Zinc (Zn) and selenium (Se) exert regulatory activities on immune functions, while cadmium (Cd) is an immunotoxic agent. The object of this study was to detect effects of 10(-4), 10(-5), and 10(-6) M Cd sulphate, Zn sulphate, and sodium selenite, and their combinations on human peripheral blood mononuclear cell (PBMC) proliferation and IFN-gamma and TNF-alpha production. Only 10(-5) M Zn sulphate significantly enhanced spontaneous PBMC proliferation, which was unaffected by the other salts. At 10(-4) and 10(-5) M, Cd sulphate exerted a dose-response inhibitory action on phytohemagglutinin- (PHA-) stimulated PBMC proliferation and cytokine release, while 10(-4) M and 10(-5) M Zn sulphate and 10(-5) M sodium selenite induced a stimulatory effect on both proliferation and cytokine release; 10(-4) M sodium selenite enhanced only the PBMC proliferation; at 10(-6) M, none of the salts changed the PHA-stimulated immune activity. Moreover, 10(-4) and 10(-5) M Zn and 10(-5) M Se strongly upregulated IFN-gamma (a Th1 cytokine) release, even in presence of 10(-5) M Cd, and reduced the inhibitory effects of Cd on PBMC proliferation and TNF-alpha release. This study confirms that Zn and Se both strongly enhance cytokine release induced by mitogenic stimulation, showing also that Zn acts with a broader range of concentrations than Se. This suggests that dietary excess of Se may not have beneficial effects.

Inhibitory effects of cadmium on peripheral blood mononuclear cell proliferation and cytokine release are reversed by zinc and selenium salts

BOSCOLO, Paolo;DI GIAMPAOLO, LUCA;NIU, QIAO;REALE, Marcella;CASTELLANI, Maria Luisa;TRAVAGLINI, PAOLA;VERNA, Nicola;PAGANELLI, Roberto;DI GIOACCHINO, Mario
2005-01-01

Abstract

Zinc (Zn) and selenium (Se) exert regulatory activities on immune functions, while cadmium (Cd) is an immunotoxic agent. The object of this study was to detect effects of 10(-4), 10(-5), and 10(-6) M Cd sulphate, Zn sulphate, and sodium selenite, and their combinations on human peripheral blood mononuclear cell (PBMC) proliferation and IFN-gamma and TNF-alpha production. Only 10(-5) M Zn sulphate significantly enhanced spontaneous PBMC proliferation, which was unaffected by the other salts. At 10(-4) and 10(-5) M, Cd sulphate exerted a dose-response inhibitory action on phytohemagglutinin- (PHA-) stimulated PBMC proliferation and cytokine release, while 10(-4) M and 10(-5) M Zn sulphate and 10(-5) M sodium selenite induced a stimulatory effect on both proliferation and cytokine release; 10(-4) M sodium selenite enhanced only the PBMC proliferation; at 10(-6) M, none of the salts changed the PHA-stimulated immune activity. Moreover, 10(-4) and 10(-5) M Zn and 10(-5) M Se strongly upregulated IFN-gamma (a Th1 cytokine) release, even in presence of 10(-5) M Cd, and reduced the inhibitory effects of Cd on PBMC proliferation and TNF-alpha release. This study confirms that Zn and Se both strongly enhance cytokine release induced by mitogenic stimulation, showing also that Zn acts with a broader range of concentrations than Se. This suggests that dietary excess of Se may not have beneficial effects.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/676405
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact