between the number of eating occasions and glucose metabolism. Several pathways might explain the association between a lower eating frequency and an unfavorable cardiometabolic state. Theoretically, there is a direct relationship between eating frequency and metabolism activation with increasing satiety and improvement in glucose and insulin metabolism.^{132,133} In a randomized crossover trial involving normal-weight women, meal regularity was associated with a greater thermic effect of food and lower glucose response, with a favorable effect on metabolic health.¹³⁴ Additionally, eating frequency seems to be positively associated with levels of physical activity and with an improved composition of snacks and breakfast, in terms of fruit and vegetables, fats, fiber, and carbohydrates, in healthy-weight children aged 9-10 years.¹³⁵ Conflicting, and sometimes contradictory, findings have been reported on the associations of eating frequency with metabolic risk factors by varying age groups. Authors reported a positive association between eating frequency and BMI z score (but not with WHtR) in adolescents but not in children.⁸⁹ The explanation could lie in the strong association that exists between eating frequency and energy intake, which has also been observed in adults.¹³⁶⁻¹³⁸ Previous studies have shown that children are generally good energy compensators, although this ability declines with age,¹³⁹ which might explain the positive association in adolescents but the null association in children. However, there are differences in eating frequencies (meals and snacking) and dietary habits across different ages. In fact, young children spend a large part of their day in school with structured meal and snack times. It is only when children are in junior high school and high school that they can purchase food more freely at will and may opt not to eat at all during the morning and early afternoon but focus their consumption patterns to the latter part of the day,⁵¹ with a consequent increase in the risk of becoming overweight/obese.

In parallel, a small variation in eating frequency was associated with lower TC and LDL cholesterol in children but not in adolescents,⁹¹ which agrees with previous results reported in intervention trials involving both lean and obese adults.^{133, 140} Lower TC and LDLcholesterol levels in individuals with a regular eating frequency might be a consequence of a lower insulin stimulus to hydroxyl-methyl-glutaryl Co-A reductase, one of the rate-limiting enzymes in cholesterol synthesis, or enhancement of reverse cholesterol transport.¹⁴¹ It is not clear why this association has been documented only in children but not in adolescents. However, it might be related to the higher mean values and variations in blood lipids in children or to inaccurate dietary information provided by adolescents.⁸⁹

Snacking frequency is relevant for weight status, particularly among young children. The relationship existing between snacking and cardiometabolic risk is influenced by the amount of snack consumed and the quality or type of snack. Snack quality is a matter of concern since snack foods are enriched in fats and energy dense and the unregulated consumption of snack foods could increase energy intake beyond the needs for energy expenditure and promote weight gain and an altered lipid profile. Although the influence of snacking on weight status seems to be clear, it is not possible to establish if there is reverse causality of overweight or obesity status in children and a higher frequency of snack consumption. Certainly, it has been observed that children with greater weight have higher levels of appetitive traits that facilitate excessive intake of energy-dense snacks in the absence of hunger.¹⁴² These traits may increase the susceptibility of some children to become obese.^{143,144} However, experimental and longitudinal studies are necessary to evaluate if there is a causal relationship between snacking, child appetite, and weight outcomes. However, the regular intake of snacks may be a strategy to manage weight by replacement of fats with carbohydrates. the Furthermore, regular snack consumption seems to improve diet quality^{145–147} and to increase the consumption of fruit, whole grains, and fiber, 145,146 favoring satiety and therefore reducing risk of obesity. Notably, like eating frequency, snacking was also

associated with increased physical activity, which compensates for the calories introduced with snacks.^{148,149}

Overall, defining the optimal frequency of meals and snacks for promoting healthy growth in pediatric subjects is challenging. According to ESPGHAN recommendations for the prevention of OW/OB, children up to the age of 12 years are encouraged to eat at least 5 meals per day, including a midmorning and a midafternoon snack.¹¹⁶ Whether eating 6 or more meals per day provides an additional contribution remains to be elucidated, as do the recommendation for older children.¹¹⁶ Further research is needed to understand whether other dimensions (eg, quality, time of day) or patterns of eating may influence the cardiometabolic state in children and adolescents. One of the limitations in comparing studies on eating frequency/snacking is the lack of consensus on the definition of regular number of eating occasions or meals. Furthermore, many studies that limited their discussion to meals and snacks were underreported.¹⁵⁰ Nevertheless, the exclusion of snacks from the diet might underestimate the overall energy and macronutrient intakes, especially for very young children in whom snacks contribute a large portion of total daily energy intake.^{151,152}

Meal timing

Studies on meal timing in children are scarce and a consensus does not exist on the correct time of day for main meals to reduce the risk of obesity and its related complications in the pediatric population. Despite the small numbers of articles evaluating this dimension of chrononutrition, it has been postulated that eating late in the evening is associated with a greater risk of poor cardiometabolic health,¹⁵³ with an unfavorable impact on weight status and lipid profile. No studies have evaluated the relationship that exists between time of food intake and BP, while 1 study observed high levels of insulin and glucose in salivary samples of late dinner eaters. However, a recent meta-analysis found a low quality of evidence between OW/OB in those who ate later in the evening compared with those who ate earlier, with a pooled OR of 1.04 (95% CI, 0.68- 1.61).¹² This is a matter of concern considering that unhealthy dietary habits, such as late-time eating, established in early childhood tend to persist to older age and may thus adversely affect long-term health.¹⁵⁴ In adults, late eating, defined as a delayed timing in the main meal or the last meal consumption, was recently shown to be associated with hyperglycemia,¹⁵⁵ impaired glucose tolerance,¹⁵⁶ and increased risk of poor cardiometabolic health.¹⁵⁷

Different factors could be implicated in these complex relationships. Energy homeostasis is influenced by circadian rhythms of wakefulness and sleep. The circadian misalignment, caused by eating and sleeping more than 12 hours out of the habitual time phase, leads to altered leptin release, increased glucose and insulin levels, and appetite and energy imbalance.^{13,14} Eating late in the evening might influence sleep patterns¹⁵⁸ and promote late bedtimes,^{159,160} causing sleep deprivation and a consequent increase in ghrelin secretion and an inhibition in leptin secretion, responsible for greater energy intake.¹⁶¹ Additionally, under conditions of sleep deprivation, late-type individuals can extend the time available to eat and consume meal or snacks at a later time, which may be associated with less satiety.¹⁶²

It is reasonable to suggest that late eating behavior could influence the circadian rhythm of cortisol release, reducing the amplitude of its daily pattern. Cortisol, also known as the stress hormone, follows a circadian rhythm, with a peak in the morning. It is an indicator of the internal clock, regulating energy and metabolic processes,¹⁶³ but also behavioral and environmental factors.¹⁶⁴ Daily lower amplitude values of cortisol may be a marker of circadian system alterations in children who eat late at night.^{165,166} In fact, late-dinner-eating children might fail to achieve the peak of cortisol in the morning and the intake of breakfast takes place in an earlier circadian phase for these children,⁵ altering the appetite and the possibility to consume an adequate energy intake.¹⁶⁷ The reduction in appetite in the morning and evening is also responsible for a misalignment in circadian rhythm, altering hunger and appetite relative to clock time.^{168,169} Late eating may lead to an uncoupling of these biological clocks,¹⁷⁰ inducing metabolic imbalances in children.^{156,170} This suggests that there is an internal stimulus on the time to eat meals during the day.¹⁷¹ In addition, different chronotypes influence the body's metabolic response.¹⁷²⁻¹⁷⁴ Last, it has been reported that the fasting period during the night induces both fat metabolism and the metabolic switch between glucose and fat oxidation.^{175,176}

Considering the close association between obesity and late eating and simultaneously the high rate of proinflammatory cytokine release in obese individuals, a possible role of inflammatory markers in generating a dysmetabolic state in individuals who eat dinner late has been suggested. Although Martínez-Lozano et al⁹⁹ found higher levels of CRP and IL-6 in late eaters than in early eaters, these results have no explanation in terms of cardiovascular risk. In fact, high levels of CRP have been reported in association with MetS in children, but it is not yet clear if its levels might be correlated with cardiovascular complications.

Finally, cultural and geographic differences may have a role in generating contrasting results.^{177,178} Examining children and adolescents aged 2–18 years, Eng et al⁵¹ documented that late eating was associated with obesity in the entire age group. Conversely, Coulthard et al⁵⁸ did not find any connection between eating after 20:00 and the risk of obesity in UK children. The reason could rely in the different cutoff used to define late eating. In particular, Martínez-Lozano et al⁹⁹ considered the median values of time of dinner, identifying late dinner eating for children who ate late dinner at 21:00, 1 hour later than the time set by Coulthard et al. Certainly, the geographical area of the world influences the time clock. To overcome this issue, a median clock time should be considered for each population analyzed, with the aim to obtain more generalized and comparable results.

Limitations and strengths

In the present review, no intervention studies or trials were found for any of the outcomes considered. Approximately 80% had a cross-sectional design, while the remaining were longitudinal population-based cohort studies. As a result, it is not possible to establish a causal relationship between the exposure and the outcome analyzed. Overall, the strength of the evidence was low due to the observational design of all included studies, with the majority of them having a cross-sectional design.

Among the limitations of the present review, it was not possible to conduct the meta-analysis for all of the exposure variables and the related outcomes. In fact, not all of the studies were eligible to be included, due to insufficient data or the impossibility of being categorized according to the selection criteria for the metaanalysis. Another limit was the high heterogeneity observed for the meta-analysis related to daily breakfast consumption and OW/OB in children. Despite the strict criteria applied for eligibility of studies in the data synthesis, high heterogeneity, driven by an inconsistent definition of the category "breakfast consumption," was observed. Moreover, heterogeneity could also be attributed to variability in age, type of adjustments across studies, and type of cohorts, which were extrapolated from wide population studies from several geographical areas. Overweight/obesity assessments varied across studies, and they would be more comparable if only 1 generally accepted international criteria for OW/OB was applied, such as International Obesity Task Force or WHO cutoffs.

In addition, methodological differences between studies might explain the results, particularly the broad variety of methods of dietary assessment. Most studies were performed using 24-hour dietary recalls and questionnaires, which are subjective and dependent on the memory and motivation of study participants or their parents. To assess the exposure, some of the studies used qualitative and unspecific categories (usually, often, etc) and others studied the frequency of consumption (1-2 times/wk or day, 3-4 times/wk or day, etc), making comparisons among the studies difficult. Sometimes the dietary history was collected with validated semiquantitative or qualitative methods (food diaries, validated questionnaires for pediatric age). However, nutritional assessment is always challenging, with varying degrees of reliability, and needs careful handling. In addition, the lack of universal and accepted definitions of breakfast skipping, number of eating occasions, snack consumption, or timing of eating limits the comparisons between the studies. To overcome this issue, it might be reasonable to refer to a standardized definition of meals and eating occasions to better analyze data. For this purpose, the American Heart Association recently proposed the definition of breakfast as "the first meal of the day breaking the fast after the long period of sleep". It consists of food or drink of at least 1 food group eaten within 2 to 3 hours of waking. Instead, the term "other meals" has been defined as any consumption occasion that provides more than 15% of the total energy intake, while the term "snack" has been assigned to all eating occasions providing less than 15% of total energy intake.¹⁵³

Nevertheless, this review also has some strengths. The main strength of the present review is the inclusion of all of the dimensions of chrononutrition. This is the first study carrying out a comprehensive analysis of the association between regularity of meals, frequency of meals per day, or timing of food intake and cardiometabolic factors in children and adolescents. The comprehensive and extensive research of the literature enabled us to well explore the association between the exposure variables and outcomes. Moreover, a methodological quality assessment was performed, which allows the inclusion only of studies considered as having acceptable quality. In fact, approximately 12% of studies analyzed were removed because they did not meet the established cutoff of quality. Generally, the advantage of observational longitudinal studies resides in their ability to portray real-world conditions and more transferable results compared with clinical trials. Last, to ensure consistency across studies included in the metaanalysis, a specific category of exposure was strictly selected (eg, daily vs non-daily breakfast consumption, \leq 3 vs \geq 4 meals).

CONCLUSION

Studies currently available on chrononutrition and metabolic health status are fragmented, probably due to methodological limitations. Overall, the results of the present review suggest a potential implication of chrononutrition in affecting pediatric metabolic health; however,

Table 8 Recommendation for future research on chrononutrition

Recommendations for future research

- 1. Standardization of the categories "breakfast skipping," "snack frequency," and "time of eating"
- 2. Going beyond the single exposure of 1 dimension of chrononutrition and exploring the joint impact of multiple exposures
- 3. Proposal of a nutritional assessment method that evaluates chrononutrition comprehensively (eg, rest hours, time of food consumption, length of fasting period)
- 4. Definition of a pediatric score to classify children according to their chronotype
- 5. Intervention studies or trials evaluating the relationship between the 3 dimensions of chrononutrition and cardiometabolic risk

factors

the evidence of the association was mainly limited to breakfast consumption and meal frequency. A positive association between overweight and obesity risk was observed for non-daily and irregular breakfast consumption, and also a potential preventive role of a higher meal frequency, even though our findings showed very low quality of evidence due to the observational design of the included studies. In the narrative synthesis, the association between the number of snacking occasions showed controversial results, while food timing was the most understudied dimension of chrononutrition. The study of chrononutrition in the promotion of a healthy cardiometabolic state in the pediatric population deserves more attention. The definition of a pediatric score to classify children according to their chronotype is a valuable strategy to accomplish our knowledge on feeding behavior health impacts (Table 8). Further well-designed prospective and intervention studies addressing the limitations reported in the present review are required to clearly define the association between chrononutrition and pediatric metabolic health.

Acknowledgments

Author contributions. All authors meet full criteria for authorship, and each author participated in the reading and approval of the final manuscript; their respective roles in the submitted work are as follows-G.F.: project administration, investigation, and resources; writing original draft; review and Editing; S.S.: investigation and resources, writing original draft, participated in the manuscript review process; C.R.N.: investigation and resources, writing original draft, participated in the manuscript review process; H.A.: formal analysis, critical revision of the manuscript; M.E.-M.: data administration, review and editing; M.C.P.: investigation and resources, writing original draft, participated in the manuscript review process; A.L.M .: investigation and resources, writing original draft, participated in the manuscript review process; C.M.: methodology, review, and editing; F.C.: methodology, supervision and conceptualization, critical revision of the manuscript; C.C.: methodology, review, and editing; G.Z.. supervision and conceptualization,

critical revision of the manuscript; E.V.: methodology, review and editing, supervision and conceptualization.

Funding. No external funding was received to support this work.

Declaration of interest. The authors have no relevant interests to declare.

Supporting Information

The following Supporting Information is available through the online version of this article at the publisher's website.

Figure S1 Quality assessment of studies included in narrative synthesis

Figure S2 Sub-meta-analyses for the exposure breakfast consumption in overweight/obesity outcome

Figure \$3 Sub-meta-analyses for the exposure meal frequency in overweight/obesity outcome

Figure S4 Subgroup meta-analysis among European countries for the relationship overweight/ obesity and breakfast consumption

 Table S1 PRISMA 2020 checklist (template available

 at
 http://www.prisma-statement.org/PRISMAStatement/

 Checklist.aspx)

Table S2Quality assessment of articles excludedfrom the systematic review

Table S3 Reasons for exclusion from the metaanalysis evaluating the effect of "breakfast consumption" on the outcome of overweight/obesity (group A) defined according to BMI

Table S4 Reason for exclusion from the metaanalysis evaluating the effect of "breakfast consumption" on the outcome of overweight/obesity (group A) defined according to anthropometric parameters and body composition

Table S5 Reason for exclusion from the metaanalysis evaluating the effect of "meal frequency" on the outcome of overweight/obesity (group A) defined according to BMI

Table S6 Reason for exclusion from the metaanalysis evaluating the effect of "snack frequency" or "meal timing" on the outcome of overweight/obesity (group A) defined according to BMI

Table S7 Reason for exclusion from the metaanalysis evaluating the effect of "meal frequency," "snack frequency," and "meal timing" on the outcome of overweight/obesity (group A) defined according to anthropometric parameters and body composition

Table S8 Reason for exclusion from the meta-analysis evaluating the effect of "breakfast consumption," "meal frequency," "snack frequency," and "meal timing" on the outcome glucose metabolism (group B)

Table S9 Reason for exclusion from the metaanalysis evaluating the effect of "breakfast consumption," "meal frequency," and "meal timing" on the outcome lipids and CVD risk (group C)

Table S10 Reason for exclusion from the metaanalysis evaluating the effect of "breakfast consumption," "meal frequency," and "meal timing" on the outcome blood pressure (group D)

Table S11 List of adjustments according to articles

REFERENCES

- Almoosawi S, Vingeliene S, Gachon F, et al. Chronotype: implications for epidemiologic studies on chrono-nutrition and cardiometabolic health. Adv Nutr. 2019;10:30–42. doi:10.1093/advances/nmy070
- Al Abdi T, Andreou E, Papageorgiou A, et al. Personality, chrono-nutrition and cardiometabolic health: a narrative review of the evidence. *Adv Nutr.* 2020;11:1201–1210. doi:10.1093/advances/nmaa051
- Pot GK, Hardy R, Stephen AM. Irregular consumption of energy intake in meals is associated with a higher cardiometabolic risk in adults of a British birth cohort. Int J Obes (Lond). 2014;38:1518–1524. doi:10.1038/ijo.2014.51
- Bo S, Fadda M, Castiglione A, et al. Is the timing of caloric intake associated with variation in diet-induced thermogenesis and in the metabolic pattern? A randomized cross-over study. *Int J Obes (Lond)*. 2015;39:1689–1695. doi:10.1038/ ijo.2015.138
- Garaulet M, Gómez-Abellán P. Timing of food intake and obesity: a novel association. *Physiol Behav*. 2014;134:44–50. doi:10.1016/j.physbeh.2014.01.001
- Dhurandhar EJ, Dawson J, Alcorn A, et al. The effectiveness of breakfast recommendations on weight loss: a randomized controlled trial. Am J Clin Nutr. 2014;100:507–513. doi:10.3945/ajcn.114.089573
- LeCheminant GM, LeCheminant JD, Tucker LA, et al. A randomized controlled trial to study the effects of breakfast on energy intake, physical activity, and body fat in women who are nonhabitual breakfast eaters. *Appetite*. 2017;112:44–51. doi:10.1016/j.appet.2016.12.041
- Sievert K, Hussain SM, Page MJ, et al. Effect of breakfast on weight and energy intake: systematic review and meta-analysis of randomised controlled trials. BMJ. 2019;364: L 42. doi:10.1136/bmj.l42
- Bonnet JP, Cardel MI, Cellini J, et al. Breakfast skipping, body composition, and cardiometabolic risk: a systematic review and meta-analysis of randomized trials. *Obesity (Silver Spring)*. 2020;28:1098–1109. doi:10.1002/oby.22791
- Ardeshirlarijani E, Namazi N, Jabbari M, et al. The link between breakfast skipping and overweigh/obesity in children and adolescents: a meta-analysis of observational studies. J Diabetes Metab Disord. 2019;18:657–664. doi:10.1007/s40200-019-00446-7
- Fong M, Caterson ID, Madigan CD. Are large dinners associated with excess weight, and does eating a smaller dinner achieve greater weight loss? A systematic review and meta-analysis. Br J Nutr. 2017;118:616–628. doi:10.1017/ S0007114517002550
- Zou M, Northstone K, Perry R, et al. The association between later eating rhythm and adiposity in children and adolescents: a systematic review and meta-analysis. *Nutr Rev.* 2022;80:1459–1479. doi:10.1093/nutrit/nuab079
- Scheer FAJL, Hilton MF, Mantzoros CS, et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. *Proc Natl Acad Sci USA*. 2009;106:4453–4458. doi:10.1073/pnas.0808180106

- Nguyen J, Wright KP. Influence of weeks of circadian misalignment on leptin levels. Nat Sci Sleep. 2010;2:9–18. doi:10.2147/nss.s7624
- Moher D, Liberati A, Tetzlaff J, et al., PRISMA Group. Reprint—preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *Phys Ther.* 2009;89:873–880. doi:10.1093/ptj/89.9.873
- Moola S, Munn Z, Tufanaru C, et al. Chapter 7: Systematic reviews of etiology and risk. In: Aromataris E, Munn Z, eds. JBI Manual for Evidence Synthesis. jbi.global; 2020:255–269.
- Ma LL, Wang YY, Yang ZH, et al. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? *Mil Med Res.* 2020;7:7. doi:10.1186/s40779-020-00238-8
- De Amicis R, Mambrini SP, Pellizzari M, et al. Ultra-processed foods and obesity and adiposity parameters among children and adolescents: a systematic review. *Eur J Nutr.* 2022;61:2297–2311. doi:10.1007/s00394-022-02873-4
- McGuinness LA, Higgins JPT. Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments. *Res Synth Methods*. 2021;12:55–61. doi:10.1002/jrsm.1411
- Cole TJ, Bellizzi MC, Flegal KM, et al. Establishing a standard definition for child overweight and obesity worldwide: international survey. *BMJ*. 2000;320:1240–1243. doi:10.1136/bmj.320.7244.1240
- Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. *Obes Rev.* 2012;13:275–286. doi:10.1111/j.1467-789X.2011.00952.x
- Higgins JP, Deeks JJ, Higgins JPT, et al. Chapter 6: Choosing effect measures and computing estimates of effect. In: *Cochrane Handbook for Systematic Reviews of Interventions Version 6.3*. Updated February 2022. Cochrane; 2022. Available at: https://training.cochrane.org/handbook/current/chapter-06.
- 23. Bland JM, Altman DG. The odds ratio. BMJ. 2000;320:1468.
- Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64:383–394. doi:10.1016/j.jclinepi.2010.04.026
- Saikia D, Ahmed SJ, Saikia H, et al. Overweight and obesity in early adolescents and its relation to dietary habit and physical activity: a study in Dibrugarh town. *Clin Epidemiol Global Health*. 2016;4:S22–S28. doi:10.1016/j.cegh.2016.09.001
- Wadolowska L, Hamulka J, Kowalkowska J, et al. Skipping breakfast and a meal at school: its correlates in adiposity context. report from the ABC of Healthy Eating Study of Polish Teenagers. *Nutrients*. 2019;11:1563. doi:10.3390/ nu11071563
- Rashidi A, Mohammadpour-Ahranjani B, Karandish M, et al. Obese and female adolescents skip breakfast more than their non-obese and male peers. *Cent Eur J Med.* 2007;2:481–487. doi:10.2478/s11536-007-0043-1
- Maddah M. Risk factors for overweight in urban and rural school girls in Iran: Skipping breakfast and early menarche. *Int J Cardiol.* 2009;136:235–238. doi:10.1016/j.ijcard.2008.04.046
- Apayd KD, Akman M, Ünalan PC, et al. Weight, diet and physical activity habits of Turkish adolescents living in a semi-urban area of Istanbul: gender differences. *Obes Metabolism.* 2010;6:94–99.
- Thibault H, Carriere C, Langevin C, et al. Prevalence and factors associated with overweight and obesity in French primary-school children. *Public Health Nutr.* 2013;16:193–201. doi:10.1017/S136898001200359X
- Baldinger N, Krebs A, Müller R, et al. Swiss children consuming breakfast regularly have better motor functional skills and are less overweight than breakfast skippers. J Am Coll Nutr. 2012;31:87–93. doi:10.1080/07315724.2012.10720013
- Jääskeläinen A, Schwab U, Kolehmainen M, et al. Meal frequencies modify the effect of common genetic variants on body mass index in adolescents of the Northern Finland Birth Cohort 1986. *PLoS One.* 2013;8:e73802. doi:10.1371/ journal.pone.0073802
- Faizi N, Khalique N, Khan I, et al. Breakfast skipping and proposed effects of breakfast on obesity: a school based study in adolescents in Aligarh, India. Ann Trop Med Public Health. 2014;7:43. doi:10.4103/1755-6783.145011
- Bo S, De Carli L, Venco E, et al. Impact of snacking pattern on overweight and obesity risk in a cohort of 11- to 13-year-old adolescents. J Pediatr Gastroenterol Nutr. 2014;59:465–471. doi:10.1097/MPG.00000000000453
- Maitland TE, Malcolm S, Handfield S. Nutritional knowledge and practices, lifestyle characteristics and anthropometric status of Turks and Caicos Islands elementary school children. West Indian Med J. 2015;64:29–36. doi:10.7727/ wimj.2015.111
- Smetanina N, Albaviciute E, Babinska V, et al. Prevalence of overweight/obesity in relation to dietary habits and lifestyle among 7-17 years old children and adolescents in Lithuania. *BMC Public Health.* 2015;15:1001. doi:10.1186/s12889-015-2340-y
- Troiano G, Simi R, Mercurio I, et al. "OKKIO alla salute 2014" results from the Tuscan sample. Ann Ig. 2018;30:259–272. doi:10.7416/ai.2018.2218
- Frayon S, Cherrier S, Cavaloc Y, et al. Nutrition behaviors and sociodemographic factors associated with overweight in the multi-ethnic adolescents of New Caledonia. *Ethn Health*. 2019;24:194–210. doi:10.1080/13557858.2017.1315530

- Khan A, Khan SR, Burton NW. Missing breakfast is associated with overweight and obesity in Bangladeshi adolescents. *Acta Paediatr.* 2019;108:178–179. doi:10.1111/apa.14553
- Blasetti A, Franchini S, Castorani V, et al. Skipping breakfast is associated with an atherogenic lipid profile in overweight and obese prepubertal children. *Int J Endocrinol.* 2020;2020:1849274–1849276. doi:10.1155/2020/1849274
- Sata M, Yamagishi K, Sairenchi T, et al. Long-term effect of feeding snacks at age 6 years on body mass index at ages 12 and 22 years. *Sci Rep.* 2019;9:8627. doi:10.1038/s41598-019-40730-3
- Yaguchi-Tanaka Y, Tabuchi T. Skipping breakfast and subsequent overweight/ obesity in children: a nationwide prospective study of 2.5- to 13-year-old children in Japan. J Epidemiol. 2021;31:417–425. doi:10.2188/jea.JE20200266
- Prochnik Estima C de C, da Costa RS, Sichieri R, et al. Meal consumption patterns and anthropometric measurements in adolescents from a low socioeconomic neighborhood in the metropolitan area of Rio de Janeiro, Brazil. *Appetite*. 2009;52:735–739. doi:10.1016/j.appet.2009.03.017
- Isacco L, Lazaar N, Ratel S, et al. The impact of eating habits on anthropometric characteristics in French primary school children: eating habits and French primary school children. *Child Care Health Dev.* 2010;36:835–842. doi:10.1111/ j.1365-2214.2010.01113.x
- Wijtzes Al, Jansen W, Bouthoorn SH, et al. Meal-skipping behaviors and body fat in 6-year-old children. J Pediatr. 2016;168:118–125.e2. doi:10.1016/ j.jpeds.2015.09.039
- Liu J, Gibson D, Stearne K, et al. Skipping breakfast and non-high-density lipoprotein cholesterol level in school children: a preliminary analysis. *Public Health*. 2019;168:43–46. doi:10.1016/j.puhe.2018.12.006
- Vergetaki A, Linardakis M, Papadaki A, et al. Presence of metabolic syndrome and cardiovascular risk factors in adolescents and university students in Crete (Greece), according to different levels of snack consumption. *Appetite*. 2011;57:278–285. doi:10.1016/j.appet.2011.05.309
- Croezen S, Visscher TLS, Ter Bogt NCW, et al. Skipping breakfast, alcohol consumption and physical inactivity as risk factors for overweight and obesity in adolescents: results of the E-MOVO project. *Eur J Clin Nutr.* 2009;63:405–412. doi:10.1038/sj.ejcn.1602950
- Würbach A, Zellner K, Kromeyer-Hauschild K. Meal patterns among children and adolescents and their associations with weight status and parental characteristics. *Public Health Nutr.* 2009;12:1115–1121. doi:10.1017/S1368980009004996
- Dubois L, Girard M, Potvin Kent M, et al. Breakfast skipping is associated with differences in meal patterns, macronutrient intakes and overweight among preschool children. *Public Health Nutr.* 2009;12:19–28. doi:10.1017/ S1368980008001894
- Eng S, Wagstaff DA, Kranz S. Eating late in the evening is associated with childhood obesity in some age groups but not in all children: the relationship between time of consumption and body weight status in U.S. children. *Int J Behav Nutr Phys Act.* 2009;6:27. doi:10.1186/1479-5868-6-27
- Toschke AM, Thorsteinsdottir KH, von Kries R; The GME Study Group. Meal frequency, breakfast consumption and childhood obesity. Int J Pediatr Obes. 2009;4:242–248. doi:10.3109/17477160902763341
- Lehto R, Ray C, Lahti-Koski M, et al. Meal pattern and BMI in 9-11-year-old children in Finland. Public Health Nutr. 2011;14:1245–1250. doi:10.1017/ \$1368980010003034
- Vik FN, Overby NC, Lien N, et al. Number of meals eaten in relation to weight status among Norwegian adolescents. *Scand J Public Health*. 2010;38:13–18. doi:10.1177/1403494810378920
- Veltsista A, Laitinen J, Sovio U, et al. Relationship between eating behavior, breakfast consumption, and obesity among Finnish and Greek adolescents. J Nutr Educ Behav. 2010;42:417–421. doi:10.1016/j.jneb.2009.12.004
- Sandercock GRH, Voss C, Dye L. Associations between habitual school-day breakfast consumption, body mass index, physical activity and cardiorespiratory fitness in English schoolchildren. *Eur J Clin Nutr.* 2010;64:1086–1092. doi:10.1038/ ejcn.2010.145
- Antonogeorgos G, Panagiotakos DB, Papadimitriou A, et al. Breakfast consumption and meal frequency interaction with childhood obesity: meal frequency, breakfast intake and obesity. *Pediatr Obes*. 2012;7:65–72. doi:10.1111/j.2047-6310.2011.00006.x
- Coulthard JD, Pot GK. The timing of the evening meal: how is this associated with weight status in UK children? Br J Nutr. 2016;115:1616–1622. doi:10.1017/ S0007114516000635
- Silva FA, Candiá SM, Pequeno MS, et al. Daily meal frequency and associated variables in children and adolescents. J Pediatr (Rio J). 2017;93:79–86. doi:10.1016/ j.jped.2016.04.008
- Barrett N, Riordan F, Michels N, et al. Breakfast skipping and overweight/obesity among European adolescents, a cross-sectional analysis of the HELENA dataset: a DEDIPAC study. *HRB Open Res.* 2018;1:19. doi:10.12688/hrbopenres.12847.1
- Kachurak A, Davey A, Bailey RL, et al. Daily snacking occasions and weight status among US children aged 1 to 5 years: snacking and weight among US children. *Obesity (Silver Spring)*. 2018;26:1034–1042. doi:10.1002/oby.22172

- Charvet A. Eating Frequency and the Role of Snacking on Body Weight of WIC Preschool Children [dissertation]. Florida International University; 2018. doi:10.25148/etd.FIDC006837
- 63. Aanesen A, Katzmarzyk PT, Ernstsen L. Breakfast skipping and overweight/obesity in first grade primary school children: a nationwide register-based study in lceland. *Clin Obes*. 2020;10:E12384. doi:10.1111/cob.12384
- Champilomati G, Notara V, Prapas C, et al. Breakfast consumption and obesity among preadolescents: an epidemiological study. *Pediatr Int*. 2020;62:81–88. doi:10.1111/ped.14050
- Guimarães AdT, Cardoso CdS, de Souza LB, et al. Skipping breakfast among preschoolers: associated factors and its dose-response relationship with overweight/ obesity. *Rev Nutr.* 2021;34:1–14.
- Coppinger T, Jeanes YM, Hardwick J, et al. Body mass, frequency of eating and breakfast consumption in 9-13-year-olds. J Hum Nutr Diet. 2012;25:43–49. doi:10.1111/j.1365-277X.2011.01184.x
- Liu H, Zheng JS, Li J, et al. Increased pre-school overweight and obesity prevalence between 2004 and 2013 is associated with appetite, eating frequency and supportive facilities: the Jiaxing Birth Cohort in China. *Asia Pac J Clin Nutr.* 2017;26:881–887. doi:10.6133/apjcn.072017.05
- Vilela S, Correia D, Severo M, et al.; IAN-AF Consortium. Eating frequency and weight status in Portuguese children aged 3–9 years: results from the crosssectional National Food, Nutrition and Physical Activity Survey 2015–2016. Public Health Nutr. 2019;22:2793–2802. doi:10.1017/S1368980019000661
- Tee Siong E, Nurliyana AR, Norimah AK, et al. Breakfast consumption among Malaysian primary and secondary school children and relationship with body weight status—findings from the MyBreakfast Study. *Asia Pac J Clin Nutr.* 2018;27:421–432. doi:10.6133/apjcn.062017.12
- Wüenstel JW, Kowalkowska J, Wądołowska L, et al. Habitual eating of breakfast, consumption frequency of selected food and overweight prevalence in adolescents from various age groups. *Dev Period Med.* 2015;19:193–201.
- Franko DL, Striegel-Moore RH, Thompson D, et al. The relationship between meal frequency and body mass index in black and white adolescent girls: more is less. *Int J Obes (Lond)*. 2008;32:23–29. doi:10.1038/sj.ijo.0803654
- Timlin MT, Pereira MA, Story M, et al. Breakfast eating and weight change in a 5year prospective analysis of adolescents: project EAT (Eating Among Teens). *Pediatrics* 2008;121:e638–e645. doi:10.1542/peds.2007-1035
- Tin SPP, Ho SY, Mak KH, et al. Breakfast skipping and change in body mass index in young children. *Int J Obes (Lond)*. 2011;35:899–906. doi:10.1038/ijo.2011.58
- Küpers LK, de Pijper JJ, Sauer PJJ, et al. Skipping breakfast and overweight in 2and 5-year-old Dutch children—the GECKO Drenthe cohort. *Int J Obes (Lond)*. 2014;38:569–571. doi:10.1038/ijo.2013.194
- Evans EW, Jacques PF, Dallal GE, et al. The role of eating frequency on relative weight in urban school-age children: eating frequency and childhood weight. *Pediatr Obes.* 2015;10:442–447. doi:10.1111/jipo.12004
- Stea TH, Vik FN, Bere E, et al. Meal pattern among Norwegian primary-school children and longitudinal associations between meal skipping and weight status. *Public Health Nutr.* 2015;18:286–291. doi:10.1017/S136898001400010X
- Taillie LS, Wang D, Popkin BM. Snacking is longitudinally associated with declines in body mass index z scores for overweight children, but increases for underweight children. J Nutr. 2016;146:1268–1275. doi:10.3945/jn.115.226803
- Cheng TS, Loy S, Toh J, et al. Predominantly nighttime feeding and weight outcomes in infants. Am J Clin Nutr. 2016;104:380–388. doi:10.3945/ajcn.116.130765
- Taylor RW, Iosua E, Heath ALM, et al. Eating frequency in relation to BMI in very young children: a longitudinal analysis. *Public Health Nutr.* 2017;20:1372–1379. doi:10.1017/S1368980017000143
- Okada C, Tabuchi T, Iso H. Association between skipping breakfast in parents and children and childhood overweight/obesity among children: a nationwide 10.5-year prospective study in Japan. *Int J Obes (Lond)*. 2018;42:1724–1732. doi:10.1038/s41366-018-0066-5
- Vilela S, Oliveira A, Severo M, et al. Chrono-nutrition: the relationship between time-of-day energy and macronutrient intake and children's body weight status. *J Biol Rhythms*. 2019;34:332–342. doi:10.1177/0748730419838908
- Zerva A, Nassis G, Krekoukia M, et al. Effect of eating frequency on body composition in 9–11-year-old children. Int J Sports Med. 2007;28:265–270. doi:10.1055/ s-2006-924349
- Smith KJ, Gall SL, McNaughton SA, et al. Skipping breakfast: longitudinal associations with cardiometabolic risk factors in the Childhood Determinants of Adult Health Study. Am J Clin Nutr. 2010;92:1316–1325. doi:10.3945/ajcn.2010.30101
- Keast DR, Nicklas TA, O'Neil CE. Snacking is associated with reduced risk of overweight and reduced abdominal obesity in adolescents: National Health and Nutrition Examination Survey (NHANES) 1999-2004. Am J Clin Nutr. 2010;92:428–435. doi:10.3945/ajcn.2009.28421
- Deshmukh-Taskar PR, Nicklas TA, O'Neil CE, et al. The relationship of breakfast skipping and type of breakfast consumption with nutrient intake and weight status in children and adolescents: the National Health and Nutrition Examination Survey 1999-2006. J Am Diet Assoc. 2010;110:869–878. doi:10.1016/ j.jada.2010.03.023
- Jääskeläinen A, Schwab U, Kolehmainen M, et al. Associations of meal frequency and breakfast with obesity and metabolic syndrome traits in adolescents of

Northern Finland Birth Cohort 1986. *Nutr Metab Cardiovasc Dis.* 2013;23:1002–1009. doi:10.1016/j.numecd.2012.07.006

- Shafiee G, Kelishadi R, Qorbani M, et al. Association of breakfast intake with cardiometabolic risk factors. J Pediatr (Rio J). 2013;89:575–582. doi:10.1016/ j.jped.2013.03.020
- Donin AS, Nightingale CM, Owen CG, et al. Regular breakfast consumption and type 2 diabetes risk markers in 9- to 10-year-old children in the Child Heart and Health Study in England (CHASE): a cross-sectional analysis. *PLoS Med.* 2014;11: E 1001703. doi:10.1371/journal.pmed.1001703
- Murakami K, Livingstone MBE. Associations of eating frequency with adiposity measures, blood lipid profiles and blood pressure in British children and adolescents. Br J Nutr. 2014;111:2176–2183. doi:10.1017/S0007114514000452
- Ahadi Z, Qorbani M, Kelishadi R, et al. Association between breakfast intake with anthropometric measurements, blood pressure and food consumption behaviors among Iranian children and adolescents: the CASPIAN-IV study. *Public Health*. 2015;129:740–747. doi:10.1016/j.puhe.2015.03.019
- Murakami K, Livingstone MBE. Variability in eating frequency in relation to adiposity measures and blood lipid profiles in British children and adolescents: findings from the National Diet and Nutrition Survey. Int J Obes (Lond). 2015;39:608–613. doi:10.1038/ijo.2015.7
- Kelishadi R, Qorbani M, Motlagh ME, et al. Association of eating frequency with anthropometric indices and blood pressure in children and adolescents: the CASPIAN-IV study. J Pediatr (Rio J). 2016;92:156–167. doi:10.1016/ j.jped.2015.05.009
- Marlatt KL, Farbakhsh K, Dengel DR, et al. Breakfast and fast food consumption are associated with selected biomarkers in adolescents. *Prev Med Rep.* 2016;3:49–52. doi:10.1016/j.pmedr.2015.11.014
- Murakami K, Livingstone MBE. Associations between meal and snack frequency and overweight and abdominal obesity in US children and adolescents from National Health and Nutrition Examination Survey (NHANES) 2003-2012. Br J Nutr. 2016;115:1819–1829. doi:10.1017/S0007114516000854
- Murakami K, Livingstone MBE. Decreasing the number of small eating occasions (<15% of total energy intake) regardless of the time of day may be important to improve diet quality but not adiposity: a cross-sectional study in British children and adolescents. Br J Nutr. 2016;115:332–341. doi:10.1017/S0007114515004420
- Sila S, Ilić A, Mišigoj-Duraković M, et al. Obesity in adolescents who skip breakfast is not associated with physical activity. *Nutrients*. 2019;11:2511. doi:10.3390/ nu11102511
- Suhadi R, Hendra P, Virginia DM, et al. Eating behavior affects cardio-metabolic risk in high school teenagers in a developing country. *Med J Indones*. 2020;29:71–81. doi:10.13181/mji.oa.193494
- Jeans MR, Asigbee FM, Landry MJ, et al. Breakfast consumption in low-income hispanic elementary school-aged children: associations with anthropometric, metabolic, and dietary parameters. *Nutrients*. 2020;12:2038. doi:10.3390/ nu12072038
- Martínez-Lozano N, Tvarijonaviciute A, Ríos R, et al. Late eating is associated with obesity, inflammatory markers and circadian-related disturbances in school-aged children. Nutrients. 2020;12:E2881. doi:10.3390/nu12092881
- de Souza MR, Neves MEA, Souza A de M, et al. Skipping breakfast is associated with the presence of cardiometabolic risk factors in adolescents: study of cardiovascular risks in adolescents—ERICA. Br J Nutr. 2021;126:276–284. doi:10.1017/ S0007114520003992
- Martínez-Lozano N, Barraco GM, Rios R, et al. Evening types have social jet lag and metabolic alterations in school-age children. *Sci Rep.* 2020;10:16747. doi:10.1038/s41598-020-73297-5
- Ritchie LD. Less frequent eating predicts greater BMI and waist circumference in female adolescents. Am J Clin Nutr. 2012;95:290–296. doi:10.3945/ ajcn.111.016881
- 103. Shroff MR, Perng W, Baylin A, et al. Adherence to a snacking dietary pattern and soda intake are related to the development of adiposity: a prospective study in school-age children. *Public Health Nutr.* 2014;17:1507–1513. doi:10.1017/ S136898001300133X
- Wennberg M, Gustafsson PE, Wennberg P, et al. Poor breakfast habits in adolescence predict the metabolic syndrome in adulthood. *Public Health Nutr.* 2015;18:122–129. doi:10.1017/S1368980013003509
- 105. Traub M, Lauer R, Kesztyüs T, et al.; Research Group "Join the Healthy Boat". Skipping breakfast, overconsumption of soft drinks and screen media: longitudinal analysis of the combined influence on weight development in primary schoolchildren. BMC Public Health. 2018;18:363. doi:10.1186/s12889-018-5262-7
- Cayres SU, Urban JB, Fernandes RA. Physical activity and skipping breakfast have independent effects on body fatness among adolescents. J Pediatr Gastroenterol Nutr. 2018;67:666–670. doi:10.1097/MPG.000000000002081
- Duarte Junior MdS, Gaya ACA, Lemes VB, et al. Association between eating habits, body mass index, cardiorespiratory fitness, and cardiometabolic risk factors in children. *Rev Nutr.* 2021;34:E200116. doi:10.1590/1678-9865202134e200116
- Sesé MA, Jiménez-Pavón D, Gilbert CC, et al.; HELENA Study Group. Eating behaviour, insulin resistance and cluster of metabolic risk factors in European adolescents. The HELENA study. *Appetite* 2012;59:140–147. doi:10.1016/ j.appet.2012.04.011

- Jeans MR, Vandyousefi S, Landry MJ, et al. Breakfast consumption may improve fasting insulin, HOMA-IR, and HbA1c levels in predominately low-income, Hispanic children 7–12 years of age. *Nutrients*. 2022;14:2320. doi:10.3390/ nu14112320
- Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia* 1985;28:412–419. doi:10.1007/BF00280883
- Persaud N, Maguire JL, Lebovic G, et al.; TARGet Kids! Collaboration. Association between serum cholesterol and eating behaviours during early childhood: a cross-sectional study. CMAJ. 2013;185:E531–536. doi:10.1503/cmaj.121834
- Wijndaele K, Beunen G, Duvigneaud N, et al. A continuous metabolic syndrome risk score: utility for epidemiological analyses. *Diabetes Care*. 2006;29:2329. doi:10.2337/dc06-1341
- 113. Monzani A, Ricotti R, Caputo M, et al. A systematic review of the association of skipping breakfast with weight and cardiometabolic risk factors in children and adolescents. What should we better investigate in the future? *Nutrients*. 2019;11:387. doi:10.3390/nu11020387
- Souza MR, Neves MEA, Gorgulho BM, et al. Breakfast skipping and cardiometabolic risk factors in adolescents: systematic review. *Rev Saude Publica*. 2021;55:107. doi:10.11606/s1518-8787.2021055003077
- 115. Ricotti R, Caputo M, Monzani A, et al. Breakfast skipping, weight, cardiometabolic risk, and nutrition quality in children and adolescents: a systematic review of randomized controlled and intervention longitudinal trials. *Nutrients*. 2021;13:3331. doi:10.3390/nu13103331
- 116. Verduci E, Bronsky J, Embleton N, et al.; ESPGHAN Committee on Nutrition. Role of dietary factors, food habits, and lifestyle in childhood obesity development: a position paper from the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2021;72:769–783. doi:10.1097/MPG.000000000003075
- 117. Forester SM, Widaman AM, Krishnan S, et al. A clear difference emerges in hormone patterns following a standard midday meal in young women who regularly eat or skip breakfast. J Nutr. 2018;148:685–692. doi:10.1093/jn/nxy020
- Wicherski J, Schlesinger S, Fischer F. Association between breakfast skipping and body weight-a systematic review and meta-analysis of observational longitudinal studies. Nutrients. 2021;13:272. doi:10.3390/nu13010272
- Teixeira GP, Guimarães KC, Soares AGNS, et al. Role of chronotype in dietary intake, meal timing, and obesity: a systematic review. *Nutr Rev.* 2022;81:75–90. doi:10.1093/nutrit/nuac044
- Teixeira GP, Mota MC, Crispim CA. Eveningness is associated with skipping breakfast and poor nutritional intake in Brazilian undergraduate students. *Chronobiol Int.* 2018;35:358–367. doi:10.1080/07420528.2017.1407778
- Roßbach S, Diederichs T, Nöthlings U, et al. Relevance of chronotype for eating patterns in adolescents. *Chronobiol Int.* 2018;35:336–347. doi:10.1080/ 07420528.2017.1406493
- Rodríguez-Muñoz PM, Carmona-Torres JM, Rivera-Picón C, et al. Associations between chronotype, adherence to the Mediterranean diet and sexual opinion among university students. *Nutrients*. 2020;12:1900. doi:10.3390/nu12061900
- Meule A, Roeser K, Randler C, et al. Skipping breakfast: morningnesseveningness preference is differentially related to state and trait food cravings. *Eat Weight Disord*. 2012;17: E 304-308–e308. doi:10.3275/8723
- Broussard JL, Van Cauter E. Disturbances of sleep and circadian rhythms: novel risk factors for obesity. *Curr Opin Endocrinol Diabetes Obes*. 2016;23:353–359. doi:10.1097/MED.0000000000276
- Kobayashi F, Ogata H, Omi N, et al. Effect of breakfast skipping on diurnal variation of energy metabolism and blood glucose. *Obes Res Clin Pract.* 2014;8:e201–e298. doi:10.1016/j.orcp.2013.01.001
- Betts JA, Richardson JD, Chowdhury EA, et al. The causal role of breakfast in energy balance and health: a randomized controlled trial in lean adults. *Am J Clin Nutr.* 2014;100:539–547. doi:10.3945/ajcn.114.083402
- Pot GK. Sleep and dietary habits in the urban environment: the role of chrononutrition. *Proc Nutr Soc.* 2018;77:189–198. doi:10.1017/S0029665117003974
- Jakubowicz D, Wainstein J, Landau Z, et al. Influences of breakfast on clock gene expression and postprandial glycemia in healthy individuals and individuals with diabetes: a randomized clinical trial. *Diabetes Care*. 2017;40:1573–1579. doi:10.2337/dc16-2753
- 129. Giménez-Legarre N, Miguel-Berges ML, Flores-Barrantes P, et al. Breakfast characteristics and its association with daily micronutrients intake in children and adolescents—a systematic review and meta-analysis. *Nutrients*. 2020;12:3201. doi:10.3390/nu12103201
- 130. Jaeger V, Koletzko B, Luque V, et al. Distribution of energy and macronutrient intakes across eating occasions in European children from 3 to 8 years of age: the EU Childhood Obesity Project Study. *Eur J Nutr.* 2023;62:165–174. doi:10.1007/s00394-022-02944-6
- 131. Giménez-Legarre N, Santaliestra-Pasías AM, De Henauw S, et al. Breakfast consumption and its relationship with diet quality and adherence to Mediterranean diet in European adolescents: the HELENA study. Eur J Clin Nutr. 2022;76:1690–1696. doi:10.1038/s41430-022-01177-4

- Leidy HJ, Campbell WW. The effect of eating frequency on appetite control and food intake: brief synopsis of controlled feeding studies. J Nutr. 2011;141:154–157. doi:10.3945/jn.109.114389
- Farshchi HR, Taylor MA, Macdonald IA. Beneficial metabolic effects of regular meal frequency on dietary thermogenesis, insulin sensitivity, and fasting lipid profiles in healthy obese women. *Am J Clin Nutr.* 2005;81:16–24. doi:10.1093/ ajcn/81.1.16
- Alhussain MH, Macdonald IA, Taylor MA. Irregular meal-pattern effects on energy expenditure, metabolism, and appetite regulation: a randomized controlled trial in healthy normal-weight women. *Am J Clin Nutr.* 2016;104:21–32. doi:10.3945/ ajcn.115.125401
- Jennings A, Cassidy A, van Sluijs EMF, et al. Associations between eating frequency, adiposity, diet, and activity in 9-10 year old healthy-weight and centrally obese children. *Obesity (Silver Spring)*. 2012;20:1462–1468. doi:10.1038/ oby.2012.72
- 136. Titan SMO, Bingham S, Welch A, et al. Frequency of eating and concentrations of serum cholesterol in the Norfolk population of the European Prospective Investigation into Cancer (EPIC-Norfolk): cross sectional study. BMJ. 2001;323:1286–1288. doi:10.1136/bmj.323.7324.1286
- Hartline-Grafton HL, Rose D, Johnson CC, et al. The influence of weekday eating patterns on energy intake and BMI among female elementary school personnel. *Obesity (Silver Spring)*. 2010;18:736–742. doi:10.1038/oby.2009.249
- Yannakoulia M, Melistas L, Solomou E, et al. Association of eating frequency with body fatness in pre- and postmenopausal women. *Obesity (Silver Spring)*. 2007;15:100–106. doi:10.1038/oby.2007.503
- Cecil JE, Palmer CN, Wrieden W, et al. Energy intakes of children after preloads: adjustment, not compensation. Am J Clin Nutr. 2005;82:302–308. doi:10.1093/ ajcn/82.2.302
- 140. Farshchi HR, Taylor MA, Macdonald IA. Regular meal frequency creates more appropriate insulin sensitivity and lipid profiles compared with irregular meal frequency in healthy lean women. *Eur J Clin Nutr.* 2004;58:1071–1077. doi:10.1038/sj.ejcn.1601935
- 141. Mann J. Meal frequency and plasma lipids and lipoproteins. Br J Nutr. 1997;77(Suppl 1):S83–S90. doi:10.1079/BJN19970106
- 142. Asta K, Miller AL, Retzloff L, et al. Eating in the absence of hunger and weight gain in low-income toddlers. *Pediatrics*. 2016;137:e20153786. doi:10.1542/ peds.2015-3786
- Mooreville M, Davey A, Orloski A, et al. Individual differences in susceptibility to large portion sizes among obese and normal-weight children: susceptibility to large portion sizes. *Obesity (Silver Spring)*. 2015;23:808–814. doi:10.1002/ oby.21014
- Rudy E, Bauer KW, Hughes SO, et al. Interrelationships of child appetite, weight and snacking among Hispanic preschoolers: child appetite, weight, and snacking. *Pediatr Obes.* 2018;13:38–45. doi:10.1111/ijpo.12186
- Hampl JS, Heaton CLB, Taylor CA. Snacking patterns influence energy and nutrient intakes but not body mass index. J Hum Nutr Diet. 2003;16:3–11. doi:10.1046/j.1365-277X.2003.00417.x
- 146. Kerr MA, Rennie KL, McCaffrey TA, et al. Snacking patterns among adolescents: a comparison of type, frequency and portion size between Britain in 1997 and Northern Ireland in 2005. Br J Nutr. 2009;101:122–131. doi:10.1017/ S0007114508994769
- Ovaskainen ML, Reinivuo H, Tapanainen H, et al. Snacks as an element of energy intake and food consumption. *Eur J Clin Nutr.* 2006;60:494–501. doi:10.1038/ sj.ejcn.1602343
- Kerver JM, Yang EJ, Obayashi S, et al. Meal and snack patterns are associated with dietary intake of energy and nutrients in US adults. J Am Diet Assoc. 2006;106:46–53. doi:10.1016/j.jada.2005.09.045
- 149. Drummond S, Crombie N, Kirk T. A critique of the effects of snacking on body weight status. *Eur J Clin Nutr.* 1996;50:779–783.
- Nicklas TA, Baranowski T, Cullen KW, et al. Eating patterns, dietary quality and obesity. J Am Coll Nutr. 2001;20:599–608. doi:10.1080/07315724.2001.10719064
- Jahns L, Siega-Riz AM, Popkin BM. The increasing prevalence of snacking among US children from 1977 to 1996. J Pediatr. 2001;138:493–498. doi:10.1067/ mpd.2001.112162
- Skinner JD, Ziegler P, Pac S, et al. Meal and snack patterns of infants and toddlers. J Am Diet Assoc. 2004;104:S65–70. doi:10.1016/j.jada.2003.10.021
- 153. St-Onge MP, Ard J, Baskin ML, et al.; American Heart Association Obesity Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Clinical Cardiology; Stroke Council. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. *Circulation* 2017;135:e96–e121. doi:10.1161/CIR.000000000000476
- Koletzko B, Fishbein M, Lee WS, et al. Prevention of childhood obesity: a position paper of the global Federation of International Societies of Paediatric Gastroenterology, Hepatology and Nutrition (FISPGHAN). J Pediatr Gastroenterol Nutr. 2020;70:702–710. doi:10.1097/MPG.000000000002708

- 155. Nakajima K, Suwa K. Association of hyperglycemia in a general Japanese population with late-night-dinner eating alone, but not breakfast skipping alone. J Diabetes Metab Disord. 2015;14:16. doi:10.1186/s40200-015-0147-0
- Lopez-Minguez J, Saxena R, Bandín C, et al. Late dinner impairs glucose tolerance in MTNR1B risk allele carriers: a randomized, cross-over study. *Clin Nutr.* 2018;37:1133–1140. doi:10.1016/j.clnu.2017.04.003
- Nyangasa MA, Buck C, Kelm S, et al. Association between cardiometabolic risk factors and body mass index, waist circumferences and body fat in a Zanzibari cross-sectional study. *BMJ Open*. 2019;9:e025397. doi:10.1136/bmjopen-2018-025397
- Lopes TdV, Borba ME, Lopes RdV, et al. Eating late negatively affects sleep pattern and apnea severity in individuals with sleep apnea. J Clin Sleep Med. 2019;15:383–392. doi:10.5664/jcsm.7658
- Li L, Zhang S, Huang Y, et al. Sleep duration and obesity in children: a systematic review and meta-analysis of prospective cohort studies: sleep duration and obesity. J Paediatr Child Health. 2017;53:378–385. doi:10.1111/jpc.13434
- Yoncheva YN, Castellanos FX, Pizinger T, et al. Sleep and meal-time misalignment alters functional connectivity: a pilot resting-state study. Int J Obes (Lond). 2016;40:1813–1816. doi:10.1038/ijo.2016.132
- Taheri S, Lin L, Austin D, et al. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. *PLoS Med.* 2004;1:e62. doi:10.1371/journal.pmed.0010062
- 162. de Castro JM. The time of day and the proportions of macronutrients eaten are related to total daily food intake. Br J Nutr. 2007;98:1077–1083. doi:10.1017/ S0007114507754296
- 163. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. *Endocr Rev.* 2000;21:55–89. doi:10.1210/edrv.21.1.0389
- 164. van de Werken M, Booij SH, van der Zwan JE, et al. The biological clock modulates the human cortisol response in a multiplicative fashion. *Chronobiol Int.* 2014;31:572–580. doi:10.3109/07420528.2013.868472
- Barraco GM, Martínez-Lozano N, Vales-Villamarín C, et al. Circadian health differs between boys and girls as assessed by non-invasive tools in school-aged children. *Clin Nutr.* 2019;38:774–781. doi:10.1016/j.clnu.2018.03.001
- Corbalán-Tutau MD, Madrid JA, Ordovás JM, et al. Differences in daily rhythms of wrist temperature between obese and normal-weight women: associations with metabolic syndrome features. *Chronobiol Int.* 2011;28:425–433. doi:10.3109/ 07420528.2011.574766
- 167. Sinha R, Gu P, Hart R, et al. Food craving, cortisol and ghrelin responses in modeling highly palatable snack intake in the laboratory. *Physiol Behav.* 2019;208:112563. doi:10.1016/j.physbeh.2019.112563
- Scheer FAJL, Morris CJ, Shea SA. The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors: body clock controls hunger. *Obesity (Silver Spring)*. 2013;21:421–423. doi:10.1002/oby.20351
- Challet E. The circadian regulation of food intake. Nat Rev Endocrinol. 2019;15:393–405. doi:10.1038/s41574-019-0210-x
- Wehrens SMT, Christou S, Isherwood C, et al. Meal timing regulates the human circadian system. *Curr Biol.* 2017;27:1768–1775.e3. doi:10.1016/j.cub.2017.04.059
- Lopez-Minguez J, Dashti HS, Madrid-Valero JJ, et al. Heritability of the timing of food intake. *Clin Nutr.* 2019;38:767–773. doi:10.1016/j.clnu.2018.03.002
- 172. Silva CM, Mota MC, Miranda MT, et al. Chronotype, social jetlag and sleep debt are associated with dietary intake among Brazilian undergraduate students. *Chronobiol Int.* 2016;33:740–748. doi:10.3109/07420528.2016.1167712
- 173. Teixeira GP, Barreto A de CF, Mota MC, et al. Caloric midpoint is associated with total calorie and macronutrient intake and body mass index in undergraduate students. *Chronobiol Int.* 2019;36:1418–1428. doi:10.1080/ 07420528.2019.1652830
- 174. Yazdinezhad A, Askarpour M, Aboushamsia MM, et al.; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Evaluating the effect of chronotype on meal timing and obesity in iranian housewives: a cross-sectional study. J Adv Med Biomed Res. 2019;27:31–36. doi:10.30699/jambs.27.124.31
- 175. Paoli A, Tinsley G, Bianco A, et al. The influence of meal frequency and timing on health in humans: the role of fasting. *Nutrients*. 2019;11:719. doi:10.3390/ nu11040719
- McHill AW, Melanson EL, Higgins J, et al. Impact of circadian misalignment on energy metabolism during simulated nightshift work. *Proc Natl Acad Sci USA*. 2014;111:17302–17307. doi:10.1073/pnas.1412021111
- Xiao Q, Garaulet M, Scheer FAJL. Meal timing and obesity: interactions with macronutrient intake and chronotype. *Int J Obes (Lond)*. 2019;43:1701–1711. doi:10.1038/s41366-018-0284-x
- McHill AW, Phillips AJ, Czeisler CA, et al. Later circadian timing of food intake is associated with increased body fat. Am J Clin Nutr. 2017;106:1213–1219. doi:10.3945/ajcn.117.161588