Equilibrium constants for the proton transfer reaction between pyridines and trifluoroacetic acid were measured in room-temperature ionic liquids (ILs) of different cation–anion compositions. The experimental equilibrium constants for ion-pair formation were corrected according to the Fuoss equation. The calculated equilibrium constants for the formation of free ions were taken as a quantitative measure of the base strength in IL solutions and compared with the relative constants in water. The effect of IL composition is discussed for a series of fixed IL anions and fixed IL cations. Finally, the sensitivity of the proton transfer reaction to the electronic effects of the substituent groups on the pyridine ring was quantified by applying the Hammett equation. A more marked levelling effect on the base strength was observed in ILs than in water. The Hammett reaction constants ρ were then correlated with solvent parameters according to a multi-parametric analysis, which showed that both specific hydrogen-bond donor/acceptor and non-specific interactions play an important role, with α and permittivity being the main parameters affecting the ability of the IL to differentiate the strength of the base.

Ionic Liquids as “Masking” Solvents of the Relative Strength of Bases in Proton Transfer Reactions

Zappacosta, Romina;Di Crescenzo, Antonello;Ettorre, Valeria;Fontana, Antonella;Siani, Gabriella
2018-01-01

Abstract

Equilibrium constants for the proton transfer reaction between pyridines and trifluoroacetic acid were measured in room-temperature ionic liquids (ILs) of different cation–anion compositions. The experimental equilibrium constants for ion-pair formation were corrected according to the Fuoss equation. The calculated equilibrium constants for the formation of free ions were taken as a quantitative measure of the base strength in IL solutions and compared with the relative constants in water. The effect of IL composition is discussed for a series of fixed IL anions and fixed IL cations. Finally, the sensitivity of the proton transfer reaction to the electronic effects of the substituent groups on the pyridine ring was quantified by applying the Hammett equation. A more marked levelling effect on the base strength was observed in ILs than in water. The Hammett reaction constants ρ were then correlated with solvent parameters according to a multi-parametric analysis, which showed that both specific hydrogen-bond donor/acceptor and non-specific interactions play an important role, with α and permittivity being the main parameters affecting the ability of the IL to differentiate the strength of the base.
File in questo prodotto:
File Dimensione Formato  
2018_ChemPlusChem_83_35.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 763.99 kB
Formato Adobe PDF
763.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/685195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact