Severe COVID-19 infection results in bilateral interstitial pneumonia, often leading to acute respiratory distress syndrome (ARDS) and pulmonary fibrosis in survivors. Most patients with severe COVID-19 infections who died had developed ARDS. Currently, ARDS is treated with supportive measures, but regenerative medicine approaches including extracellular vesicle (EV)-based therapies have shown promise. Herein, we aimed to analyse whether EV-based therapies could be effective in treating severe pulmonary conditions that affect COVID-19 patients and to understand their relevance for an eventual therapeutic application to human patients. Using a defined search strategy, we conducted a systematic review of the literature and found 39 articles (2014-2020) that reported effects of EVs, mainly derived from stem cells, in lung injury models (one large animal study, none in human). EV treatment resulted in: (1) attenuation of inflammation (reduction of pro-inflammatory cytokines and neutrophil infiltration, M2 macrophage polarization); (2) regeneration of alveolar epithelium (decreased apoptosis and stimulation of surfactant production); (3) repair of microvascular permeability (increased endothelial cell junction proteins); (4) prevention of fibrosis (reduced fibrin production). These effects were mediated by the release of EV cargo and identified factors including miRs-126, -30b-3p, -145, -27a-3p, syndecan-1, hepatocyte growth factor and angiopoietin-1. This review indicates that EV-based therapies hold great potential for COVID-19 related lung injuries as they target multiple pathways and enhance tissue regeneration. However, before translating EV therapies into human clinical trials, efforts should be directed at developing good manufacturing practice solutions for EVs and testing optimal dosage and administration route in large animal models.

Systematic review of extracellular vesicle-based treatments for lung injury: are EVs a potential therapy for COVID-19?

Lauriti, Giuseppe
Penultimo
;
2020-01-01

Abstract

Severe COVID-19 infection results in bilateral interstitial pneumonia, often leading to acute respiratory distress syndrome (ARDS) and pulmonary fibrosis in survivors. Most patients with severe COVID-19 infections who died had developed ARDS. Currently, ARDS is treated with supportive measures, but regenerative medicine approaches including extracellular vesicle (EV)-based therapies have shown promise. Herein, we aimed to analyse whether EV-based therapies could be effective in treating severe pulmonary conditions that affect COVID-19 patients and to understand their relevance for an eventual therapeutic application to human patients. Using a defined search strategy, we conducted a systematic review of the literature and found 39 articles (2014-2020) that reported effects of EVs, mainly derived from stem cells, in lung injury models (one large animal study, none in human). EV treatment resulted in: (1) attenuation of inflammation (reduction of pro-inflammatory cytokines and neutrophil infiltration, M2 macrophage polarization); (2) regeneration of alveolar epithelium (decreased apoptosis and stimulation of surfactant production); (3) repair of microvascular permeability (increased endothelial cell junction proteins); (4) prevention of fibrosis (reduced fibrin production). These effects were mediated by the release of EV cargo and identified factors including miRs-126, -30b-3p, -145, -27a-3p, syndecan-1, hepatocyte growth factor and angiopoietin-1. This review indicates that EV-based therapies hold great potential for COVID-19 related lung injuries as they target multiple pathways and enhance tissue regeneration. However, before translating EV therapies into human clinical trials, efforts should be directed at developing good manufacturing practice solutions for EVs and testing optimal dosage and administration route in large animal models.
File in questo prodotto:
File Dimensione Formato  
20013078.2020.1795365.pdf

accesso aperto

Descrizione: Review Article
Tipologia: PDF editoriale
Dimensione 893.16 kB
Formato Adobe PDF
893.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/728167
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 60
social impact