Objective: The aim of this multicenter prospective study was to analyze clinically and histologically the influence of sinus cavity dimensions on new bone formation after transcrestal sinus floor elevation (tSFE). Material and methods: Patients needing maxillary sinus augmentation (residual crest height <5 mm) were treated with tSFE using xenogeneic granules. Six months later, bone-core biopsies were retrieved for histological analysis in implant insertion sites. Bucco-palatal sinus width (SW) and contact between graft and bone walls (WGC) were evaluated on cone beam computed tomography, and correlations between histomorphometric and anatomical parameters were quantified by means of forward multiple linear regression analysis. Results: Fifty consecutive patients were enrolled and underwent tSFE procedures, and forty-four were included in the final analysis. Mean percentage of newly formed bone (NFB) at 6 months was 21.2 ± 16.9%. Multivariate analysis showed a strong negative correlation between SW and NFB (R2 = .793) and a strong positive correlation between WGC and NFB (R2 = .781). Furthermore, when SW was stratified into three groups (<12 mm, 12 to 15 mm, and >15 mm), NFB percentages (36%, 13% and 3%, respectively) resulted significantly different. Conclusions: This study represented the first confirmation based on histomorphometric data that NFB after tSFE was strongly influenced by sinus width and occurred consistently only in narrow sinus cavities (SW <12 mm, measured between buccal and palatal walls at 10-mm level, comprising the residual alveolar crest).

New bone formation after transcrestal sinus floor elevation was influenced by sinus cavity dimensions: A prospective histologic and histomorphometric study

Traini, Tonino
2018-01-01

Abstract

Objective: The aim of this multicenter prospective study was to analyze clinically and histologically the influence of sinus cavity dimensions on new bone formation after transcrestal sinus floor elevation (tSFE). Material and methods: Patients needing maxillary sinus augmentation (residual crest height <5 mm) were treated with tSFE using xenogeneic granules. Six months later, bone-core biopsies were retrieved for histological analysis in implant insertion sites. Bucco-palatal sinus width (SW) and contact between graft and bone walls (WGC) were evaluated on cone beam computed tomography, and correlations between histomorphometric and anatomical parameters were quantified by means of forward multiple linear regression analysis. Results: Fifty consecutive patients were enrolled and underwent tSFE procedures, and forty-four were included in the final analysis. Mean percentage of newly formed bone (NFB) at 6 months was 21.2 ± 16.9%. Multivariate analysis showed a strong negative correlation between SW and NFB (R2 = .793) and a strong positive correlation between WGC and NFB (R2 = .781). Furthermore, when SW was stratified into three groups (<12 mm, 12 to 15 mm, and >15 mm), NFB percentages (36%, 13% and 3%, respectively) resulted significantly different. Conclusions: This study represented the first confirmation based on histomorphometric data that NFB after tSFE was strongly influenced by sinus width and occurred consistently only in narrow sinus cavities (SW <12 mm, measured between buccal and palatal walls at 10-mm level, comprising the residual alveolar crest).
File in questo prodotto:
File Dimensione Formato  
clr.13144.pdf

Solo gestori archivio

Descrizione: Original Research
Tipologia: PDF editoriale
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/691910
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 51
social impact