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A B S T R A C T

Objective: Brain–heart interactions involve bidirectional effects produced by bottom-up input at each heart-
beat, and top-down neural regulatory responses of the brain. While the cortical processing of the heartbeat
is usually investigated through the analysis of the Heartbeat Evoked Potential, in this study we propose an
alternative approach based on the variability in the predictability of the brain dynamics induced by the
heartbeat.
Methods: In a group of eighteen subjects in whom simultaneous recording of the electroencephalogram
(EEG) and electrocardiogram was performed in a resting-state, we analyzed the temporal profile of the local
Information Storage (IS) to detect changes in the regularity of EEG signals in time windows associated with
different phases of the cardiac cycle at rest.
Results: The average values of the local IS were significantly higher in the parieto-occipital areas of the scalp,
suggesting an activation of the Default Mode Network, regardless of the cardiac cycle phase. In contrast, the
variability of the local IS showed marked differences across the cardiac cycle phases.
Conclusion: Our results suggest that cardiac activity influences the predictive information of EEG dynamics
differently in the various phases of the cardiac cycle.
Significance: The variability of local IS measures can represent a useful index to identify spatio-temporal
dynamics within the neurocardiac system, which generally remain overlooked by the more widely employed
global measures.
1. Introduction

Complexity and dynamics are two of the main properties of the
processes measured at the output of realworld systems including hu-
man organisms. These properties arise from the natural evolution over
time of the several intertwined physiological systems that compose
the human organism [1,2]. In fact, the continuous changes in the
mutual activity of several control mechanisms across different physio-
logical states and pathological conditions typically result in non-linear,
time-varying and multiscale dynamic behaviors that are difficult to
understand by looking separately at each organ alone [3–15]. This ev-
idence has promoted studies, framed in the emerging field of Network
Physiology [3,5,16], addressing the human organism as a network of
horizontally integrated systems, each having an internal/vertical orga-
nization. To investigate the complex dynamics emerging from physio-
logical interactions, tools developed for the analysis of complex systems
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are typically adopted (e.g., fractal dimension [17], Lyapunov expo-
nents [18], Lempel–Ziv complexity [19]). Among these tools, entropy
metrics are gaining increasing popularity thanks to their generality and
flexibility, and to their applicability to short and noisy realizations
of physiological stochastic processes [20]. These measures allow to
quantify the information content of a dynamic system starting from
the probability distribution of the variables that describe the temporal
evolution of its states. One important measure providing information
about the complex dynamics generated by a stochastic process is the
Information Storage (IS), defined as the information content of the
current state of the process that can be used to predict its future. Thus,
IS allows to quantify the regularity and predictability of a dynamic
process [21–24]. Together with measures quantifying the information
transfer between coupled processes, the IS constitutes a basic element
746-8094/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
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of computation to assess the processing of information within networks
of multiple interacting systems [22,24]. These measures have been
widely employed to investigate several physiological mechanisms, such
as those underlying cardiovascular [8,21,25,26], cardiorespiratory [9,
24,27], and neural [10,28] dynamics.

Measures like the IS allow to extract information about the dynam-
ics of the observed process analyzed as a whole [29], thus representing
‘‘global’’ indexes which address the entire temporal evolution of the
process. This approach is often followed in the analysis of physiological
time series as it provides a compact description of the process based
on a single IS measure. However, the global approach is limited in
the fact that it does not allow to obtain time-resolved information
about the process dynamics. This limitation can be addressed through
the definition of time-varying information measures which, relaxing
the assumption of stationarity, evaluate the dynamics at each spe-
cific time step accounting for the data collected in a preceding short
temporal window [11]. However, time-varying measures have the dis-
advantages to use a limited portion of the data for the estimation,
and to depend strongly on the tradeoff between temporal resolution
and ability to detect the local temporal properties of the analyzed
process. An alternative, theoretically well-grounded approach is the
use of local measures of information dynamics [24]. This approach
defines how information is stored, transferred and modified at each
moment in time in a multivariate stochastic process [22,30,31]. In
particular, measures of local IS and local information transfer are
computed from the joint and marginal probability distributions of the
variables mapping the present and past states of the analyzed processes
computed at any specific time step, such that their statistical average
yields the global measures of IS and of transfer entropy. Local measures
computed from single realizations of physiological processes analyzed
under the assumption of stationarity have been widely applied to
characterize specific alterations of brain activity in cats during visual
stimulation [23] or in humans with autism spectrum disorders [12],
to detect phase–amplitude coupling in cortical local field activity [32],
or to analyze time-resolved properties of cardiorespiratory interactions
during sleep apneas and of the cortical information flow during focal
epilepsy [33].

Physiologically, brain–heart interactions are often studied by in-
vestigating the regulatory efferent activity of the Autonomic Nervous
System (ANS) on the cardiac rhythm, given that the descending control
of the brain towards the heart determines heart rate variability [34–
36]. Nevertheless, the communication between brain and heart is bidi-
rectional [6,37,38], since an ascending control is also present, whereby
neural activity is influenced by cardiac activity [38]. In fact, sev-
eral studies suggest how heart timing enables the optimization of
numerous neural processes related to homeostatic and allostatic reg-
ulation [39]. In addition to the ANS and its sympathetic and parasym-
pathetic branches, other mechanisms of communication between heart
and brain concern baroceptors located in the aortic arch and the carotid
arteries [40], cardiac neurons present in the heart wall, cutaneous
receptors in the skin [40,41], and the Intrinsic Cardiac Nervous System
(ICNS) [42]. Indeed, a brain-like structure, including ganglia, neuro-
transmitters, proteins, and cells, is located inside the heart and is able
to integrate signals from the ANS and all sensory systems, collecting in-
formation that concerns the cardiovascular activity. Signals integrated
by the ICNS reach the brain and the nucleus tractus solitarii (NTS)
via the vagus nerve and the spinal cord, ending in specific cortical
regions [34,43]. In fact, functional imaging techniques have allowed so
far to identify targets of visceral signals in the ventromedial prefrontal
cortex (vmPFC), in the insular cortex and in the motor cingulate re-
gion, corresponding to the anterior cingulate cortex (ACC) [34,44–46].
These cortical regions partially coincide with the two brain structures
mainly involved in brain–heart interactions, i.e., the Central Autonomic
Network (CAN) and the Default Mode Network (DMN) [39]. The CAN
represents a group of brainstem and cortex regions involved in cogni-
2

tive and autonomic regulatory mechanisms, which result in interactions b
with the ANS through feedforward and feedback loops, shaping bidirec-
tional communication between the brain and the body [47]. The DMN
constitutes a group of brain regions characterized by higher intrinsic
activity during a resting-state condition rather than during the execu-
tion of a task [48–50]. Within the DMN, the vmPFC receives sensory
information from both the internal body (interoceptive) and the exter-
nal environment (exteroceptive), and transmits them to hypothalamus
and amygdala. Hence, this cortical region plays a key role in the link
between sensory and visceral-motor function, as well as in behavioral
control [51]. This suggests that the study of the cortical processing of
the heartbeat may have strong implications for our understanding of
perceptual, cognitive and emotional processes.

The present study introduces a novel approach for the computation
of local IS measure tailored to the analysis of the effects of the heartbeat
on cortical dynamics measured from the scalp electroencephalogram
(EEG), which represents an alternative method to the well-established
Heartbeat Evoked Potential (HEP) describing the average brain dy-
namics timed with the cardiac one. We first employ a strategy for
estimating the local IS from single-trial EEG recordings, based either
on the identification of a linear autoregressive model, or on the com-
putation of the local information content through a non-parametric
nearest neighbor technique. Then, to analyze the regularity of the
neural activity timed with the heartbeat, we investigate the time series
of local IS by computing their mean and variability within specific
temporal windows synchronized with each heartbeat detected from
the electrocardiogram (ECG). Our approach investigates brain–heart
interactions from a new perspective, focused on the impact that the
heartbeat has on the local EEG dynamics during different phases of
the cardiac cycle, and exploiting the advantages of the time-resolved
measure over commonly used information-theoretic measures, which
only provide global insights. Moreover, the utilization of multichannel
EEG leads us to build maps of brain–heart interaction which highlight
regions of the scalp that are most interested by changes of the local IS
patterns evoked by the heartbeat.

2. Material and methods

2.1. Information-theoretic preliminearies

The information-theoretic analysis of time series is grounded on
basic concepts of information theory that are recalled in the following.
A central measure of information theory is the entropy of a ran-
dom variable [20], which measures, in a statistical sense, the average
information content of the variable. Specifically, given a (possibly
vector) random variable 𝑉 , the Shannon entropy is defined as 𝐻(𝑉 ) =
−E[log 𝑝(𝑣)], where 𝑝(𝑣) is the probability density function (PDF) of 𝑉
measured for the outcome 𝑣, and E[⋅] is the expectation operator taking
the statistical average over all possible values 𝑣 taken by 𝑉 . A more spe-
cific quantity is the information content of the single outcome 𝑣, which
is defined as ℎ(𝑣) = − log 𝑝(𝑣). This measure allows a local analysis of
the information content of a random variable, i.e., an analysis focused
on a specific outcome of the variable, while the Shannon entropy can
be interpreted as a global measure, as it corresponds to the average
information content, i.e., 𝐻(𝑉 ) = E[ℎ(𝑣)].

The considerations above can be extended to any information the-
retic measure, so as to interpret a global measure as the statistical
verage of its local counterpart. In particular, the conditional entropy
CE) of 𝑉 given another variable 𝑊 quantifies the residual information
bout 𝑉 when 𝑊 is known as the average uncertainty that remains
bout 𝑉 when the outcomes of 𝑊 are assigned: 𝐻(𝑉 |𝑊 ) = E[ℎ(𝑣|𝑤)],
here ℎ(𝑣|𝑤) = − log 𝑝(𝑣|𝑤) is the local CE. Similarly, the mutual

nformation (MI) quantifies the information shared between 𝑉 and
as the average uncertainty about one variable that is resolved by

nowing the other: 𝐼(𝑉 ;𝑊 ) = E[𝑖(𝑣;𝑤)], where 𝑖(𝑣;𝑤) = log[ 𝑝(𝑣,𝑤)
𝑝(𝑣)𝑝(𝑤) ] is

he local MI. Note that entropy, CE and MI are linked to each other in
oth their local and global formulations, i.e., ℎ(𝑣) = 𝑖(𝑣;𝑤) + ℎ(𝑣|𝑤)
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and 𝐻(𝑉 ) = 𝐼(𝑉 ;𝑊 ) + 𝐻(𝑉 |𝑊 ). Note also that, while the MI is
always non-negative, the local MI can take both positive and negative
values; in the latter case, learning the outcome 𝑤 for the variable 𝑊
is interpreted as misinformative about the specific outcome 𝑣 of the
variable 𝑉 [22]. In this study, the natural logarithm is used to compute
information-theoretic measures, which are thus expressed in nats.

2.2. Global and local information storage

Let us consider a dynamic system  , and assume that the evolution
of the system over time is described by the stochastic process 𝑋 = {𝑋𝑛},
𝑛 ∈ Z. Considering the temporal sampling of the process, we assume
the scalar variable 𝑋𝑛 and the vector variable 𝑋−

𝑛 = [𝑋𝑛−1𝑋𝑛−2 …] as
epresentative of the present state and of the past states of the process,
espectively. Then, a measure of the regularity of the process is the
o-called information storage defined as [1,22]:

𝑋 = 𝐼(𝑋𝑛;𝑋−
𝑛 ) = E

[

log
𝑝(𝑥𝑛, 𝑥−𝑛 )
𝑝(𝑥𝑛)𝑝(𝑥−𝑛 )

]

(1)

where 𝑥𝑛 and 𝑥−𝑛 are realizations of 𝑋𝑛 and 𝑋−
𝑛 . The IS quantifies

the predictability of 𝑋 intended as the average uncertainty about the
current state of the process that could be resolved from the knowledge
of its past states. Note that the definition of IS is provided in (1) for a
stationary process 𝑋, for which the MI is independent on the time step
𝑛.

Being defined as a MI, the IS can be expressed as the statistical
average of a local MI, i.e., 𝑆𝑋 = E

[

𝑖(𝑥𝑛; 𝑥−𝑛 )
]

, which evidences the
so-called local IS [22,30]:

𝑠𝑥𝑛 = 𝑖(𝑥𝑛; 𝑥−𝑛 ) = log
𝑝(𝑥𝑛, 𝑥−𝑛 )
𝑝(𝑥𝑛)𝑝(𝑥−𝑛 )

. (2)

The local IS 𝑠𝑥𝑛 represents the amount of storage information used by
the process in the specific time instant 𝑛. While the global measure
of IS always assumes positive values and is bounded above by the
entropy of the current state of the system, its local correspondent is
not bounded and could assume negative values [22,30]. In particular,
positive values of 𝑠𝑥𝑛 occur when knowing the past state 𝑥−𝑛 increases
the probability of observing the present state 𝑥𝑛, while negative values
of 𝑠𝑥𝑛 are measured when the past of the process is misinformative
about the current state and thus reduces its predictability.

In practical applications, the local and global IS measures are com-
puted for stationary processes under the hypothesis of ergodicity start-
ing from a single process realization available in the form of the
finite-length time series 𝑥 = {𝑥1,… , 𝑥𝑁}. Moreover, since infinite-
length histories cannot be considered, the assumption that 𝑋 is a
Markov process with finite memory 𝑞 is typically made, so as to
approximate the past history of the process with the 𝑞-dimensional
variable 𝑋𝑞

𝑛 =
[

𝑋𝑛−1 …𝑋𝑛−𝑞
]

. In such a case, the global IS becomes
𝑆𝑋 = 𝐼(𝑋𝑛;𝑋

𝑞
𝑛 ) = E

[

𝑖(𝑥𝑛; 𝑥
𝑞
𝑛)
]

, where the local IS 𝑠𝑥𝑛 = 𝑖(𝑥𝑛; 𝑥
𝑞
𝑛) is

computed approximating the past history relevant to the sample 𝑥𝑛 with
the vector 𝑥𝑞𝑛 =

[

𝑥𝑛−1 … 𝑥𝑛−𝑞
]

. Under these assumptions, the local IS
measure is estimated as:

𝑠̂𝑥𝑛 = log
𝑝̂(𝑥𝑛, 𝑥

𝑞
𝑛)

𝑝̂(𝑥𝑛)𝑝̂(𝑥
𝑞
𝑛)

(3)

where an appropriate estimate 𝑝̂(⋅) of the joint and marginal probabili-
ties is used, and the global IS estimate is then obtained as the temporal
average of the local IS

𝑆̂𝑋 = 1
𝑁 − 𝑞

𝑁
∑

𝑛=𝑞+1
𝑠̂𝑥𝑛 , (4)

where the sum is extended to all patterns
(

𝑥𝑛, 𝑥
𝑞
𝑛
)

that can be derived
rom the time series 𝑥 of length 𝑁 . Depending on the hypothesis made
bout the data distribution, several types of estimators can be used.
n this work, a parametric and a model-free approach are exploited,
espectively the linear and the k-nearest neighbor estimators, which are
3

escribed in the following subsections. v
.3. Linear parametric estimation

The parametric approach assumes a specific shape of the probability
ensity function, making it possible to estimate information measures
nowing the parameters of such distribution [20]. In particular, the
ssumption of a joint Gaussian distribution for the variables forming
he present and past states of the observed process is very useful as
t is strictly related with the linear parametric representation of the
rocess [52]. The PDF of a 𝑑-dimensional Gaussian random variable
=

[

𝑉1 ⋯𝑉𝑑
]

with mean 𝜇𝑉 = E [𝑉 ] and covariance matrix Σ𝑉 =
E
[

(𝑉 − 𝜇𝑉 )⊤(𝑉 − 𝜇𝑉 )
]

is given by:

𝑝(𝑣) = 1
√

(2𝜋)𝑑 |Σ𝑉 |
𝑒−

1
2 (𝑣−𝜇𝑉 )Σ

−1
𝑉 (𝑣−𝜇𝑉 )⊤ . (5)

his formulation can be exploited, for the zero-mean stationary process
, to write the PDF of the variables 𝑋𝑛 and 𝑋𝑞

𝑛 involved in the
efinition of the IS, as well as their joint PDF, as:

(𝑥𝑛) =
1

√

2𝜋𝜎2𝑋

𝑒
− 1

2
𝑥2𝑛
𝜎2𝑋 , (6)

𝑝(𝑥𝑞𝑛) =
1

√

(2𝜋)𝑞|Σ𝑋𝑞 |
𝑒−

1
2 𝑥

𝑞
𝑛Σ

−1
𝑋𝑞 𝑥

𝑞
𝑛
⊤
, (7)

𝑝(𝑥𝑛, 𝑥𝑞𝑛) =
1

√

(2𝜋)𝑞+1|Σ𝑋𝑞+1 |
𝑒
− 1

2
[

𝑥𝑛 𝑥
𝑞
𝑛
]

Σ−1
𝑋𝑞+1

[

𝑥𝑛 𝑥
𝑞
𝑛
]⊤

, (8)

where 𝜎2𝑋 = E[𝑋2
𝑛 ] is the variance of 𝑋𝑛, Σ𝑋𝑞 = E

[

𝑋𝑞
𝑛
⊤ 𝑋𝑞

𝑛

]

∈ R𝑞×𝑞

s the covariance matrix of 𝑋𝑞
𝑛 and Σ𝑋𝑞+1 = E

[

[

𝑋𝑛 𝑋
𝑞
𝑛
]⊤ [

𝑋𝑛 𝑋
𝑞
𝑛
]

]

∈
(𝑞+1)×(𝑞+1) is the joint covariance matrix of 𝑋𝑛 and 𝑋𝑞

𝑛 . Then, an ex-
licit formulation of the local IS for Gaussian processes can be obtained
ubstituting these PDFs into the definition:

𝑥𝑛 =
1
2
log

𝜎2𝑋 |Σ𝑋𝑞 |

|Σ𝑋𝑞+1 |
+ 1

2

(

𝑥2𝑛
𝜎2𝑋

+ 𝑥𝑞𝑛Σ
−1
𝑋𝑞𝑥

𝑞
𝑛
⊤ −

[

𝑥𝑛 𝑥
𝑞
𝑛
]

Σ−1
𝑋𝑞+1

[

𝑥𝑛 𝑥
𝑞
𝑛
]⊤
)

.

(9)

t is possible to show [33] that the first term in (9) corresponds to the
lobal IS, i.e.,

𝑋 = 1
2
log

𝜎2𝑋 |Σ𝑋𝑞 |

|Σ𝑋𝑞+1 |
, (10)

nd that the second term in (9), which changes at any time step 𝑛, has
ero average.

Given (9) and (10), we can see that the computation of the local
nd global IS amounts to computing the relevant covariance and cross-
ovariances matrices between the present and the past variables of
he process, i.e., 𝜎2𝑋 , Σ𝑋𝑞 , and Σ𝑋𝑞+1 . These matrices can be derived
rom the autocovariance structure of the linear autoregressive (AR)
epresentation of the process 𝑋 [27]:

𝑛 =
𝑝
∑

𝑘=1
𝑎𝑘𝑋𝑛−𝑘 + 𝑈𝑛, (11)

here 𝑝 is the AR model order, 𝐴 =
[

𝑎1 ⋯ 𝑎𝑝
]

∈ R1×𝑝 is the coefficient
ector and 𝑈 is a white Gaussian noise process with zero mean and
ariance 𝜎2𝑈 . The autocovariance of the process (11) is related to the
R parameters via the Yule–Walker equations [53]:

𝑘 =
𝑝
∑

𝑙=1
𝑎𝑙𝛤𝑘−𝑙 + 𝛿𝑘0𝜎2𝑈 , (12)

here 𝛤𝑘 = E[𝑋𝑛 𝑋𝑛−𝑘] represents the autocovariance of the process
efined at each lag 𝑘 ≥ 0, 𝛿𝑘0 is the Kronecher product and 𝜎2𝑈 the
ariance of 𝑈 . In order to determine the autocovariance of the process
𝑛
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for each lag 𝑘, the AR model can be written compactly [27] as 𝑆𝑝𝑛 =
𝑝𝑆𝑝𝑛−1 + 𝑈

𝑝
𝑛 where:

𝑆𝑝𝑛 =
[

𝑋𝑛 𝑋𝑛−1 ⋯ 𝑋𝑛−𝑝+1
]⊤ ,𝐀𝑝 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑎1 ⋯ 𝑎𝑝−1 𝑎𝑝
1 ⋯ 0 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 1 0

⎤

⎥

⎥

⎥

⎥

⎦

,

𝑈 𝑝
𝑛 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑈𝑛
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

.

(13)

Specifically, the covariance matrix of 𝑆𝑝𝑛 can be expressed as a discrete-
time Lyapunov equation:

Γ𝑝0 = E
[

𝑆𝑝𝑛 𝑆
𝑝
𝑛
⊤
]

= 𝐀𝑝Γ𝑝0𝐀
𝑝⊤ +Λ𝑝, (14)

where Λ𝑝 = E
[

𝑈𝑝
𝑛 𝑈

𝑝
𝑛
⊤
]

∈ R𝑝×𝑝 is the covariance matrix of 𝑈𝑝
𝑛 depend-

ing only on 𝜎2𝑈 . Solving (14) for Γ𝑝0 allows to obtain autocovariance
values for lag between 0 and 𝑝 − 1, Γ0 ⋯ Γ𝑝−1; then, iteration of the
Yule–Walker equations in (12) leads to derive the autocovariance val-
ues Γ𝑝, Γ𝑝+1 ⋯Γ𝑞 up to the desired lag 𝑞. Finally, proper rearrangement
f the autocovariance values leads to derive the covariances 𝜎2𝑋 , Σ𝑋𝑞 ,
nd Σ𝑋𝑞+1 to be used in (9) and (10) for the computation of the local
nd global IS.

.4. Non-linear model-free estimation

The k-nearest neighbor (KNN) estimator is a model-free approach
hich, under the hypothesis of stationarity, defines the local prob-
bility density around a given data point as uniform and inversely
elated to the distance between the point and its 𝑘 nearest neighbors,
ith 𝑘 that is a parameter controlling the number of neighbors to be

alculated [54]. Specifically, given a 𝑑-dimensional random variable 𝑉
nd its 𝑛-th observation 𝑣𝑛 (𝑛 = 1,… , 𝑁 ′), and denoting as 𝜖𝑛,𝑘 twice the

distance between 𝑣𝑛 and its 𝑘-th nearest neighbor in the 𝑑-dimensional
space, the probability mass of the ball of radius 𝜖𝑛,𝑘∕2 surrounding 𝑣𝑛
is supposed to be constant and equal to:

𝑝𝑛 =
𝑘

𝑁 ′ − 1
= 𝑐𝑑,𝐿𝜖

𝑑
𝑛,𝑘𝑝(𝑣𝑛), (15)

here 𝑐𝑑,𝐿 is the volume of the 𝑑-dimensional unit ball given a norm
. From (15), adding a bias-correction term equal to log 𝑘−𝜓(𝑘), where
(⋅) is the digamma function [54], the KNN estimate of the information
ontent of the observation 𝑣𝑛 is obtained as:

̂ (𝑣𝑛) = − log 𝑝̂(𝑣𝑛) = log(𝑁 ′ − 1) − 𝜓(𝑘) + log 𝑐𝑑,𝐿 + 𝑑 log 𝜖𝑛,𝑘; (16)

he entropy of 𝑉 is then estimated as the ensemble average [20]:

̂ (𝑉 ) = 1
𝑁 ′

𝑁 ′
∑

𝑛=1
ℎ̂(𝑣𝑛) = log(𝑁 ′−1)−𝜓(𝑘)+ log 𝑐𝑑,𝐿+

𝑑
𝑁 ′

𝑁 ′
∑

𝑛=1
log 𝜖𝑛,𝑘. (17)

n the computation of the information storage, a naïve estimator would
e that obtained applying (16) and (17) to the random variables 𝑥𝑛, 𝑥

𝑞
𝑛,

nd
[

𝑥𝑛 𝑥
𝑞
𝑛
]

to estimate their information content, and then summing
he estimates as in (3) to get the local IS, from which the global IS is
erived as in (4). However, this may not be adequate in practice, since
he dimension of the analyzed variables is largely different, and the
ias of the estimator (16) varies with the dimension. To circumvent
his problem, we consider the solution proposed by Kraskov [55] to
erform a neighbor search in the highest-dimensional space (here, that
panned by the realizations of

[

𝑋𝑛 𝑋
𝑞
𝑛
]

) and then using the computed
istances in the lower dimensional spaces (here, those spanned by the
ealizations of 𝑋𝑛 and 𝑋𝑞

𝑛 ) to perform separate range searches. In our
ontext, we compute first the information content of

[

𝑥𝑛 𝑥
𝑞
𝑛
]

via a simple
daptation of (16):

̂ 𝑞
4

(𝑥𝑛, 𝑥𝑛) = log(𝑁 − 𝑞 − 1) − 𝜓(𝑘) + log 𝑐𝑞+1,𝐿 + (𝑞 + 1) log 𝜖𝑛,𝑘, (18) i
where 𝜖𝑛,𝑘 is twice the distance from
[

𝑥𝑛 𝑥
𝑞
𝑛
]

to its 𝑘-th nearest neigh-
bor. Then, given the distances 𝜖𝑛,𝑘, the information contents in the
lower-dimensional spaces are estimated via range searches:

ℎ̂(𝑥𝑞𝑛) = log(𝑁 − 𝑞 − 1) − 𝜓(𝑁𝑥𝑞𝑛
) + log 𝑐𝑞+1,𝐿 + 𝑞 log 𝜖𝑛,𝑘,

ℎ̂(𝑥𝑛) = log(𝑁 − 𝑞 − 1) − 𝜓(𝑁𝑥𝑛 ) + log 𝑐𝑞+1,𝐿 + log 𝜖𝑛,𝑘,
(19)

where 𝑁𝑥𝑞𝑛
and 𝑁𝑥𝑛 are the number of realizations of 𝑋𝑞

𝑛 and 𝑋𝑛 whose
distance from 𝑥𝑛 and 𝑥𝑞𝑛 is smaller than 𝜖𝑛,𝑘∕2. Finally, the local IS is
computed as 𝑠̂𝑥𝑛 = ℎ̂(𝑥𝑛) + ℎ̂(𝑥

𝑞
𝑛) − ℎ̂(𝑥𝑛, 𝑥

𝑞
𝑛), which yields:

̂𝑥𝑛 = log(𝑁 − 𝑞 − 1) + log 𝑐𝑞+1,𝐿 + 𝜓(𝑘) − 𝜓
(

𝑁𝑥𝑞𝑛

)

− 𝜓
(

𝑁𝑥𝑛

)

, (20)

nd the global IS results combining (4) and (20):

̂𝑋 = log(𝑁−𝑞−1)+log 𝑐𝑞+1,𝐿+𝜓(𝑘)−
1

𝑁 − 𝑞

𝑁
∑

𝑛=𝑞+1
(𝜓(𝑁𝑥𝑞𝑛

)+𝜓(𝑁𝑥𝑛 )). (21)

he KNN estimator makes use of only one free parameter, i.e., the
umber of neighbors 𝑘, which allows to control the bias–variance
radeoff (larger 𝑘 reduces the variability of estimates, at the expense
f a larger bias).

.5. Dataset description and pre-processing

The local measures of regularity described in Sections 2.1–2.4 were
pplied to EEG signals to assess how the predictability of the brain
ignals varies in relation to the simultaneously recorded cardiac activ-
ty, and therefore to investigate how these two processes overlap in
enerating physiological events such as the cortical processing of the
eartbeat. The aim is to obtain information on the interaction between
wo physiological signals by analyzing directly only one process (in
his case, the EEG reflecting brain activity) and then observing how
ts properties change when the descriptive index (in this case, the local
S) is evaluated synchronously with the second process (in this case,
he one reflecting the heartbeat times).

Signals were acquired at the ‘‘Institute for Advanced Biomedical
echnologies – ITAB’’ of the ‘‘G. d’Annunzio’’ University of Chieti-
escara. Details regarding the dataset can be found in Zaccaro et al.
56]. The dataset consists of EEG and ECG signals acquired syn-
hronously on twenty subjects (14 females, age 28.28 ± 4.78 years),
eurologically healthy and not undergoing any psychopharmacological
herapy or prolonged drugs assumption. A gel-based BrainAmp EEG
ystem (BrainCap MR, Brain Vision, LLC) with 64 electrodes placed
ccording to the International extended 10/20 system was employed
ith regard to EEG acquisition (taking the midfrontal electrode as

he reference and the inion one as ground) [56], while a one-lead
CG system (BIOPAC Systems, Inc) was used, both with a sampling
requency of 2 kHz. Synchronization between EEG and ECG traces
as guaranteed by the use of a common trigger sent by the software
-Prime (v2.0, Psychology Software Tools, Pittsburgh, PA, USA) and
ntegrated through a trigger station (TriggerStationTM, BRAINTRENDS
TD 2010), to have the exact timings of the beginning and the end of
ach recording. During the acquisition, subjects were in a resting-state
ondition and were asked to stay seated with eyes open. The study was
pproved by the Institutional Review Board of Psychology, Department
f Psychological, Health and Territorial Sciences, ‘‘G. d’Annunzio’’
niversity of Chieti-Pescara (Protocol Number 44_26_07_2021_21016),

n compliance with the Italian Association of Psychology and the
eclaration of Helsinki guidelines and its later amendments. Each

ubject signed a written informed consent.
EEG signals were pre-processed offline with MATLAB R2021b (The

athworks, Inc.) using the open source EEGLAB signal processing Tool-
ox [57]. Signals were bandpass filtered with a Hamming window FIR
ilter with cutoff frequencies of 0.5–40 Hz. Artifacts and noise due to
ovements or incorrect contact of electrodes with skin were manually

emoved, and the signals from the noisy channels were spherically

nterpolated. Independent Component Analysis (ICA) was employed
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Fig. 1. Schematic representation of the methodological approach followed to analyze heartbeat-related Information Storage dynamics. (a) Pipeline of pre-processing (blue box),
processing (orange boxes) and statistical analysis (green boxes) steps performed on the EEG signals. (b) Representative portion of the ECG signal and corresponding local information
storage time series obtained by linear and KNN estimators, depicting the three time intervals obtained through segmentation of the cardiac cycle (I1 in green, I2 in red and I3 in
purple). (c) Schematic representation of the placement of the EEG electrodes, evidencing the clustering of electrodes according to six scalp regions: frontal (F) in green, central
(C) in magenta, parietal (P) in yellow, occipital (O) in blue, right-temporal (Tr) in red and left-temporal (Tl) in cyan.
(fastICA algorithm [58]) to limit the influence of artifacts on the EEG
signals. Finally, signals were subsampled to 128 Hz, in order to reduce
the redundancy between consecutive samples prior to the information-
theoretic analysis, and re-referenced to the average of all channels [56].
As regards the ECG signals, a modified version of the Pan–Tompkins
algorithm [59] was applied to ECG traces of each subject to identify R-
peaks; subsequently, T and P waves were extracted using an appositely
developed threshold-based peak detection algorithm.

For the subsequent analyses, only 18 subjects were used, due to the
presence of artifacts; the length of the recordings was 423.47 ± 27.5 s
(range: 320.26 s – 462.29 s). A summary of the pre-processing proce-
dure is reported in the first box of Fig. 1(a).

2.6. Data analysis

For each subject, the global and local IS were computed on EEG
channels using both the parametric and the model-free approach de-
scribed in Sections 2.3–2.4 (second box of Fig. 1(a)).

With regard to linear estimation, the AR model was identified for
each EEG time series through the well-known least-squares estimator,
fixing the model order 𝑝 and the lag 𝑞. The Akaike (AIC) and Bayesian
(BIC) Information Criteria were used to guide the selection of the
order 𝑝 of the AR model [60,61]; however, a minimum in the two
figures of merit was not reached, as it often happens when dealing with
EEG signals [62]; therefore an order 𝑝 = 5 was selected as the value
for which (on average of all subjects and electrodes) the decrement
of both AIC and BIC figures of merit moving from an order to the
subsequent one was less than 10%. Although the AR model describes
interactions between samples up to a lag 𝑝, typically the correlation
function decades to zero with a time lag greater than 𝑝. Therefore,
5

to account for the whole correlation structure, interactions between
the present and past samples were accounted up to a lag 𝑞 such that
the autocorrelation vanishes [27]; in this work, 𝑞 = 10 was chosen
to ensure a spectral radius of the AR process smaller than 10−8 [27].
After AR model identification, the variance and the covariance matrices
needed to compute local and global IS were obtained as described in
Section 2.3.

With regard to the model-free estimator, the number of neighbors
𝑘 was set according to previous studies dealing with short-time se-
ries [20,63], i.e., 𝑘 = 10. The dimension 𝑞 of the embedding vector
representative of the process history was set in accordance to the AR
model order parameter 𝑝 determined for the linear estimator, taking
into account that higher values are not recommended in model-free
analyses in order to limit the curse of dimensionality [29]. In our
analysis, we used the Chebyshev norm taking the maximum distance
between the scalar components of the realizations of 𝑉 , so that the
volume 𝑐𝑑,𝐿 is equal to 1 and the term log 𝑐𝑞+1,𝐿 vanishes in (20) and
(21).

For each EEG time series, exploiting the synchronization between
the signals of brain and heart activity, the local IS was analyzed
separately in three different intervals determined by segmenting each
detected cardiac cycle as depicted in the third box of Fig. 1(a) and in
Fig. 1(b). Segmentation was performed to take into account the influ-
ence of the Cardiac Field Artifact (CFA) on brain signals. As reported
in previous works [64], the cardiac electrical activity can be detected
over the entire body surface, including the scalp, and leads to changes
in the amplitude of EEG signals. The influence of the CFA on the EEG
varies with the spatial distribution on the scalp, depending on the
proximity of the electrodes to the heart, but also with time, depending
on the corresponding phase of cardiac cycle [64]. These remarks have
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Fig. 2. Analysis of the mean of the local IS of the EEG computed using the linear estimator. (a) Distribution over the scalp of the average values across subjects of the mean
of the global IS (G, computed over the whole cardiac cycle) and of the mean of the local IS (computed in a specific interval I1, I2, or I3). (b) Distribution over the scalp of the
average values across subjects of the difference between the mean global IS and the mean local IS computed within each interval I1, I2, I3. (c) Distribution over the scalp of the
average values across subjects of the difference between the mean local IS computed within pairs of intervals I1, I2, I3. Filled red (blue) electrodes show statistically significant
positive (negative) differences (paired Student’s t-test with Bonferroni correction, 𝑝 < 0.05∕𝑛, with 𝑛 = 3 comparisons).
been considered for defining the three intervals. Specifically, the first
interval (I1) starts at the R-peak of the ECG signal and ends 80 ms after
the peak of T-wave, the second one (I2) starts at the end of the first
interval and ends 40 ms before the peak of the P-wave of the next
cardiac cycle and, finally, the third interval (I3) corresponds to the
remaining part of the cardiac cycle until the R-peak of the subsequent
cycle. Given these temporal windows, the second interval I2 may be
considered as low-CFA segment; in other words, the influence of CFA
on the EEG signals can be considered almost negligible within this
interval. On the other hand, the other two intervals, I1 in particular,
are most affected by the artifact given that the cardiac electric field is
more evident during the QRS complex and the T-wave [64]. In order to
gain consistency, we took the first 300 heartbeats into account for the
analysis, also in accordance to the standards of short-term heart rate
variability analysis [35]. For each subject and electrode, the mean and
the standard deviation (SD) of the local IS measures were computed
within each of the three intervals, thus obtaining 300 values of local
IS mean and standard deviation. To provide a reference unrelated to
time segmentation, the mean and SD of the local IS were computed
also within the whole cardiac cycle.

2.7. Statistical analysis

The statistical analysis was performed considering the mean and SD
of the local IS computed within each whole cardiac cycle or within one
of the three identified intervals, using either the linear parametric esti-
mator or the non-linear model-free estimator (see Fig. 1). A single value
of the mean local IS and of the SD of the local IS was obtained for each
analyzed EEG signal taking the average over the 300 cardiac cycles
considered. Then, the distributions across subjects of the two measures
were compared using the parametric Student’s t-test as follows. For all
the analyses, the significance level was set to 𝑝 = 0.05.

The first analysis was aimed at comparing, for the EEG signal
measured from a given electrode, the distributions across subjects of
the mean local IS and of the SD of the local IS obtained for the whole
6

cardiac cycle versus each of the distributions computed within the three
intervals, i.e., comparing G vs I1, G vs I2 and G vs I3. In this case,
the paired Student’s t-test was followed by Bonferroni correction, with
𝑛 = 3 comparisons.

The second analysis was aimed at comparing, for the EEG signal
measured from a given electrode, the distributions across subjects of
the mean local IS and of the SD of the local IS obtained in the three
intervals, i.e., comparing I2 vs I1, I3 vs I1 and I3 vs I2. Also in this case,
the paired Student’s t-test was followed by Bonferroni correction, with
𝑛 = 3 comparisons.

Moreover, to analyze spatial variations across the scalp, we iden-
tified six regions according to the electrode locations reported in
Fig. 1(c), i.e., frontal (F), central (C), parietal (P), occipital (O), right-
temporal (Tr) and left-temporal (Tl); for each subject and each interval,
values of the mean local IS and of the SD of the local IS were
determined for each region taking the average of the values referred
to all the electrodes belonging to that region. The comparison between
pairs of regions was performed using the paired Student’s t-test with
Bonferroni correction for multiple comparisons (𝑛 = 15).

Finally, a measure of the effect size was also determined to assess
the magnitude of the differences observed among regions. Specifically,
denoting with 𝜇𝑌1 and 𝜇𝑌2 and with 𝜎2𝑌1 and 𝜎2𝑌2 the mean and the
variance of two distributions 𝑌1 and 𝑌2 obtained measuring the mean
local IS or the SD of the local IS across subjects, we computed the
Cohen’s 𝑑 measure defined for equally sized groups as follows [65]:

𝑑 =
𝜇𝑌2 − 𝜇𝑌1
√

𝜎2𝑌1
+𝜎2𝑌2
2

(22)

Conventionally a small effect size occurs for 𝑑 = 0.2, a medium effect
size for 𝑑 = 0.5 and a large effect size for 𝑑 = 0.8 [65].

3. Results

Fig. 2(a) depicts the scalp distribution of the mean values of the
global IS (G, computed over the whole cardiac cycle) and the local
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Fig. 3. Analysis of the standard deviation of the local IS of the EEG computed using the linear estimator. (a) Distribution over the scalp of the average values across subjects of
the SD of the global IS (G, computed over the whole cardiac cycle) and of the SD of the local IS (computed in a specific interval I1, I2, or I3). (b) Distribution over the scalp of the
average values across subjects of the difference between the SD of the global IS and the SD of the local IS computed within each interval I1, I2, I3. (c) Distribution over the scalp
of the average values across subjects of the difference between the SD of the local IS computed within pairs of intervals I1, I2, I3. Filled red (blue) electrodes show statistically
significant positive (negative) differences (paired Student’s t-test with Bonferroni correction, 𝑝 < 0.05∕𝑛, with 𝑛 = 3 comparisons).
IS (computed within each interval I1, I2, or I3) obtained using the
linear estimator. The scalp distribution of the mean values is very
similar comparing the global and local IS, and does not depend on the
considered interval. The regularity reflected by the mean local IS is
higher at the parietal and occipital regions if compared with temporal
regions. These observations are supported by the statistical analysis
comparing the distribution of the mean values of the global IS with each
of the distributions of the local IS, or comparing pairs of distributions
of the local IS, depicted respectively in Fig. 2(b) and in Fig. 2(c).
Indeed, slight statistically significant differences (𝑝 = 0.0084 ± 0.0041)
were found for only a few electrodes in the frontal, occipital and right
temporal regions.

Fig. 3(a) reports the scalp distribution of the SD values of the global
and local IS measures computed through the linear estimator. The
variability of the local IS exhibits a different pattern if compared to
the mean, with SD values more uniformly distributed over the scalp
and more dependent on the temporal windows over which they are
computed. As shown in Fig. 3(a), the variability of the global measure
obtained computing the SD of the local IS over the whole cardiac cycle
is markedly higher than the variability of the local measure computed
over the three intervals. This trend can be evidenced from Fig. 3(b),
showing that the difference between the SD of the global and local
IS values is always lower than zero and is statistically significant at
each location in the scalp. Moreover, the variability of the local IS
shows a decreasing trend going from the first to the third interval, as
documented in Fig. 3(c), where statistically significant differences are
observed comparing I3 vs I2 and even more comparing of I3 vs I1; the
differences between the first two intervals (I2 vs I1) are statistically sig-
nificant only for one electrode, being the resulting 𝑝-value furthermore
close to the significance threshold (𝑝 ∼ 0.0064).

Figs. 4 and 5 report the scalp distribution of the mean and SD
of the global and local IS computed using the model-free estimator
implemented with the nearest neighbor technique. Results evidence
that the nonlinear estimator leads to values of the local information
storage and of its variability lower than those obtained using the linear
7

approach (cf. Fig. 4 vs Fig. 2 and Fig. 5 vs Fig. 3). Nevertheless, the
spatial distribution and the changes across conditions displayed by the
mean and SD of the local IS computed with the model-free estimator
are very similar to those obtained for the parametric estimator. Indeed,
the mean IS has very similar scalp distribution when computed globally
over the whole cardiac cycle or locally within the three intervals of the
cycle (Fig. 4(a)), and only few statistically significant differences are
found in the comparisons of global and local measures as well as in
that of local measures in the three intervals (Fig. 4(b,c)) with 𝑝-values
close to the threshold (𝑝 = 0.0087 ± 0.0062). The SD of the local IS
shows values more uniformly distributed across the scalp (Fig. 5(a)),
significantly higher when computed over the whole cardiac cycle than
over the intervals (Fig. 5(b)), which tend to decrease moving from
the first to the second and third interval. Specifically, the differences
between the intervals were found to be significant over the whole scalp
when comparing I3 and I1, and mostly also when comparing I3 and I2,
while in the comparison between I2 and I1 the significant differences
are mainly related to the temporal regions (Fig. 5(c)).

Fig. 6 shows the results of the analysis carried out on the mean
values of the local IS computed in each of the three analyzed intervals
using both linear (first row) and KNN (second row) estimators and
averaged over the electrodes of the six detected regions of the scalp.
Results evidence that, for both estimators, the local IS computed in the
first two intervals is significantly lower in the temporal regions than
in the other areas; a similar pattern is observed for the mean local
IS computed during I3, though with a lower number of statistically
significant differences. The effect size measure highlighted that the
most relevant differences are between the temporal region and the
parietal/occipital regions: considering the average values among the
three intervals, when comparing the temporal region with the parietal
and occipital, the Cohen’s 𝑑 is respectively 1.05 and 1.02 using the
linear estimator, and 0.83 and 0.78 using the KNN estimator.

Fig. 7 depicts the results of the analysis of the regional differences
carried out using the standard deviation of the local IS. During I2,
the linear estimator shows significantly higher variability of the local
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Fig. 4. Analysis of the mean of the local IS of the EEG computed using the k-nearest neighbor estimator. (a) Distribution over the scalp of the average values across subjects of
the mean of the global IS (G, computed over the whole cardiac cycle) and of the mean of the local IS (computed in a specific interval I1, I2, or I3). (b) Distribution over the
scalp of the average values across subjects of the difference between the mean global IS and the mean local IS computed within each interval I1, I2, I3. (c) Distribution over the
scalp of the average values across subjects of the difference between the mean local IS computed within pairs of intervals I1, I2, I3. Filled red (blue) electrodes show statistically
significant positive (negative) differences (paired Student’s t-test with Bonferroni correction, 𝑝 < 0.05∕𝑛, with 𝑛 = 3 comparisons).

Fig. 5. Analysis of the standard deviation of the local IS of the EEG computed using the k-nearest neighbor estimator. (a) Distribution over the scalp of the average values across
subjects of the SD of the global IS (G, computed over the whole cardiac cycle) and of the SD of the local IS (computed in a specific interval I1, I2, or I3). (b) Distribution over the
scalp of the average values across subjects of the difference between the SD of the global IS and the SD of the local IS computed within each interval I1, I2, I3. (c) Distribution
over the scalp of the average values across subjects of the difference between the SD of the local IS computed within pairs of intervals I1, I2, I3. Filled red (blue) electrodes show
statistically significant positive (negative) differences (paired Student’s t-test with Bonferroni correction, 𝑝 < 0.05∕𝑛, with 𝑛 = 3 comparisons).
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Fig. 6. Boxplots of the mean values of the local IS computed in each of the three intervals (I1, I2, I3) using the linear (LIN) and k-nearest neighbor (KNN) estimator for the six
scalp regions: frontal (F), central (C), parietal (P), occipital (O), temporal right (Tr) and temporal left (Tl). Statistical analysis: region name, 𝑝 < 0.05∕𝑛, paired t-test with Bonferroni
correction (𝑛 = 15 comparisons).
Fig. 7. Boxplots of the standard deviation of the local IS computed in each of the three intervals (I1, I2, I3) using the linear (LIN) and k-nearest neighbor (KNN) estimator for
he six scalp regions: frontal (F), central (C), parietal (P), occipital (O), temporal right (Tr) and temporal left (Tl). Statistical analysis: region name, 𝑝 < 0.05∕𝑛, paired t-test with
onferroni correction (𝑛 = 15 comparisons).
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egularity in the parietal region when compared to frontal and right
emporal regions. In this case, a higher number of statistically signifi-
ant differences is detected using non-linear estimator; for all the three
ntervals, the variability in the parietal region is significantly higher
han in the left temporal area.

. Discussion

This study proposes a novel approach for investigating the temporal
volution of the complexity of biosignals measured from physiological
ystems. The use of measures able to reveal the patterns of the infor-
ation transferred, stored and modified within dynamical systems in
time-resolved way [22,30,31] allows a more thorough assessment

f the physiological control mechanisms of individual organs as well
s their interactions. In this work, the peculiarity of local information
easures was exploited to look at the variability of the regularity of
eural signals related to different phases of the cardiac cycle, providing
n alternative method to study brain–heart interactions. Our results
9

n

egarding the global IS and the mean values of the local IS of the EEG
dentify the scalp areas showing the more regular neural activity during
resting state condition, although they are unable to discriminate the

ime window with the strongest influence of the cardiac activity on the
EG regularity. On the other hand, the standard deviation values of
he local IS are almost uniformly distributed over the scalp but allow
iscriminating different behaviors within heartbeats, being thus more
seful to reflect cortical processing of the cardiac cycle.

.1. Mean response

The scalp distribution of the mean values of the local information
torage shown in Figs. 2(a) and 4(a) may be related to the contin-
ous communication between heart and brain during a resting-state
ondition, which is equally reflected in the global IS measure. In fact,
igher values of the information stored in EEG signals, indicative of a
ore regular neural activity, could suggest the presence of a prevalent

eural rhythm even in the absence of tasks, as already demonstrated
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in a previous work through simultaneous acquisition of EEG and fMRI
signals [49]. A correlation between neural activity in regions of the
DMN and the spectral power of EEG signal has been previously ob-
served documenting that an increased activity in vmPFC, PCC and PLC
is associated with an augmented EEG power in the alpha and beta bands
in parietal and occipital regions [49]. Similar considerations can be
made from our results reported in Fig. 6, since the average values of the
local IS in the temporal regions are significantly lower than in parietal
and occipital areas. Such results are similar to those reported in [66],
showing how the neural response to the heartbeat is restricted to the
parietal regions of the scalp.

The similarity of the results obtained with global and local measures
may suggest that the functional mechanisms determining the regularity
of neural rhythms are the same throughout the whole cardiac cycle.
Indeed, since the intervals were defined by evaluating the different
influence of the CFA at each heartbeat and knowing that the influence
of this artifact is prevalent in the first and third interval [64], the
similar IS average values detected in all the time windows suggest that
the cardiac activity does not have an influence on brain regularity.

4.2. Standard deviation response

Our results show that the parameter most influenced by the course
of time is the variability of the information stored in the EEG signals,
as demonstrated by the average values of the IS standard deviation
reported in Figs. 3(a) and 5(a). Indeed, both the linear estimator and
the nearest neighbor approach show how the standard deviation of
IS changes markedly if evaluated globally or locally within the time
windows corresponding to the different phases of the cardiac cycle. In
particular, there is a significant decrease of this quantity when going
from the first to the third interval, hence suggesting that the variability
in the EEG regularity is strongly affected for each heartbeat by the
cardiac pulse occurring close to the R-peak, which acts as a trigger. The
variability of the information stored in the EEG signals then decreases
with time, thus suggesting that the effect of the stimulus (heartbeat)
diminishes and is related to a reduced perturbation of the IS measure
till the occurrence of the successive stimulus. These results highlight
that the variability of the EEG regularity is pivotal in the study of the
mechanisms of brain–heart communication. This finding reinforces the
feasibility of employing the variability of local information measures to
differentiate the behavior of interacting systems in the transition across
different states, as already been demonstrated in [33] on cardiac and
respiratory signals using the local Granger Causality.

4.3. Comparison between linear and non-linear estimations

The local and global measures of EEG regularity were computed us-
ing both parametric and model-free approaches, implemented through
the linear and the k-nearest neighbors estimators, respectively. The esti-
mated values can depend on the method employed, given that a model-
based parametric estimator cannot suitably capture nonlinearities and
should be in principle limited to assess linear dynamics, contrary to
the model-free approach which is more robust to the presence of
non-stationarities, but in turn is less computationally reliable [1].

The results obtained through parametric and
model-free approaches, both in terms of mean (Figs. 2 and 4) and
standard deviation (Figs. 3 and 5), evidenced similar spatial and
temporal distributions of the local IS. However, the values obtained by
the nearest neighbor estimator are generally lower than those obtained
using the linear estimator. The reasons of such a difference are difficult
to explain and may be related to several aspects. A possible explanation
may be the presence of local non-linearities and/or non-stationarities,
which have been shown determine a temporal variation of local infor-
mation measures computed using globally identified linear regression
models in the case of bivariate causality measures [33], which could
play a role also in an univariate setting like in our case; even if a visual
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inspection of EEG signals has been carried out before performing the
analysis in order to check global stationarity, local non-stationarities
may still be present in EEG signals, as evidenced by previous studies in
the literature [67]. Moreover, it is not possible to exclude the effect of
a bias in the nonlinear measures obtained using the KNN estimator, due
to the difficulty of working on high-dimensional spaces (the embedding
dimension was set at 5). Nevertheless, in spite of the different absolute
values, the well-comparable changes across windows obtained with the
two estimators both for the mean and the variability of the local IS
suggest that nonlinearities do not play a crucial role in determining the
EEG regularity in relation to the heartbeat stimuli. In view of this, we
conclude that a parametric approach appears to be suitable enough to
characterize the patterns of local IS in various scalp regions and across
different phases of the cardiac cycle.

Another issue to take into account when discussing the results is
the proper choice of the parameters of the estimators. We underline
that in our analysis an optimal order of the AR model could not
be found, suggesting that this class of models may be unsuitable to
fully describe the EEG dynamics. It has been indeed observed that
the correct AR model order to describe EEG signals would ideally
be infinite [62], and that the class of Autoregressive-Moving Average
(ARMA) models that also takes into account autocorrelations of errors
should be used instead [68]. Here, we stick to the AR representation
because of the difficulty to identify ARMA models and to provide the
local formulation of information measures for this class of models.
Nevertheless, the parametric representation and the exploitation of the
extended Yule–Walker equations allow to take into account long lags
in the representation of the past history of the process, covering long
memories until the covariance decays, while this is not possible using
the model-free approach [69]. In fact, the estimation of information
measures is more difficult using the nearest neighbor estimator and
should thus be limited to a small number of past lags; the obtained
results in this case could be strongly affected by the choice of the
dimension of the embedding vector as well as by the number of
neighbors.

4.4. Comparison with HEP

Several and somewhat conflicting hypotheses have been reported to
describe the complex communication mechanisms between the heart
and the brain, being the most supported one that this process is
generated by the superposition of multiple events that come into play
in different ways and at multiple times [40]. The continuous processing
of stimuli from within the body has been also shown to crucially shape
our first-person experience [34,40], allowing to coordinate and unify
the perception of the external stimuli to which, even unconsciously,
everybody is constantly exposed. This idea emerged from EEG studies
focusing on the cortical processing of cardiac signals through measures
of the Heartbeat Evoked Potential (HEP) [70–72]. Depolarization and
repolarization of the heart constitutes a visceral stimulus for the brain
which is processed in cortical areas like any other stimulus that reaches
the body from the external environment. The cortical response to heart-
beat is generally investigated as those evoked by any external stimulus,
which are known as Event-Related Potentials. Specifically, EEG traces
are segmented and timed with respect to the ECG R-peak and then av-
eraged to obtain the waveform of the relative potential [40,73]. Several
studies adopting the HEP led often to contrasting results depending on
the task carried out by the subjects under examination [74].

The methodology of analyzing HEPs is markedly different from the
approach followed in this paper. Indeed, while our methodology allows
to find out the presence of repetitive EEG patterns related to the heart-
beat, using the HEP any reference to local regularity patterns is instead
superseded by the averaged trend of the conduction of the cardiac
electrical stimulus on the scalp. For this reason, a direct comparison
of our results with other studies that used the HEP is difficult to be
carried out, since they operate in a ‘‘reverse’’ way. Nevertheless, there
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is a quite good agreement between the interval in which we assume
there is less influence of merely electric field effects and thus more
neural, i.e., I2, and the interval in which the HEP is more commonly
reported. In fact, although the HEP potential curve strongly depends
on data, a large number of studies employing non-parametric cluster-
based permutation techniques restricted the influence of heartbeats on
neural activity at the fronto-central electrodes and in a time interval
between 300 and 600 ms after the ECG R-peak [40,74], which is mostly
overlapping with the second time window employed in our analysis,
although it is not completely equivalent. A thorough comparison of the
two approaches, highlighting similarities and differences, will be the
scope of future studies aiming to provide a comprehensive analysis of
heartbeat-induced cortical dynamics.

4.5. Limitations and future perspectives

The approach proposed in this work overcomes the limitations of
the commonly employed global information measures which cannot
provide point-in-time insights about physiological dynamics. Despite
this, the method applied in the present study for investigating cortical
processing of heartbeat has some limitations which should be taken into
account.

A first limitation derives from the employment of ICA for data
preprocessing. The ICA approach is very effective for separating the
components associated with neural and non-neural sources from EEG
signal, allowing to filter out non-neural information. Despite using
ICA is a well-established practice in HEP analysis [74], its application
may lead to remove not only the CFA, but also useful information
related to the cortical processing of the heartbeat [40] being both
generated by the same source. To overcome such limitation, an alterna-
tive methodological approach that could be used is the Current-Source
Density (CSD) transformation, which allows to reduce the presence of
the artifacts from EEG signals without being so limiting with regard
to the analysis of the HEP and therefore to the cortical processing of
the heartbeat [75,76]. Other studies instead remove the CFA by using
a bipolar reference, given that subtracting the signal from adjacent
electrodes corresponds to eliminate any signal coming from common
external or non-neural sources [46].

Another limitation concerns the assumption of global stationarity
that is made when using the parametric and non-parametric approaches
developed in this work. In this context, future developments could be
aimed to compare the results achieved with the local analysis carried
out in this paper with a time-varying approach [77] that overcomes
the assumption of signal stationarity, while also allowing for high
time resolution information as the local analysis [30]. In addition, the
analysis of variations of neural activity regularity could be also carried
out not on the EEG scalp signals, but instead after performing the
reconstruction of the sources [28].

One of the most critical aspects of our work is the small size of
the study cohort, which may limit the generalizability of our results,
as well as the use of EEG data collected only during resting state.
Therefore, as a future activity we aim to apply the approach developed
in this work to data acquired during the execution of tasks generally
used for studying the HEP (e.g., the heartbeat counting task [40,71]),
or in presence of pathological conditions (e.g., depression, nightmare
disorder [40,78,79]), in order to allow not only to identify differences
among conditions, but also to compare the results to those already
reported in the literature.

5. Conclusions

This work investigates the feasibility of recently developed and still
not widely employed measures of time-point information theory in
the study of the cardiac influence on the regularity of neural activity.
Specifically, the use of the local metric of information storage allowed
to investigate brain–heart interactions mechanisms by observing the
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predictability of the EEG signal within specific intervals whose timing
is given by the cardiac activity, hence the electrocardiographic signal.

From a physiological point of view, our study has demonstrated
variations of brain rhythms regularity within the cardiac cycle. Our re-
sults have evidenced that the heartbeat is capable of evoking alterations
in the information processed by the electric brain activity even during
resting-state conditions, manifested mainly through changes in the
standard deviation of the local information storage in the EEG signal
rather than in its mean values. This suggests that the variability over
time of the regularity of the brain activity, even more than the mean
regularity, is affected by the timing of the cardiac activity, and should
be considered as an elective feature to assess the cortical processing of
heartbeat.

Though the interpretation of such results is far from trivial, our
study highlights how local measures of information represent an im-
portant tool for the analysis of physiological mechanisms, since the
time-point information carried and processed within a physiological
signal could be exploited to identify internal dynamics of the human
organism. In our study, the use of such measures contributed to shed
light on the underlying cortical processing of the heartbeat by re-
vealing mechanisms of heart–brain interactions that are potentially
complementary to those typically studied by HEP analysis.
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