The aim of this study was to evaluate the interaction between Streptococcus oralis and Polyetheretherketone (PEEK), a novel material recently introduced in implantology. The topographical characterization and the Streptococcus oralis adhesion on this material were compared with other titanium surfaces, currently used for the production of dental implants: machined and double etched (DAE). The superficial micro-roughness of the PEEK discs was analyzed by scanning electron microscopy (SEM) and, the Energy Dispersive Spectrometer (EDS) analyzed their chemical composition. Atomic Force Microscopy (AFM) was used to characterize the micro-topography and the sessile method to evaluate the wettability of the samples. Microbiological analysis measured the colony forming units (CFUs), the biomass (OD570 detection) and the cell viability after 24 and 48 h after Streptococcus oralis cultivation on the different discs, that were previously incubated with saliva. Results showed that PEEK was characterized by a micro-roughness that was similar to machined titanium but at nano-level the nano-roughness was significantly higher in respect to the other samples. The EDS showed that PEEK superficial composition was characterized mainly by Carbonium and Oxygen. The hydrophilicity and wetting properties of PEEK were similar to machined titanium; on the contrary, double etched discs (DAE) samples were characterized by significantly higher levels (p < 0.05). PEEK was characterized by significant lower CFUs, biomass and viable cells in respect to the titanium surfaces. No differences were found between machined and DAE. The anti-adhesive and antibacterial properties showed by PEEK at 24 and 48 h against a pioneer such as S. oralis, could have an important role in the prevention of all pathologies connected with biofilm formation, like peri-implantitis in dentistry or prosthetic failures in orthopedics. [Figure not available: see fulltext.]

Material characterization and Streptococcus oralis adhesion on Polyetheretherketone (PEEK) and titanium surfaces used in implantology

D'Ercole S.;Cellini L.;Pilato S.;Di Lodovico S.;Iezzi G.;Piattelli A.;Petrini M.
2020-01-01

Abstract

The aim of this study was to evaluate the interaction between Streptococcus oralis and Polyetheretherketone (PEEK), a novel material recently introduced in implantology. The topographical characterization and the Streptococcus oralis adhesion on this material were compared with other titanium surfaces, currently used for the production of dental implants: machined and double etched (DAE). The superficial micro-roughness of the PEEK discs was analyzed by scanning electron microscopy (SEM) and, the Energy Dispersive Spectrometer (EDS) analyzed their chemical composition. Atomic Force Microscopy (AFM) was used to characterize the micro-topography and the sessile method to evaluate the wettability of the samples. Microbiological analysis measured the colony forming units (CFUs), the biomass (OD570 detection) and the cell viability after 24 and 48 h after Streptococcus oralis cultivation on the different discs, that were previously incubated with saliva. Results showed that PEEK was characterized by a micro-roughness that was similar to machined titanium but at nano-level the nano-roughness was significantly higher in respect to the other samples. The EDS showed that PEEK superficial composition was characterized mainly by Carbonium and Oxygen. The hydrophilicity and wetting properties of PEEK were similar to machined titanium; on the contrary, double etched discs (DAE) samples were characterized by significantly higher levels (p < 0.05). PEEK was characterized by significant lower CFUs, biomass and viable cells in respect to the titanium surfaces. No differences were found between machined and DAE. The anti-adhesive and antibacterial properties showed by PEEK at 24 and 48 h against a pioneer such as S. oralis, could have an important role in the prevention of all pathologies connected with biofilm formation, like peri-implantitis in dentistry or prosthetic failures in orthopedics. [Figure not available: see fulltext.]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/731644
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 37
social impact