Mesoporous silicon microparticles (MSMPs) can incorporate drug-carrying nanoparticles (NPs) into their pores. An NP-loaded MSMP is a multistage vector (MSV) that forms a Matryoshka-like structure that protects the therapeutic cargo from degradation and prevents its dilution in the circulation during delivery to tumor cells. We developed an MSV constituted by 1 µm discoidal MSMPs embedded with PEGylated liposomes containing oxaliplatin (oxa) which is a therapeutic agent for colorectal cancer (CRC). To obtain extra-small liposomes able to fit the 60 nm pores of MSMP, we tested several liposomal formulations, and identified two optimal compositions, with a prevalence of the rigid lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methossy(polyethilenglicol)-2000]. To improve the MSV assembly, we optimized the liposome-loading inside the MSMP and achieved a five-fold increase of the payload using an innovative lyophilization approach. This procedure also increased the load and limited dimensional changes of the liposomes released from the MSV in vitro. Lastly, we found that that the cytotoxic efficacy of oxa-loaded liposomes and-oxa-liposome-MSV in CRC cell culture was similar to that of free oxa. This study increases knowledge about extra-small liposomes and their loading into porous materials, and provides useful hints about alternative strategies for designing drug-encapsulating NPs.

Liposome-Embedding Silicon Microparticle for Oxaliplatin Delivery in Tumor Chemotherapy

Christian Celia;Marcello Locatelli;Luisa Di Marzio;
2020-01-01

Abstract

Mesoporous silicon microparticles (MSMPs) can incorporate drug-carrying nanoparticles (NPs) into their pores. An NP-loaded MSMP is a multistage vector (MSV) that forms a Matryoshka-like structure that protects the therapeutic cargo from degradation and prevents its dilution in the circulation during delivery to tumor cells. We developed an MSV constituted by 1 µm discoidal MSMPs embedded with PEGylated liposomes containing oxaliplatin (oxa) which is a therapeutic agent for colorectal cancer (CRC). To obtain extra-small liposomes able to fit the 60 nm pores of MSMP, we tested several liposomal formulations, and identified two optimal compositions, with a prevalence of the rigid lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methossy(polyethilenglicol)-2000]. To improve the MSV assembly, we optimized the liposome-loading inside the MSMP and achieved a five-fold increase of the payload using an innovative lyophilization approach. This procedure also increased the load and limited dimensional changes of the liposomes released from the MSV in vitro. Lastly, we found that that the cytotoxic efficacy of oxa-loaded liposomes and-oxa-liposome-MSV in CRC cell culture was similar to that of free oxa. This study increases knowledge about extra-small liposomes and their loading into porous materials, and provides useful hints about alternative strategies for designing drug-encapsulating NPs.
File in questo prodotto:
File Dimensione Formato  
Pharmaceutics (2020) 559 12(6) 1-28.pdf

accesso aperto

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 7.07 MB
Formato Adobe PDF
7.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/724660
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact