This study aimed to investigate the mineralization and chemical composition of the bone-implant interface and peri-implant tissues on human histological samples using an environmental scanning electron microscope as well as energy-dispersive x-ray spectroscopy (ESEM-EDX) as an innovative method. Eight unloaded implants with marginal bone tissue were retrieved after four months from eight patients and were histologically processed and analyzed. Histological samples were observed under optical microscopy (OM) to identify the microarchitecture of the sample and bone morphology. Then, all samples were observed under ESEM-EDX from the coronal to the most apical portion of the implant at 500x magnification. A region of interest with bone tissue of size 750 × 500 microns was selected to correspond to the first coronal and the last apical thread (ROI). EDX microanalysis was used to assess the elemental composition of the bone tissue along the thread interface and the ROI. Atomic percentages of Ca, P, N, and Ti, and the Ca/N, P/N and Ca/P ratios were measured in the ROI. Four major bone mineralization areas were identified based on the different chemical composition and ratios of the ROI. Area 1: A well-defined area with low Ca/N, P/N, and Ca/P was identified as low-density bone. Area 2: A defined area with higher Ca/N, P/N, and Ca/P, identified as new bone tissue, or bone remodeling areas. Area 3: A well-defined area with high Ca/N, /P/N, and Ca/P ratios, identified as bone tissue or bone chips. Area 4: An area with high Ca/N, P/N, and Ca/P ratios, which was identified as mature old cortical bone. Bone Area 2 was the most represented area along the bone-implant interface, while Bone Area 4 was identified only at sites approximately 1.5 mm from the interface. All areas were identified around implant biopsies, creating a mosaic-shaped distribution with well-defined borders. ESEM-EDX in combination with OM allowed to perform a microchemical analysis and offered new important information on the organic and inorganic content of the bone tissue around implants.

The use of ESEM-EDX as an innovative tool to analyze the mineral structure of peri-implant human bone

Piattelli A.;
2020-01-01

Abstract

This study aimed to investigate the mineralization and chemical composition of the bone-implant interface and peri-implant tissues on human histological samples using an environmental scanning electron microscope as well as energy-dispersive x-ray spectroscopy (ESEM-EDX) as an innovative method. Eight unloaded implants with marginal bone tissue were retrieved after four months from eight patients and were histologically processed and analyzed. Histological samples were observed under optical microscopy (OM) to identify the microarchitecture of the sample and bone morphology. Then, all samples were observed under ESEM-EDX from the coronal to the most apical portion of the implant at 500x magnification. A region of interest with bone tissue of size 750 × 500 microns was selected to correspond to the first coronal and the last apical thread (ROI). EDX microanalysis was used to assess the elemental composition of the bone tissue along the thread interface and the ROI. Atomic percentages of Ca, P, N, and Ti, and the Ca/N, P/N and Ca/P ratios were measured in the ROI. Four major bone mineralization areas were identified based on the different chemical composition and ratios of the ROI. Area 1: A well-defined area with low Ca/N, P/N, and Ca/P was identified as low-density bone. Area 2: A defined area with higher Ca/N, P/N, and Ca/P, identified as new bone tissue, or bone remodeling areas. Area 3: A well-defined area with high Ca/N, /P/N, and Ca/P ratios, identified as bone tissue or bone chips. Area 4: An area with high Ca/N, P/N, and Ca/P ratios, which was identified as mature old cortical bone. Bone Area 2 was the most represented area along the bone-implant interface, while Bone Area 4 was identified only at sites approximately 1.5 mm from the interface. All areas were identified around implant biopsies, creating a mosaic-shaped distribution with well-defined borders. ESEM-EDX in combination with OM allowed to perform a microchemical analysis and offered new important information on the organic and inorganic content of the bone tissue around implants.
File in questo prodotto:
File Dimensione Formato  
materials-13-01671.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: PDF editoriale
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/722907
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 16
social impact