OBJECTIVES: Autologous, allogenic, and alloplastic materials for sinus augmentation have specific drawbacks, which has stimulated an ongoing search for new materials and tissue-engineering constructs. We investigated whether mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) seeded on a fluorohydroxyapatite (FH) scaffold can improve bone formation and bone-to-implant contact (BIC) in maxillary sinus grafting. MATERIAL AND METHODS: Bilateral sinus augmentation procedures were performed in eight minipigs. MSCs, PRP, and FH scaffold (test site) or FH alone (control site) were grafted in each maxillary sinus. Distal to the osteotomy, one dental implant per sinus was placed in the grafting material through the facial sinus wall. The animals were killed 3 months after grafting, and block sections of the implant sites were harvested and prepared for histomorphometric analysis. RESULTS: After 12 weeks, a significant increase in bone formation occurred in the test sites compared with the control sites (42.51%versus 18.98%; p=0.001). In addition, BIC was significantly greater in the test sites compared with the control sites in the regenerated area (23.71%versus 6.63%; p=0.028). CONCLUSIONS: These findings show that sinus augmentation with MSCs-PRP, combined with FH may enhance bone formation and osseointegration of dental implants compared with FH alone in minipigs.

Mesenchymal stem cells and platelet-rich plasma enhance bone formation in sinus grafting: a histomorphometric study in mini pigs.

IEZZI, GIOVANNA;PIATTELLI, Adriano;
2008-01-01

Abstract

OBJECTIVES: Autologous, allogenic, and alloplastic materials for sinus augmentation have specific drawbacks, which has stimulated an ongoing search for new materials and tissue-engineering constructs. We investigated whether mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) seeded on a fluorohydroxyapatite (FH) scaffold can improve bone formation and bone-to-implant contact (BIC) in maxillary sinus grafting. MATERIAL AND METHODS: Bilateral sinus augmentation procedures were performed in eight minipigs. MSCs, PRP, and FH scaffold (test site) or FH alone (control site) were grafted in each maxillary sinus. Distal to the osteotomy, one dental implant per sinus was placed in the grafting material through the facial sinus wall. The animals were killed 3 months after grafting, and block sections of the implant sites were harvested and prepared for histomorphometric analysis. RESULTS: After 12 weeks, a significant increase in bone formation occurred in the test sites compared with the control sites (42.51%versus 18.98%; p=0.001). In addition, BIC was significantly greater in the test sites compared with the control sites in the regenerated area (23.71%versus 6.63%; p=0.028). CONCLUSIONS: These findings show that sinus augmentation with MSCs-PRP, combined with FH may enhance bone formation and osseointegration of dental implants compared with FH alone in minipigs.
File in questo prodotto:
File Dimensione Formato  
MESENCHYMALSTEM CELLS JCP.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/137965
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 45
social impact