The Cassini mission discovered lakes and seas comprising mostly methane in the polar regions of Titan. Lakes of liquid nitrogen may have existed during the epochs of Titan’s past in which methane was photochemically depleted, leaving a nearly pure molecular nitrogen atmosphere and, thus, far colder temperatures. The modern-day small lake basins with sharp edges have been suggested to originate from dissolution processes, due to their morphological similarity to terrestrial karstic lakes. Here we analyse the morphology of the small lake basins that feature raised rims to elucidate their origin, using delay-Doppler processed altimetric and bathymetric data acquired during the last close flyby of Titan by the Cassini spacecraft. We find that the morphology of the raised-rim basins is analogous to that of explosion craters from magma–water interaction on Earth and therefore propose that these basins are from near-surface vapour explosions, rather than karstic. We calculate that the phase transition of liquid nitrogen in the near subsurface during a warming event can generate explosions sufficient to form the basins. Hence, we suggest that raised-rim basins are evidence for one or more warming events terminating a nitrogen-dominated cold episode on Titan.

Possible explosion crater origin of small lake basins with raised rims on Titan

Mitri G.
Primo
;
2019-01-01

Abstract

The Cassini mission discovered lakes and seas comprising mostly methane in the polar regions of Titan. Lakes of liquid nitrogen may have existed during the epochs of Titan’s past in which methane was photochemically depleted, leaving a nearly pure molecular nitrogen atmosphere and, thus, far colder temperatures. The modern-day small lake basins with sharp edges have been suggested to originate from dissolution processes, due to their morphological similarity to terrestrial karstic lakes. Here we analyse the morphology of the small lake basins that feature raised rims to elucidate their origin, using delay-Doppler processed altimetric and bathymetric data acquired during the last close flyby of Titan by the Cassini spacecraft. We find that the morphology of the raised-rim basins is analogous to that of explosion craters from magma–water interaction on Earth and therefore propose that these basins are from near-surface vapour explosions, rather than karstic. We calculate that the phase transition of liquid nitrogen in the near subsurface during a warming event can generate explosions sufficient to form the basins. Hence, we suggest that raised-rim basins are evidence for one or more warming events terminating a nitrogen-dominated cold episode on Titan.
File in questo prodotto:
File Dimensione Formato  
Mitri_Possibile-explosion_2019.pdf

Solo gestori archivio

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 2.97 MB
Formato Adobe PDF
2.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/713159
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact