Ionizing radiation induces a series of multiple intracellular events which can lead to activation of caspases, cytoplasmic proteases involved in the occurrence of apoptosis. The response of leukemic cells to ionizing radiation is amplified when they have been pre-treated with the anticancer drug etoposide, therefore the aim of this work has been to establish the lowest etoposide concentration combined with the lowest ionizing radiation dose to obtain the best antineoplastic response. Two leukemic cell lines, HL-60 and Jurkat, employed in this study demonstrated different sensitivities to ionizing radiation and to etoposide treatment, with Jurkat T cells requiring a higher dose (1 microM) to display cell cycle perturbation and apoptotic DNA damage similar to those seen in HL-60. We hypothesize that this kind of response could be mediated by mitochondrial release of apoptogenic factors and by SAPK/JNK metabolic pathway activation, both leading to caspase-3 cleavage. All in all these results provide insight into the sensitivity or resistance of leukemic cells to antineoplastic agents and identify molecular targets for rational therapeutic intervention strategies.

Caspase-3 is dually regulated by apoptogenic factors mitochondrial release and by SAPK/JNK metabolic pathway in leukemic cells exposed to etoposide-ionizing radiation combined treatment.

DI PIETRO, Roberta;CENTURIONE, Lucia;SANCILIO, SILVIA;RANA, Rosa Alba;CATALDI, Amelia
2004-01-01

Abstract

Ionizing radiation induces a series of multiple intracellular events which can lead to activation of caspases, cytoplasmic proteases involved in the occurrence of apoptosis. The response of leukemic cells to ionizing radiation is amplified when they have been pre-treated with the anticancer drug etoposide, therefore the aim of this work has been to establish the lowest etoposide concentration combined with the lowest ionizing radiation dose to obtain the best antineoplastic response. Two leukemic cell lines, HL-60 and Jurkat, employed in this study demonstrated different sensitivities to ionizing radiation and to etoposide treatment, with Jurkat T cells requiring a higher dose (1 microM) to display cell cycle perturbation and apoptotic DNA damage similar to those seen in HL-60. We hypothesize that this kind of response could be mediated by mitochondrial release of apoptogenic factors and by SAPK/JNK metabolic pathway activation, both leading to caspase-3 cleavage. All in all these results provide insight into the sensitivity or resistance of leukemic cells to antineoplastic agents and identify molecular targets for rational therapeutic intervention strategies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/119306
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact