In fast-twitch fibers from adult mice Ca2+ release units (CRUs, i.e. intracellular junctions of excitation-contraction coupling), and mitochondria are structurally linked to each other by small strands, named tethers. We recently showed that aging causes separation of a fraction of mitochondria from CRUs and a consequent impairment of the Ca2+ signaling between the two organelles. However, whether the uncoupling of mitochondria from CRUs is the result of aging per-se or the consequence of reduced muscle activity remains still unclear. Here we studied the association between mitochondria and CRUs: in a) extensor digitorum longus (EDL) muscles from 2 years old mice, either sedentary or trained for 1 year in wheel cages; and b) denervated EDL muscles from adult mice and rats. We analyzed muscle samples using a combination of structural (confocal and electron microscopy), biochemical (assessment of oxidative stress via western blot), and functional (ex-vivo contractile properties, and mitochondrial Ca2+ uptake) experimental procedures. The results collected in structural studies indicate that: a) ageing and denervation result in partial uncoupling between mitochondria and CRUs; b) exercise either maintains (in old mice) or restores (in transiently denervated rats) the association between the two organelles. Functional studies supported the hypothesis that CRU-mitochondria coupling is important for mitochondrial Ca2+ uptake, optimal force generation, and muscle performance. Taken together our results indicate that muscle activity maintains/improves proper association between CRUs and mitochondria.

Muscle activity prevents the uncoupling of mitochondria from Ca2+ Release Units induced by ageing and disuse

Pietrangelo, Laura
Primo
;
Michelucci, Antonio
Secondo
;
Guarnier, Flavia A.;FUSELLA, AURORA;Protasi, Feliciano
Penultimo
;
Boncompagni, Simona
Ultimo
2019-01-01

Abstract

In fast-twitch fibers from adult mice Ca2+ release units (CRUs, i.e. intracellular junctions of excitation-contraction coupling), and mitochondria are structurally linked to each other by small strands, named tethers. We recently showed that aging causes separation of a fraction of mitochondria from CRUs and a consequent impairment of the Ca2+ signaling between the two organelles. However, whether the uncoupling of mitochondria from CRUs is the result of aging per-se or the consequence of reduced muscle activity remains still unclear. Here we studied the association between mitochondria and CRUs: in a) extensor digitorum longus (EDL) muscles from 2 years old mice, either sedentary or trained for 1 year in wheel cages; and b) denervated EDL muscles from adult mice and rats. We analyzed muscle samples using a combination of structural (confocal and electron microscopy), biochemical (assessment of oxidative stress via western blot), and functional (ex-vivo contractile properties, and mitochondrial Ca2+ uptake) experimental procedures. The results collected in structural studies indicate that: a) ageing and denervation result in partial uncoupling between mitochondria and CRUs; b) exercise either maintains (in old mice) or restores (in transiently denervated rats) the association between the two organelles. Functional studies supported the hypothesis that CRU-mitochondria coupling is important for mitochondrial Ca2+ uptake, optimal force generation, and muscle performance. Taken together our results indicate that muscle activity maintains/improves proper association between CRUs and mitochondria.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0003986118307665-main.pdf

Solo gestori archivio

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 4.01 MB
Formato Adobe PDF
4.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/702225
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact