Thyroglobulin (Tg), a major product of the thyroid gland, serves as a macromolecular precursor of thyroid hormone biosynthesis. In addition, Tg stored in the thyroid follicles is a potent regulator of thyroid-specific gene expression. In conjunction with thyroid stimulating hormone (TSH) and iodide, Tg regulates thyroid follicle function, which is the minimal functional unit of the thyroid gland. In the present study, we show that Tg stimulates growth of FRTL-5 thyroid cells in the absence of TSH, insulin and serum. Unlike TSH, Tg did not increase cellular cyclic AMP (cAMP) levels; rather, the TSH signal counteracted Tg-induced cell growth. A specific inhibitor of A-kinase, H-89, did not modulate the effect of Tg. Tg increased kinase activity of Akt to the same level as TSH, insulin and 5% serum, while LY294002 abolished Tg-induced growth. Interestingly, low Tg concentrations maximized growth-promotion activity and induction of the apical iodide transporter (PDS; SLC26A4), whereas high Tg concentrations suppressed both cell growth and the expression of thyroid-specific genes. These results suggest that a low levels of Tg in the follicular lumen might stimulates cell growth and iodide transport to accelerate the iodide organification process; however, elevated Tg levels in the follicle might then shut down all of these functions.

Thyroglobulin (Tg) induces thyroid cell growth in a concentration-specific manner by a mechanism other than thyrotropin/cAMP stimulation.

GIULIANI, Cesidio;
2010-01-01

Abstract

Thyroglobulin (Tg), a major product of the thyroid gland, serves as a macromolecular precursor of thyroid hormone biosynthesis. In addition, Tg stored in the thyroid follicles is a potent regulator of thyroid-specific gene expression. In conjunction with thyroid stimulating hormone (TSH) and iodide, Tg regulates thyroid follicle function, which is the minimal functional unit of the thyroid gland. In the present study, we show that Tg stimulates growth of FRTL-5 thyroid cells in the absence of TSH, insulin and serum. Unlike TSH, Tg did not increase cellular cyclic AMP (cAMP) levels; rather, the TSH signal counteracted Tg-induced cell growth. A specific inhibitor of A-kinase, H-89, did not modulate the effect of Tg. Tg increased kinase activity of Akt to the same level as TSH, insulin and 5% serum, while LY294002 abolished Tg-induced growth. Interestingly, low Tg concentrations maximized growth-promotion activity and induction of the apical iodide transporter (PDS; SLC26A4), whereas high Tg concentrations suppressed both cell growth and the expression of thyroid-specific genes. These results suggest that a low levels of Tg in the follicular lumen might stimulates cell growth and iodide transport to accelerate the iodide organification process; however, elevated Tg levels in the follicle might then shut down all of these functions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/165207
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 35
social impact