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A B S T R A C T

Modeling of prestressed concrete beams and their degrading processes are relevant issues in the assessment
of existing structures and infrastructures, particularly for bridges. This work focuses on the formulation and
validation of a fiber beam finite element for prestressed concrete structural elements that accounts for nonlinear
material behavior and time-dependent phenomena. The element is a 3D Timoshenko beam that follows a force-
based approach. A fiber discretization of the cross-section is used to model concrete, steel reinforcements
and prestressing cables based on damage and plasticity for concrete, and plasticity for steel through three-
dimensional constitutive laws. The steel fibers are fully bonded. Strain-softening in the concrete requires an
appropriate regularization procedure. The tendons are treated as additional fibers with prestressing applied
as initial strain of the relevant fibers. No additional discretization is required except for the description of
the tendons’ profile. Time-dependent phenomena such as creep, shrinkage and cable relaxation are taken into
account. The proposed model is implemented in the OpenSees computational framework to carry out specific
validation tests and demonstrate the element potential.
. Introduction

Beam elements can be suitably used in a large number of structural
ases and represent the best compromise between accuracy and com-
utational cost based on limited amount of degrees of freedom. This
ork presents a new prestressed concrete (PC) beam finite element

FE), based on existing force-based (FB) formulations for reinforced
oncrete elements that takes into account the interaction between
ormal, bending and shear stresses, and adds the main effects of pre-
tressing, including time-dependent phenomena in steel and concrete.
he proposed element is applied here to beams, but given the versatile
ormulation, its use can extend to a large number of possible cases,
ncluding precast structures.

In the last decades, the FB approach for beam elements (Zeris
nd Mahin [1], Spacone et al. [2] and Addessi and Ciampi [3]) has
hown major advantages over the displacement-based (DB) formu-
ation (Åldstedt and Bergand [4]) since the profile of the element
isplacements under large forces is often localized and difficult to
escribe with polynomial interpolations used in DB formulations. The
B formulations describe the section generalized stresses in a statically
eterminate basic system without rigid body modes, thus equilibrium
s enforced in strong form and the internal force distributions along the
lement are exact. More advanced formulations, such as those proposed

∗ Corresponding author.
E-mail address: luca.parente@uniroma1.it (L. Parente).

in Spacone and Limkatanyu [5] and generalized in Taylor et al. [6],
allow for the distinct interpolation of forces and displacements with
more sophisticated functions: these formulations are particularly in-
teresting for elements with bond–slip. Feng et al. propose similar FB
fiber beam element formulations both in the 2D field [7,8] and in
the 3D framework [9]. This latter considers curvature-shear based dis-
placement interpolation and geometrical nonlinear effects for accurate
strain description. In addition to their previous works, where nonlocal
regularization procedures are proposed to overcome localization issues,
such as the implicit-gradient formulation, in [9] local procedures are
presented as an alternative underlying their ease of application.

In FE programs, it is common to model prestressed structures either
by using loads acting on the reinforced concrete member or large
number of elements to discretize the reinforced concrete beam and the
individual tendon trusses (e.g., Aalami [10], Picard et al. [11]). Beams
with external tendons were thoroughly studied by Ayoub, Filippou and
co-workers [12–15]. The prestressing is modeled by introducing an
enriched element formulation. A mixed approach is used to evaluate
the section displacements and introduce a bond relationship between
the prestressing trusses and the reinforced concrete beam, the latter
including a classic fiber section model. The above formulations require
a dense discretization of the elements to generate internal nodes where
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bond is transferred. Other FE analyses of PC structures are found,
for example Vu et al. [16], who present a model for the structural
response of post-tensioned beams based on the definition of a FE with
homogenous average inertia. In Kim and Lee [17] a flexural model
for continuous unbonded post-tensioned members is proposed. Moreira
et al. [18] model the tendon as a single polygonal element, embedded
in a specified subset of frame elements. Some of these works include the
bond–slip, but some issues remain. The element is usually formulated
with a DB approach, thus a dense mesh must be used, and the Euler–
Bernoulli formulation is used, therefore the shear strains are neglected.
In this work, the stresses induced by the prestressing are added at the
fiber level through equivalent initial strains, as proposed by Doty [19].
The computational burden added is negligible since it only requires the
insertion of new fibers and few other features.

Time-dependent effects must be considered, since they increase
structural deformability and thus deflection over time, considerably
affecting the serviceability limit states. There are FE studies that include
concrete creep and shrinkage, and tendon relaxation phenomena, such
as in Kwak and Seo [20], where the creep and shrinkage effects in
concrete are considered according to a recursive algorithm based on the
expansion of the compliance function. In Au and Si [21], a relaxation
model for steel tendons is proposed based on the equivalent creep
coefficient to estimate the losses in the cable forces. In the studies by
Lou et al. [22,23], the effects of long-term phenomena on the nonlinear
analysis of PC girders within a DB formulation are included.

In this work, a single element can be used to represent most cases.
Starting from the older fiber section models proposed by the second
and third authors, the 3D FB formulation is extended to account for
the shear components and include the tendon effects. The prestressing
cables are treated as additional, fully bonded fibers in each section.
This way, complex geometry tendon layouts can also be modeled with
a small number of elements. The proposed formulation is particularly
suitable for the analysis of bridge beams with internal cables, precast
girders and pillars for civil and building works and other constructions
where the system involves the use of fully bonded cables. Compatibility
of displacements and strains must hold between cables and concrete
in any section along the longitudinal direction. In case of external
prestressing, modeling alternatives can be followed, such as the use of
eccentric beam and truss elements connected at the nodes located at
the anchor points.

The concrete constitutive law is based on the 3D isotropic plastic
damage model developed for cementicious brittle materials proposed
by Addessi et al. [24] and then enriched for masonry by Gatta et al. [25]
and for concrete by Di Re et al. [26]. It adopts a macromechanical
approach by introducing two different damage variable which describe
the damaging process for prevailing tensile or compressive strain states.
The growth of plastic strains is ruled by a Drucker–Prager [27] yield
limit function. Concerning computational aspects, to link a 3D material
to every fiber of a Timoshenko beam, where only three strain compo-
nents are necessary, a condensation algorithm is implemented [28].
This step relies on the assumption of the beam theory where the
three stresses outside the longitudinal axis are assumed as zero. A
regularization technique is introduced to eliminate the pathological
mesh-dependency issues. Rather than applying the nonlocal integral
formulation, as proposed in [25], a simple local procedure is adopted
which acts on the integration scheme, similar to those proposed by
Scott et al. [29,30], Addessi and Ciampi in [3].

The 3D beam FE proposed in this work is implemented in the
open-source computational platform OpenSees [31] through the aid of
STKO [32]. New classes are created for the new 3D damage-plastic
constitutive law for concrete, the condensation algorithm, the regular-
ization technique and a new load command which applies prestressing
and time-dependent properties to the elements. The 3D fiber section
and the FB beam formulation are modified to accommodate the new
properties.
2

𝐛

Fig. 1. 3D FB beam element without rigid body modes in local basic reference system:
nodal displacements and forces.

Following this introduction, the FB element formulation is detailed
in Section 2. In Section 3, the beam model with the prestressing cables
is presented, introducing the steps followed to input the tendons in
the fiber sections and compute the time-dependent effects. Section 4
briefly recalls the 3D damage-plastic constitutive law used for concrete,
which is based on [26] and uses a full 3D strain description [28]. Com-
putational aspects are detailed in Section 5. To validate the proposed
PC element, various experimental and analytical results are compared
and discussed in Section 6. Prestressed beams from Hussien et al. [33]
and Breckenridge and Bugg [34] are tested with static analyses in one
case and pseudo-static analyses in the other, including time-dependent
effects.

2. 3D beam finite element formulation

The proposed beam FE is based on the 3D FB approach and assumes
small displacements and strains and full bond between steel and con-
crete fibers. The element is shown in Fig. 1 in its local basic reference
system where the rigid body modes are removed by considering a
simply supported configuration. It is a 2-node FE with 6 displacement
degrees of freedom at each end node. The local 𝑥 axis is directed
from node 𝑖 to node 𝑗, while the 𝑦 and 𝑧 directions coincide with the
cross-section principal axes of inertia.

The element nodal force vector 𝐪 is defined as:

𝐪 = [𝑝𝑥,𝑗 𝑚𝑦,𝑖 𝑚𝑦,𝑗 𝑚𝑧,𝑖 𝑚𝑧,𝑗 𝑚𝑥,𝑗 ]
𝑇 (1)

here 𝑝𝑥,𝑗 is the axial force, 𝑚𝑦,𝑖, 𝑚𝑦,𝑗 , 𝑚𝑧,𝑖, 𝑚𝑧,𝑗 and 𝑚𝑥,𝑖 are the
moments at nodes 𝑖 and 𝑗 around the 𝑥, 𝑦, 𝑧 local axes. The element
basic displacement vector 𝐯, work-conjugate to the nodal force vector

, is:

= [𝑢𝑥,𝑗 𝜑𝑦,𝑖 𝜑𝑦,𝑗 𝜑𝑧,𝑖 𝜑𝑧,𝑗 𝜑𝑥,𝑗 ]
𝑇 (2)

where 𝑢𝑥,𝑗 is the axial displacement of node 𝑗, while 𝜑𝑦,𝑖, 𝜑𝑦,𝑗 , 𝜑𝑧,𝑖, 𝜑𝑧,𝑗
and 𝜑𝑥,𝑗 are the rotations at nodes 𝑖 and 𝑗 around the 𝑥, 𝑦, 𝑧 local axes.

Following the classical FB formulation, the equilibrium equation is
given by:

𝐬(𝑥) = 𝐛(𝑥)𝐪 + 𝐬𝑞(𝑥) (3)

where vector 𝐬(𝑥) contains the generalized section stresses:

𝐬(𝑥) = [𝑁(𝑥) 𝑀𝑦(𝑥) 𝑀𝑧(𝑥) 𝑉𝑧(𝑥) 𝑉𝑦(𝑥) 𝑇 (𝑥)]𝑇 (4)

where 𝑁(𝑥) is the axial force, 𝑀𝑦(𝑥) and 𝑀𝑧(𝑥) the bending moments
around the 𝑦 and 𝑧 axes, respectively, 𝑉𝑧(𝑥) and 𝑉𝑦(𝑥) are the shear
orces in the 𝑦 and 𝑧 directions, 𝑇 (𝑥) is the torque around the 𝑥 axis.

(𝑥) is the equilibrium matrix that links the section generalized stresses
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𝐬(𝑥) to the element nodal forces 𝐪 and is defined as follows:

(𝑥) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0
0 −1 + 𝑥

𝐿
𝑥
𝐿 0 0 0

0 0 0 −1 + 𝑥
𝐿

𝑥
𝐿 0

0 1
𝐿

1
𝐿 0 0 0

0 0 0 1
𝐿

1
𝐿 0

0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(5)

nd 𝐬𝑞(𝑥) is the vector of the generalized section stresses in equilibrium
ith the distributed loads.

The work-conjugate generalized section strain vector 𝐞(𝑥) is:

(𝑥) = [𝜀𝐺(𝑥) 𝜒𝑦(𝑥) 𝜒𝑧(𝑥) 𝛾𝑧(𝑥) 𝛾𝑦(𝑥) 𝜃(𝑥)]𝑇 (6)

here 𝜀𝐺(𝑥) is the axial strain, 𝜒𝑦(𝑥) and 𝜒𝑧(𝑥) are the curvatures
round the 𝑦 and 𝑧 axes, respectively, 𝛾𝑦(𝑥) and 𝛾𝑧(𝑥) are the shear

strains in the 𝑦 and 𝑧 directions, respectively, and 𝜃(𝑥) is the torsion
train around the 𝑥 axis.

The section constitutive relationship, according to the FB formula-
ion, is:

̇ (𝑥) = 𝐟 (𝑥)�̇�(𝑥) (7)

here ‘‘ ̇ ’’ indicates first derivative, f(x) is the section tangent flexibility
atrix, computed as the inverse of the section tangent stiffness k(x).
his latter is obtained from the section state determination, that relies
n the fiber section model briefly recalled in the next session.

The virtual work principle leads to the following element equation:

̇ = 𝐅�̇� (8)

here 𝐅 is the element tangent flexibility matrix:

= ∫

𝐿

0
𝐛𝑇 (𝑥)𝐟 (𝑥)𝐛(𝑥)𝑑𝑥 (9)

. Fiber section model with prestressing effects

In the proposed biaxial fiber section, the fiber strains are computed
rom the section generalized strains 𝐞(𝑥). The prestressing effects are
ncluded by introducing the tendons as individual fibers. Depending
n the tendon profile, in a given section the tendon fibers are not
ecessarily parallel to the 𝑥 local axis, but can have a slope with respect
o the cross-section, as formerly proposed in [19]. An initial input strain
s assigned to the tendon fiber. The following compatibility equation
pplies:

(𝑥, 𝑦, 𝑧) = 𝐚𝑠(𝑦, 𝑧) 𝐞(𝑥) + 𝜺0(𝑥, 𝑦, 𝑧) (10)

r:

⎧

⎪

⎨

⎪

⎩

𝜀𝑥
𝛾𝑥𝑦
𝛾𝑥𝑧

⎫

⎪

⎬

⎪

⎭

=
⎡

⎢

⎢

⎣

1 −𝑦 𝑧 0 0 0
0 0 0 0 𝑠𝑦(𝑦) −𝑧
0 0 0 𝑠𝑧(𝑧) 0 𝑦

⎤

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜀𝐺
𝜒𝑦
𝜒𝑧
𝛾𝑧
𝛾𝑦
𝜃

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

+

⎧

⎪

⎨

⎪

⎩

𝜀0
0
0

⎫

⎪

⎬

⎪

⎭

(11)

ote that the vector 𝜺0 contains only the axial elongation 𝜀0, that is the
nitial axial elastic strain applied to the strands through the prestressing
acks, assuming a linear elastic behavior. 𝜀0 can be evaluated from the
acks’ imposed stress 𝜎0, or axial force 𝑁0, the tendon geometry and
oung’s modulus. The approach works both for pre-tensioned and post-
ensioned beams assuming, in the latter case, full bond after grouting.
he Timoshenko formulation only includes two average shear strains
er direction (𝛾𝑦 and 𝛾𝑧). In this work parabolic shear strain distribu-
ions for rectangular sections are used instead. The terms 𝑠𝑦(𝑦) and 𝑠𝑧(𝑧)
n Eq. (11) are shape functions that depend on the fiber location (𝑦, 𝑧)
nd define the following parabolic shear strain distributions:

𝑦 (𝑦) =
𝛾𝑥𝑦 (𝑦) = 3

[

1 −
(

2𝑦
)2

]

(12)
3

𝛾𝑦 2 𝐻𝑦
Fig. 2. Tendon fiber overall strain 𝜺, computed as the sum of the fiber compatible
strain 𝜺𝑚𝑥 and the initial fiber strain 𝜺0.

Fig. 3. Angles between the tendon and the section axes. 𝛽 is the angle about the 𝑥
axis, 𝜓 is about the 𝑦 axis.

𝑠𝑧 (𝑧) =
𝛾𝑥𝑧 (𝑧)
𝛾𝑧

= 3
2

[

1 −
(

2𝑧
𝐻𝑧

)2
]

(13)

where 𝐻𝑦 and 𝐻𝑧 are the section width and depth in the 𝑦 and 𝑧
directions, respectively, while 𝛾𝑦 and 𝛾𝑧 are the average shear strains
in the 𝑥𝑦 and 𝑥𝑧 planes, respectively. The terms 𝑠𝑦(𝑦) and 𝑠𝑧(𝑧) can be
calculated to obtain shear strains in any section. An example of a dif-
ferent shear distribution is used for the double-T beams in Sections 6.2
and 6.4.

The resulting strains in Eq. (10) can also be expressed as the sum of
two contributions, one coming from the compatible section strains 𝜺𝑚
and one due to the initial prestressing 𝜺0, as shown in Fig. 2:

𝜺 = 𝜺𝑚 + 𝜺0 (14)

The initial fiber strain 𝜀0 is positive (tension). However, the cables
in the beam are usually placed with an inclination that varies along
the beam depending on the tendon geometry. Thus, the strain field of
the tendon fibers is projected on the section reference system 𝑥, 𝑦, 𝑧 to
account for the slopes of the tendon at the given section. It is assumed
that the axial force of the tendon has the inclination 𝛽 with respect to
the 𝑥 axis and 𝜓 with respect to the 𝑦 axis on the 𝑦𝑧 plane, as shown in
Fig. 3. For each tendon fiber, the generalized section stress components
can be obtained by defining a rotation matrix 𝐑 as the product of two
rotation matrices 𝐑𝛽 and 𝐑𝜓 about 𝛽 and 𝜓 , respectively:

𝐑 = 𝐑𝛽𝐑𝜓 (15)

𝐑 =
⎡

⎢

⎢

cos 𝛽 0 − sin 𝛽
− sin 𝛽 cos𝜓 −cos 𝛽 sin𝜓

⎤

⎥

⎥

(16)

⎣cos𝜓 sin 𝛽 sin𝜓 cos 𝛽 cos𝜓 ⎦
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Fig. 4. Different levels of tendon fiber discretization.

ince the fiber strain vector 𝜺𝑚 refers to the cross-section axes 𝑥, 𝑦, 𝑧, it
s necessary to project it onto the tendon. To make this consistent with
he fiber section formulation, the rotation matrix defined in Eq. (15) is
irectly applied to the compatibility matrix 𝐚𝑠(𝑦, 𝑧), computed as:

�̄�𝑠(𝑦, 𝑧) = 𝐑𝐚𝑠(𝑦, 𝑧) (17)

q. (10) is thus generalized using Eq. (17) to evaluate material strains
t the tendon level:

= �̄�𝑠𝐞 + 𝜺0 (18)

fter 𝜺0 is introduced, the tendon behaves like any other fiber, and
equires an appropriate constitutive law to evaluate the fiber stress
ector and stiffness matrix:

(𝑥, 𝑦, 𝑧) = 𝑓 [𝜺(𝑥, 𝑦, 𝑧)] (19)

he contribution of tendons to the section stresses 𝐬 are then evaluated
s the integral of the fiber stresses 𝝈, and the section stiffness 𝐤 as the
ntegral of the fiber tangent stiffness 𝐂𝑡. These result again from the
pplication of the virtual work principle, as in [2]:

= ∫𝐴
�̄�𝑇𝑠 𝝈 d𝐴 ≈

∑

𝑓𝑖𝑏𝑒𝑟
𝐴𝑓 �̄�𝑇𝑠 𝝈 (20)

= ∫𝐴
�̄�𝑇𝑠 𝐂𝑡 �̄�𝑠 d𝐴 ≈

∑

𝑓𝑖𝑏𝑒𝑟
𝐴𝑓 �̄�𝑇𝑠 𝐂𝑡 �̄�𝑠 (21)

here 𝐴𝑓 is the fiber area. The introduction of the tendons at the
ection level requires the definition of the following input data for each
restressing steel fiber: coordinates 𝑦𝑝(𝑥) and 𝑧𝑝(𝑥), fiber area 𝐴𝑝, initial
trains 𝜀0𝑝(𝑥) and angles 𝛽𝑝(𝑥), 𝜓𝑝(𝑥) of the cable at 𝑥. This additional
ata are collected in a vector for every tendon fiber 𝑝 for a total of 𝑛𝑝
umber of fibers per section:

𝑦𝑝(𝑥) 𝑧𝑝(𝑥) A𝑝 𝜀0𝑝(𝑥) 𝛽𝑝(𝑥) 𝜓𝑝(𝑥)
]

𝑝 = 1, 2,… , 𝑛𝑝
(22)

he model easily accounts for the presence of several cables with the
equired accuracy: one can indeed use one fiber for each tendon, or
iscretize the area of a single tendon into several fibers, or instead use
ne fiber for multiple tendons (Fig. 4). In most cases, it is sufficient to
se a single fiber per tendon.

Given the shape of the tendons (for example parabolic shape for
ost-tensioned cables or piecewise linear for pre-tensioned tendons),
𝑝(𝑥) and 𝑧𝑝(𝑥) are a function of 𝑥 as they may change at different
ntegration points (IP). The controlled section position is given by the
ntegration scheme (Gauss–Lobatto in this work). We recall that the
odel can suffer from loss of accuracy when few integration points

re used. This issue is investigated in one of the validation studies
Section 6.1). Also, along the integration point length 𝑤𝑖𝐿 the tendon
osition is constant (Fig. 5). This implies that for complex tendon
ayouts a high number of IP may be needed for a more accurate
4

escription of the tendon geometry.
.1. Time-dependent phenomena

Short-term losses are considered instantaneous and can be applied
efore or during the analysis by properly reducing the initial fiber strain
0. This approach is in line with common design practices and can
e used to account for anchorage set, friction between jacks, tendon,
nd concrete. PC elements and more specifically bridges are exposed
o significant strain–stress state modifications over long time spans.
oncrete shrinkage and creep, and cable relaxation have to be con-
idered in any analysis. These effects are assessed in the design phase
f prestressed structures, and their implementation in the proposed
eam element uses consolidated code-provided functions. All time-
ependent phenomena are added to the fiber initial strain vector 𝜺0.

These time-dependent strains are called 𝜺𝑑 (𝑡) to distinguish them from
the initial prestressing strains 𝜺0 (assumed constant over time). The
time-dependent strains are applied to the tendon fibers to model cable
relaxation and concrete fibers to model creep and shrinkage. When time
dependence is considered in the analysis, Eq. (10) is rewritten as:

𝜺(𝑡) = �̄�𝑠𝐞 + 𝜺0 + 𝜺𝑑 (𝑡) (23)

here the dependence on the coordinates 𝑥, 𝑦, 𝑧 is omitted. The time-
ependent strains 𝜺𝑑 (𝑡) allow to represent different phenomena such
s:

- cable relaxation: negative strains are applied to tendon fibers.
This effect reduces the pretension in the cables;

- concrete shrinkage: positive strains are applied to concrete fibers.
This effect produces tension in concrete and compression in steel,
causing the entire element to shrink when equilibrium is en-
forced;

- concrete creep: positive strains are applied to concrete fibers to
reduce compression proportionally to the applied stress, which is
negative. This effect acts only on compressed fibers and further
enhances the curvature in the beam.

n example is shown in Fig. 6 where positive strains are applied to a
ingle tendon fiber. When creep and shrinkage are applied to concrete
ibers, the other fibers corresponding to reinforcement and tendons
re subjected to negative strains until equilibrium is attained in the
hole element. The concrete fibers may be subjected to compression

o balance the positive 𝜀𝑑 (𝑡) applied, as shown in Fig. 7.

. 3D damage-plastic constitutive law for concrete

The 3D plastic-damage model proposed by Di Re et al. in [26] is
sed for the concrete fibers. This is a previous version of the concrete
aw presented in [25], where the plasticity is instead based on Von-
ises approach, and is an extension of the proposal in [24]. The main

haracteristics are recalled here. Given the six-component strain vector
, the work-conjugate stress vector 𝝈 is obtained through the following
quation:

= (1 −𝐷)2𝐂(𝜺 − 𝜺𝑝) = (1 −𝐷)2𝐂𝜺𝑒 = (1 −𝐷)2�̄� (24)

here 𝝈 is the stress vector, 𝜺, 𝜺𝑒 and 𝜺𝑝 are the total, elastic and
lastic strains, respectively; 𝐷 is a scalar damage variable that ranges
rom 0 (that represents the undamaged elastic material state) to 1
corresponding to a completely damaged material); 𝐂 is the 6 × 6 elastic
onstitutive matrix and �̄� is the effective stress vector.

The tangent constitutive matrix 𝐂𝑡, according to [28], may be
obtained through the differentiation of the stress vector with respect
to the strain vector, resulting in:

�̇� =
[

(1 −𝐷)2𝐂𝑒𝑝 − 2(1 −𝐷)𝐂𝜺𝑒 𝜕𝐷
𝜕𝜺

]

�̇� = 𝐂𝑡�̇� (25)

𝑒𝑝
where 𝐂 is the tangent elasto-plastic 6 × 6 stiffness matrix.
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Fig. 5. Example of tendon profile with 5 Gauss–Lobatto integration points. The position of the 𝑝th tendon fiber 𝑦𝑖 , 𝑧𝑖 for each integration point 𝑥𝑖 is constant throughout the whole
region 𝑤𝑖𝐿.
Fig. 6. Section strain distribution when the negative time-dependent strain 𝜺𝑑 is
pplied to a tendon fiber. Since the tendon tension reduces, compression in the concrete
ibers reduces too as a result of equilibrium.

.1. Plastic model

As for the plastic evolution problem, given the strain vector, the
lasticity flow is ruled by the following Drucker–Prager yield function:

(𝜼, 𝛼) = |𝜼| −
√

2
3
(𝜎𝑦 +𝐻𝑖𝛼) + 𝜇𝐽1 (26)

where 𝜼 = 𝐏�̄� − 𝜻 , 𝐏 is an operator that extracts the deviatoric part
of the effective stress vector �̄� and 𝜻 is the back-stress vector; 𝜎𝑦 is
the yield threshold, 𝐻𝑖 is the isotropic hardening parameter, 𝛼 is the
ack-stress variable, 𝜇 the friction coefficient and 𝐽1 = 𝟏𝑇 �̄� is the stress

first invariant, with 𝟏 denoting the 6-component column vector used to
extract the volumetric part of the effective stress.

The evolution of the plastic variables is governed by the following
equations:

�̇�𝑝 = �̇�
𝜕𝑓
𝜕𝝈
, �̇� =

√

2
3
�̇�, �̇� = 2

3
𝐻𝑘�̇�𝑝 (27)

where 𝜆 is the plastic multiplier, evolving according to the Karush–
Kuhn–Tucker complementarity and consistency conditions:

�̇� ≥ 0, 𝑓 ≤ 0, �̇�𝑓 = 0, �̇� ̇𝑓 = 0 (28)
5

and 𝐻𝑘 is the kinematic hardening parameter.
Fig. 7. Positive 𝜺𝑑 (𝑡) for creep applied to concrete fibers. If the section top is in tension
(top), 𝜀𝑑 (𝑡) causes a bilinear 𝜀𝑥(𝑦, 𝑧) profile and additional negative strains at all the
other fibers to balance the creep effects.

Table 1
Elastic and plastic parameters for concrete used in Fig. 8.
Elastic and plastic parameters

𝐸 [GPa] 𝜈 𝐻𝑘 𝐻𝑖 𝜎𝑡 [MPa] 𝜎𝑐 [MPa]

30 0.2 0.5𝐸 0.1E 3.3 15

Table 2
Damage parameters for concrete used in Fig. 8.

Damage parameters

𝑌𝑡0 𝑎𝑡 𝑏𝑡 𝑌𝑐0 𝑎𝑐 𝑏𝑐 𝛽

7.92 × 10−5 0.8 8 × 10−5 3.6 × 10−4 0.1 5 × 10−3 1

The tangent elastoplastic matrix is computed as:

𝐂𝑒𝑝 = 𝐂 − 4𝐺2�̇�
𝜂

(

𝐈 − 1
3
𝟏𝟏𝑇 − �̂��̂�𝑇

)

−
4𝐺2�̂��̂�𝑇 + 6𝐺𝐾𝜇�̂�𝟏𝑇

2𝐺 + 2
3

(

𝐻𝑖 +𝐻𝑘
)

(29)

where 𝐈 is the 6 × 6 identity matrix. The material parameters 𝐺 and 𝐾
are the shear and bulk moduli, respectively.

4.2. Damage model

To account for the unilateral effects due to the re-closure in com-
pression of the tensile cracks, two different damage variables are



Engineering Structures 292 (2023) 116501L. Parente et al.
Fig. 8. Plastic and damage domains using the parameters in Tables 1 and 2: (a) 3D Drucker–Prager yield surface; (b) Damage limit function and plastic envelope for the plane-stress
condition 𝜎𝑧 = 0.
used, 𝐷𝑡 and 𝐷𝑐 , that measure damage for prevailing tensile and
compressive states, respectively. These evolve independently satisfying
the constraint 𝐷𝑡 ≥ 𝐷𝑐 . Both range between 0 and 1 and satisfy the
thermodynamic irreversibility conditions �̇�𝑡 ≥ 0 and �̇�𝑐 ≥ 0. The
damage-associated variables, 𝑌𝑡, 𝑌𝑐 , 𝑌 𝑒𝑡 and 𝑌 𝑒𝑐 are defined as:

𝑌𝑡 =

√

√

√

√

3
∑

𝑖=1
⟨𝑒𝑖⟩2+, 𝑌 𝑒𝑡 =

√

√

√

√

3
∑

𝑖=1
⟨𝑒𝑒𝑖 ⟩

2
+, (30)

𝑌𝑐 =

√

√

√

√

√

3
∑

𝑖=1
⟨𝑒𝑖⟩2− − 𝛽

3
∑

𝑗≠𝑖=1
⟨𝑒𝑖⟩−⟨𝑒𝑗⟩− (31)

𝑌 𝑒𝑐 =

√

√

√

√

√

3
∑

𝑖=1
⟨𝑒𝑒𝑖 ⟩2− − 𝛽

3
∑

𝑗≠𝑖=1
⟨𝑒𝑒𝑖 ⟩−⟨𝑒

𝑒
𝑗⟩− (32)

where brackets ⟨∙⟩± compute the positive/negative part of the quantity,
and 𝛽 is a material parameter influencing the shape of the damage limit
function in compression. The terms 𝑒𝑖 and 𝑒𝑒𝑖 are evaluated from the
principal total strains, �̂�𝑖, as well as the elastic strains, �̂�𝑒𝑖 , respectively,
as:

𝑒𝑖 = (1 − 2𝜈)�̂�𝑖 + 𝜈
3
∑

𝑗=1
�̂�𝑗 (33)

𝑒𝑒𝑖 = (1 − 2𝜈)�̂�𝑒𝑖 + 𝜈
3
∑

𝑗=1
�̂�𝑒𝑗 (34)

The overall damage variable 𝐷 is the linear combination of 𝐷𝑡 and 𝐷𝑐 :

𝐷 = 𝛼𝑡𝐷𝑡 + 𝛼𝑐𝐷𝑐 (35)

where the two weight factors 𝛼𝑡 and 𝛼𝑐 are evaluated as:

𝛼𝑡 =
𝜂2𝑡

𝜂2𝑡 + 𝜂2𝑐
, 𝛼𝑐 =

𝜂2𝑐
𝜂2𝑡 + 𝜂2𝑐

= 1 − 𝛼𝑡 (36)

and

𝜂ℎ =
𝑌 𝑒ℎ

𝑌0ℎ +𝐷(𝑎ℎ𝑌 𝑒ℎ + 𝑏ℎ)
(37)

where ℎ = 𝑡, 𝑐 for tension and compression, respectively. The damage
limit functions in tension and compression are defined as:

𝑓 (𝑌 ,𝐷 ) = 𝑌 − 𝑌 −𝐷 (𝑎 𝑌 + 𝑏 ) (38)
6

ℎ ℎ ℎ ℎ 0ℎ ℎ ℎ ℎ ℎ
Table 3
Elastic and plastic parameters for concrete and steel.

Fiber Elastic and plastic parameters

𝐸 [GPa] 𝜈 𝐻𝑘 𝐻𝑖 𝜎𝑡 [MPa] 𝜎𝑐 [MPa]

Concrete 30 0.2 0.7𝐸 0 3 60
Steel 210 0.3 0 0 450 450
Tendon 195 0.3 0 0 1325 1325

where the evolution of 𝐷ℎ, follows the Karush–Kuhn–Tucker condi-
tions:

�̇�ℎ ≥ 0, 𝑓ℎ ≤ 0, �̇�𝑓ℎ = 0, �̇�ℎ ̇𝑓ℎ = 0 (39)

The constitutive law requires 13 parameters:

- 2 for the elastic behavior: the Young’s modulus 𝐸 and the Pois-
son’s ratio 𝜈;

- 4 for the plastic model: the compression and tension yielding
thresholds 𝜎𝑐 and 𝜎𝑡, the kinematic hardening parameter 𝐻𝑘 and
the isotropic hardening parameter 𝐻𝑖 that control the yielding
and back-stress rates, respectively;

- 7 for the damage model: 𝑌0ℎ controlling the strain value where
damage starts, 𝑏ℎ, that controls the maximum material strengths,
𝑎ℎ, that mainly controls the softening branches, and 𝛽, that is a
parameter that influences the shape of the damage limit function
in compression.

The limit domains corresponding to the parameters in Tables 3 and
4 are shown in Figs. 8(a) and 8(b), while a uni-axial cyclic test is
shown in Fig. 9(a) for the axial behavior and Fig. 9(b) for the shear
behavior. Due to the isotropic nature of the adopted damage model, the
overall damage variable 𝐷 equally affects all the components of the 3D
constitutive matrix. Then, also the shear behavior is regulated by the
𝐷 variable, where the effects of 𝐷𝑡 and 𝐷𝑐 are properly weighted.

5. Computational aspects

5.1. Force-based element implementation

The element state determination follows the iterative FB algorithm
proposed in [2] and implemented in OpenSees [31]. The nonlinear
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Fig. 9. Uni-axial damage-plastic cyclic test for concrete with the parameters in Tables 1 and 2: (a) Axial test on 𝜀𝑥; (b) Shear test on 𝛾𝑥𝑧.
solution procedure at the global iteration 𝑖 is briefly recalled here. The
element iterations 𝑗 start with 𝛥𝐯𝑗=1 = 𝛥𝐯𝑖. The element nodal forces
𝛥𝐪𝑗 are computed using the last computed flexibility matrix 𝐅𝑗−1. Using
Eq. (8), it follows:

𝛥𝐪𝑗 = 𝐅𝑗−1𝛥𝐯𝑗 (40)

The element forces are updated as:

𝐪𝑗 = 𝐪𝑗−1 + 𝛥𝐪𝑗 (41)

or each section (integration point), the increment of the section
tresses are updated by means of Eq. (3):

𝐬𝑗 = 𝐛𝛥𝐪𝑗 (42)
𝑗 = 𝐬𝑗−1 + 𝛥𝐬𝑗 (43)

he section strain increment 𝛥𝐞𝑗 is computed from the last computed
ection flexibility matrix 𝐟 𝑗−1 and the strain residuals 𝐫𝑗−1 evaluated at
he previous element iteration:

𝐞𝑗 = 𝐫𝑗−1 + 𝐟 𝑗−1𝛥𝐬𝑗 (44)
𝑗 = 𝐞𝑗−1 + 𝛥𝐞𝑗 (45)

here 𝐫0 = 𝟎.
For each fiber, the state determination starts from computing the

iber strains 𝜺𝑗 from Eq. (23):
𝑗 = �̄�𝑠 𝒆𝑗 + 𝜺0 + 𝜺𝑖𝑑 (46)

e recall that the initial strains 𝜺0 are constant throughout the analysis,
hile 𝜺𝑖𝑑 is taken as constant during the global iteration. The resulting

iber strains are stored in 6-component vectors. The stress vectors for
ll fibers are evaluated using the 3D damage-plastic law presented in
ection 4 for the concrete fibers, and the classical J2 plasticity law
or the reinforcement and the tendon fibers. To link the 3D stress–
train formulation at the fiber level with the generalized beam model
t the section level, a static condensation is required to pass from
he six strain, 𝜺, and stress, 𝝈, components to 𝜺𝑘 = [𝜀𝑥, 𝛾𝑥𝑦, 𝛾𝑥𝑧]𝑇 and
𝑘 = [𝜎𝑥, 𝜏𝑥𝑦, 𝜏𝑥𝑧]𝑇 respectively. The iterative process described in [35]

s followed. This process involves the total stress and strain vectors and
he incremental stress–strain relation in Eq. (25), partitioned according
7

o the vector components to be retained, indicated with subscript 𝑘, and
the vector components to be condensed out, indicated with subscript 𝑐,
as follows:
[

𝛥𝝈𝑘
𝛥𝝈𝑐

]

=
[

𝐂𝑘𝑘 𝐂𝑘𝑐
𝐂𝑐𝑘 𝐂𝑐𝑐

] [

𝛥𝜺𝑘
𝛥𝜺𝑐

]

(47)

The condensed strain vector 𝜺𝑐 = [𝜀𝑦, 𝜀𝑧, 𝛾𝑦𝑧]𝑇 is found by imposing
𝝈𝑐 = [𝜎𝑦, 𝜎𝑧, 𝜏𝑦𝑧]𝑇 = 𝟎. In other words, confinement is neglected. The
material tangent stiffness matrix is:

𝐂𝑡𝑘 = 𝐂𝑘𝑘 − 𝐂𝑘𝑐
(

𝐂𝑐𝑐
)−1 𝐂𝑐𝑘 (48)

and the incremental stress–strain relation is:

𝛥𝝈𝑘 = 𝐂𝑡𝑘𝛥𝜺𝑘 (49)

An elasto-plastic predictor phase is required to compute the evolu-
tion of the plastic variables according to the Karush–Kuhn–Tucker
conditions, by considering the damage evolution as frozen. It results:

⎧

⎪

⎨

⎪

⎩

𝛥𝜺𝑝 = 𝛥𝜆𝐧
𝛥𝛼 =

√

2
3𝛥𝜆

𝜁 = 2
3𝐻𝑘𝜺𝑝

if 𝑓 > 0 (50)

Once the plastic strain and hardening variables increments have been
computed, the damage progression is evaluated. A damage corrector
phase follows to evaluate the updated damage variables in tension and
compression, 𝐷𝑡 and 𝐷𝑐 , and eventually, the damage:

𝐷𝑡 =
𝑌𝑡 − 𝑌𝑡0
𝑎𝑡𝑌𝑡 + 𝑏𝑡

𝐷𝑐 =
𝑌𝑐 − 𝑌𝑐0
𝑎𝑐𝑌𝑐 + 𝑏𝑐

(51)

An iteration loop is required at the fiber level (from Eq. (47) to Eq. (51)
indicated with 𝑙 in Algorithm 1). Convergence is reached when 𝝈𝒄
become sufficiently small.

The resisting section forces 𝐬𝑗𝑟 and the section tangent stiffness 𝐤𝑗
are computed as the sums of the fiber contributions over the section:

𝐬𝑗𝑟 ≈
∑

�̄�𝑇𝐬 𝝈𝑘A𝑓 (52)

𝐤𝑗 ≈
∑

�̄�𝑇𝐬 𝐂𝑘�̄�𝑠A𝑓 (53)

The section unbalanced forces 𝐬𝑗𝑢 are then evaluated as:

𝑗 𝑗 𝑗
𝐬𝑢 = 𝐬 − 𝐬𝑟 (54)
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In conclusion, the section residual strains are evaluated using the
section flexibility matrix 𝐟 𝑗 as:

𝐫𝑗 = 𝐟 𝑗 𝐬𝑗𝑢 =
(

𝐤𝑗
)−1 𝐬𝑗𝑢 (55)

The element flexibility is computed using Eq. (9) and the element
stiffness 𝐊𝑗 =

(

𝐅𝑗
)−1. The displacement increments for the next element

iteration (if needed) are then computed from the section residual
strains. If the element convergence is not reached, the steps (Eq. (40)
to Eq. (55)) are repeated. The modified section and fiber state determi-
nation steps are summarized in Algorithm 1.

Algorithm 1: Section and fiber state determination algorithms.
Data: Section integration properties, history variables
for every integration point do

Section stress vector increment interpolated from element
forces 𝛥s𝑗 = b𝛥q𝑗

Section strain vector increment using flexibility from last
iteration 𝛥e𝑗 = r𝑗−1 + f𝑗−1𝛥s𝑗

Total section strains e𝑗 = e𝑗−1 + 𝛥e𝑗
for every fiber do

Fiber strains from fiber compatibility
𝜺𝑗 (𝑥, 𝑦, 𝑧) = a𝑠e𝑗 + 𝜺0 + 𝜺𝑖𝑑
while 𝑙 < 𝑙𝑚𝑎𝑥 & |𝝈𝑐 | > 𝑡𝑜𝑙 do

Full strain vector 𝜺𝑙
Elasto-plastic predictor phase
⎧

⎪

⎨

⎪

⎩

𝛥𝜺𝑝 = 𝛥𝜆n̂
𝛥𝛼 =

√

2
3𝛥𝜆

𝜁 = 2
3𝐻𝑘𝜺𝑝

if 𝑓 > 0

Damage corrector phase 𝐷𝑡 =
𝑌𝑡−𝑌𝑡0
𝑎𝑡𝑌𝑡+𝑏𝑡

𝐷𝑐 =
𝑌𝑐−𝑌𝑐0
𝑎𝑐𝑌𝑐+𝑏𝑐

Concrete/steel constitutive law
end
Fiber stress vector 𝝈𝑗 = {𝜎𝑥𝜏𝑥𝑦𝜏𝑥𝑧}
Fiber stiffness through static condensation
C𝑡𝑘

𝑗 = C𝑘𝑘 − C𝑘𝑐C𝑐𝑐−1C𝑐𝑘
end
Section resisting stress vector s𝑗𝑟 =

∑ ā𝑇𝑠 𝝈𝑗A𝑓
Section stiffness k𝑗 = ∑ ā𝑇𝑠 C

𝑡
𝑘
𝑗 ā𝑠A𝑓

Unbalanced section stresses s𝑗𝑢 = s𝑗 − s
𝑗
𝑟

Section residual strains r𝑗 = (k𝑗 )−1s𝑗𝑢
end

5.2. Regularization technique

The Gauss integration rule is commonly used in FE formulations.
However, in frame elements undergoing special loading conditions
where usually the section stresses attain their maximum values at the
element ends, the Gauss–Lobatto rule is preferred in order to directly
control the element end sections. In addition, since cementitious com-
posite structures generally exhibit a softening behavior, localization of
strains and damage can emerge [24]. In case of force-based approaches
the size of the localization regions is typically determined by the
adopted integration rule [3]. This can lead to non objective numerical
results and strongly dependent on the selected rule. To overcome this
numerical pathology and obtain objective results, the modified integra-
tion rule proposed in [3,30], is here introduced. According to [3], the
element is divided into three regions, where the two end regions can
have 2 or 3 Gauss–Lobatto integration points and lengths 𝐿𝑐∕𝑤1, with
𝐿𝑐 and 𝑤1 denoting the characteristic length and the weight associated
to the first Gauss-Lobatto point. The order of accuracy is 2𝑛−3, for each
region, being 𝑛 the number of points per region.

Following [30], a Gauss–Lobatto distribution is used for the whole
element but two more points are added within the expected localization
region. Their weights are 𝑤 (𝐿−𝐿 ), so that 𝐿 can be unlimited, and
8

1 𝑐 𝑐 l
Fig. 10. 9-point Gauss–Lobatto regularized integration schemes proposed by: (a) Ad-
dessi and Ciampi [3]; (b) Scott and Hamutçuoğlu [30]. Proposed extended distributions
for: (c) scheme [3]; (d) scheme [30].

the Lobatto distribution is restored in the rest of the beam. The order
of accuracy however reduces to 𝑛 − 3.

The key parameter is the characteristic length 𝐿𝑐 , that governs
the size of the localization region. This is usually taken as the plastic
hinge length, and can be evaluated by adopting existing formulae, as
described in Bazant et al. [36], but also in Almeida et al. [37] and
Feng et al. [38]. In common design practice, 𝐿𝑐 is assumed to be
approximately 𝑑∕2 for older buildings and 𝑑 for new constructions with
additional shear reinforcement at the elements’ ends, with 𝑑 being the
section’s effective depth. In this paper 𝐿𝑐 is taken as 0.8𝐻 , with 𝐻
eing the section’s depth, since it deals with beams designed according
o current codes. The two regularization techniques described above
re schematically shown in Fig. 10(a) and (b). The methods become
articularly efficient when using single and slender elements in seismic
rames, as stated by the authors, since the localization is typically
xpected to occur at the end sections. Here, an extension is proposed
o allow localization to occur at any integration point along the beam.
t still requires the analyst to choose beforehand the integration points
here the damage can localize. If the localization point 𝑥𝑐 is internal,

t divides the beam in two regions and the other integration points
re properly redistributed. Some examples of the integration scheme
rrangements are shown in Fig. 10(c) and (d), respectively.

. Case studies and applications

The model presented in the previous sections is used to carry out
onlinear static analyses to validate it and show its capabilities. First
f all, a theoretical test is carried out in Section 6.1 to verify the reg-
larization procedure presented in Section 5 on a simple PC cantilever
eam. A PC beam with a draped cable is presented in Section 6.2. The
nfluence of the number of integration points and the characteristic

ength for the regularization are tested for accuracy. Correlation studies
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Fig. 11. Geometry of the PC cantilever beam: (a) longitudinal view; (b) cross-section A-A’; (c) fibers’ location.
Fig. 12. Displacement-controlled tests on the cantilever beam in Fig. 11 with different
numbers of integration points.

with experimental results are presented next: the first one concerns a
simply supported PC beam with a bonded draped cable, the second one
focuses on the time-dependent phenomena (that is creep, shrinkage,
and steel relaxation) that develop over a few years.

6.1. PC cantilever beam

A pushover test on a simple PC cantilever beam is carried out. This
is a theoretical case for the validation of the proposed regularization
technique. The prestressing cable area is large enough to apply a high
compression force to the beam. Severe softening is expected due not
only to progressive section cracking, but also to compression damage
in the concrete. The beam geometry is shown in Fig. 11. The tendon is
straight and its position in the cross-section is constant along the beam.
Two different tests are carried out, the first one using the concrete 3D
damage plastic model of Section 4 (3DDP) and the second one using
the 1D model by Yassin [39] (1DD). The first test uses a Timoshenko
beam formulation, the second one uses an Euler–Bernoulli formulation.
Since the cantilever beam of Fig. 11 is slender, the shear strains should
be negligible. The concrete compression and tension strengths are
𝑓𝑐𝑐 = −38 MPa and 𝑓𝑐𝑡 = 3 MPa, respectively. The concrete and steel
properties are reported in Tables 3 and 4. The corresponding uni-axial
tension and compression laws are shown in Fig. 14(b). There is no steel
strain hardening. The prestressing is imposed by applying the initial
strain 𝜀0 = 0.005, that corresponds to the stress 𝜎0 = 𝐸𝑝𝜀0 = 975 MPa
applied before the beam shortens.

The regularization is carried out by modifying the layout of the
mesh as described in Section 5.2, with the localization zone at 𝑥𝑐 =
0 mm (the fixed end), and a characteristic length 𝐿 = 0.1𝐿. Fig. 12
9

𝑐

Fig. 13. Moment and curvature distributions at specific steps of the global response
curves in Fig. 12 with 7 integration points.

Table 4
Damage parameters for concrete.

Fiber Damage parameters

𝑌𝑡0 𝑎𝑡 𝑏𝑡 𝑌𝑐0 𝑎𝑐 𝑏𝑐 𝛽

Concrete 2.16 0.9 10−4 7.20 0.9 3.25 × 10−3 1

shows the structural response of the cantilever beam where the vertical
reaction 𝐹 is measured with respect to an imposed displacement 𝑣
up to a value 𝑣𝑓 = 400 mm. The number of integration points varies
as indicated in the legend of Fig. 12. Since there are only negligible
differences, the element can be considered regularized.

The moment and curvature distributions along the beam in Fig. 13
show how the strains are correctly localized within the prescribed
characteristic region.

As expected, changes in the localization length 𝐿𝑐 only modify the
softening branch without affecting the pre-peak response. Fig. 14(a)
shows the curves for different values of 𝐿𝑐 for both the damage-
plasticity material 3DDP and the 1DD models. The two cases show a
similar trend in the first part, since the two concrete laws have the same
compression strength. Some differences as for the post-peak behavior
are expected since the softening behavior is linear in 1DD and nonlinear
in 3DDP. No losses are considered in this case.

6.2. PC beam with a draped tendon

A more complex tendon layout is studied next to verify that the
positions and number of integration points do not affect the solution
accuracy. The PC beam in Fig. 15 is used for this study. The original
beam was experimentally tested and the results are reported in [40].
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Fig. 14. (a) Pushover response curve of the PC cantilever beam in Fig. 11 with different 𝐿𝑐 for the localization zone; (b) Concrete constitutive laws: plastic-damage model [26]
and uni-axial concrete model with linear softening [39].
Fig. 15. Geometry of the PC beam with a draped tendon: (a) longitudinal view; (b) cross-section A-A’; (c) fibers numerical discretization.
Table 5
Elastic and plastic parameters for concrete and steel.

Fiber Elastic and plastic parameters

𝐸 [GPa] 𝜈 𝐻𝑘 𝐻𝑖 𝜎𝑡 [MPa] 𝜎𝑐 [MPa]

Concrete 33 0.2 0.7𝐸 0.001𝐸 5 66
Steel 194.5 0.3 0 0 548 548
Tendon 190 0.3 0 0 1570 1570

Table 6
Damage parameters for concrete.

Fiber Damage parameters

𝑌𝑡0 𝑎𝑡 𝑏𝑡 𝑌𝑐0 𝑎𝑐 𝑏𝑐 𝛽

Concrete 3.6 0.99 10−3 14.4 0.8 8 × 10−3 1

Its geometry was adjusted to the scope of this study. There are 8
longitudinal top ⌀12 mm rebars and 5 bottom ⌀12 mm rebars. The
tendon is made of three strands with a ⌀0.6" diameter, with a total
area 𝐴𝑝 = 420 mm2. The cable position varies along the element. The
load application node is at 2000 mm to the right of the fixed end. The
applied prestressing corresponds to an initial strain 𝜀0 = 0.0025. The
material properties for concrete and steel are reported in Tables 5 and
6, respectively.

The beam is initially loaded with its self-weight, applied as a
uniformly distributed load, and with the prestressing force. A displace-
ment-controlled test is carried out pushing the node at 𝑥 = 2000 mm
10
down to 𝑧 = −40 mm. At this stage, the beam is cracked and is in
its softening branch. Damage in concrete builds up mainly because of
the increasing compression at the fixed end. A shear failure mode is
observed numerically, in line with the experimental test, even though
the geometry was slightly modified. Shear is very high in the first
beam segment as the point of load application is close to the fixed
support. The influence of the number of Gauss points and regularization
technique is initially tested for a characteristic length equal to 𝐿𝑐 =
0.1𝐿. Two localization zones are considered in the first element, at
𝑥 = 0 mm and 𝑥 = 2000 mm, and one in the second element, at
𝑥 = 2000 mm. The regularization length is then modified to show how
it influences the slope of the softening branch. The stresses applied by
the cable to the beam depend on the distribution of the Gauss points.
In the global response reported in Fig. 16(a) the curves show slight
changes as the number of Gauss points decreases. It is concluded that
the solution already converges for 5 integration points. Convergence
in terms of the total normalized potential energy of the system is also
shown. Full convergence is reached with 7 integration points, even
though 5 integration points produce a relatively small error.

The initial displacement due to self-weight and prestressing loads
is negative (i.e. the beam bends upward). Fig. 16(b) shows the global
response curves for different values of the characteristic lengths. The
results confirm that, as the characteristic length 𝐿𝑐 increases, the
softening trend becomes less severe.

The experimental results proposed in [40] are compared to the
numerical simulations. In this tests, the same double-T section of the
experiment is used. A schematic representation of the beam is shown
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Fig. 16. (a) Force–displacement response curve for different numbers of integration points and 𝐿𝑐 = 0.04𝐿. The bottom plots shows the total energy, normalized with respect to
the reference case (𝑛𝐺 = 10) - (b) Global response for increasing localization lengths 𝐿𝑐 .
Fig. 17. Numerical model of the beam tested in Herbrand et al. [40].
in Fig. 17, adopting four FEs and 5 Gauss–Lobatto points for each of
them, and 𝐿𝑐 = 0.0887𝐿 = 0.8𝐻 . The material parameters are contained
in Tables 5 and 6, with 𝜎𝑡 and 𝜎𝑐 set to match the concrete strengths
reported in [40].

The response curves for three different cases, TB1, TB2, and TB3,
under increasing axial load, are shown in Fig. 18. The original test
was carried out using three beams that were 11 m long with a middle
support. The loads were applied at 𝑥 = ±2000 mm from the middle
support, resulting in two tests obtained for each side of the beam. The
element shear was monitored at 𝑥 = ±560,mm, while the displacements
were measured at the load application points.

Since the original beam collapses on one side and then on the other,
lower stiffness in the experimental case is expected at the beginning.
The numerical tests instead exhibit a higher amount since perfect
symmetry is achieved. However, despite some slight differences, the
numerical model behaves similarly to the experimental beam as for
the formation of shear and flexural cracks. In the numerical structural
response of Fig. 18, the stiffness reduction is partially due to the flexural
damage in the support/loading zones, but mostly due to the shear
damage in the web of the beam. Numerical collapse also occurs due to
shear failure in the peak points, similarly to the experimental test. The
damage occurring in the beam is shown in Fig. 19, which well matches
the reported cracks pattern in [40]. The shear damage accumulates
in the web according to the shear strain distribution, as explained in
Section 3, here consistent with the double-T beam.
11
Fig. 18. Experimental (dot curves) and numerical (solid curves) global response curves
for the three different beams TB1, TB2 and TB3 in [40] with increasing axial loads.
The abscissa 𝑥 is considered from the middle support.
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Fig. 19. Damage parameter 𝐷 distribution over TB3 beam at 𝑣 = 5𝑚𝑚.
Fig. 20. Simply supported prestressed beam with a polygonal bonded tendon [33]: (a) longitudinal view; (b) cross-section A-A’ of the beam B2-70-N-B; (c) cross-section A-A’ of
the beam B3-70-N-B; (d) fiber section discretization.
6.3. Four-point bending test on a PC beam

In this application the proposed element is used to reproduce the
results of the experimental tests presented in [33]. The beam geometry
is shown in Fig. 20. Two beams with a single fully bonded tendon
are studied: they have different cross-sections, as shown in Fig. 20 (b)
and (c). The bottom reinforcements and tendon areas are such that the
total steel tensile force after yielding is the same in both beams. The
prestressing index is provided in [33] and is computed as:

𝑖𝑝 =
𝑓𝑝𝑦𝐴𝑝

𝑓𝑝𝑦𝐴𝑝 + 𝑓𝑠𝑦𝐴𝑠
(56)

where 𝑓𝑝𝑦 and 𝑓𝑠𝑦 are the yield stresses of tendon and reinforcement,
respectively, while 𝐴𝑝 and 𝐴𝑠 are the corresponding areas.

In the numerical model, the beam is divided into 3 elements 1 m,
2 m, and 1 m long. The element self-weight is applied as a uniformly
distributed load. The profile of the prestressing tendon is schematically
shown in Fig. 20(a). The initial measured stress applied to the tendon
is 𝜎0 = 1127 MPa at the ends and 𝜎0 = 1000 MPa at midspan, as reported
in [33]. In the numerical model, the initial strain 𝜀0 = 𝜎0∕𝐸𝑝 is imposed
to the tendon, where 𝐸𝑝 is the tendon elastic modulus.

The characteristic length assigned is assumed equal to 𝐿𝑐 = 0.068𝐿
= 0.8𝐻 , as no other specific information is provided. Since it is small
compared to the length of the central element, the integration scheme
proposed in Addessi and Ciampi [3] is used with a localization point
located at midspan (𝑥 = 2000 mm), as this position allows to use a
higher number of integration points with the same maximum inter-
polation order. The tendon layout is simplified to a piece-wise linear
pattern. 4, 9, 4 integration points are used in the three elements, with
a regular distribution of integration points along the beam (Fig. 21).

The material parameters are those reported in Tables 7 and 8. A
high-strength concrete with 𝑓𝑐𝑐 = 75 MPa is used for this beam. The
uni-axial cyclic test is shown in Fig. 22.

In the experimental tests, all of the beams show bending failure.
The same failure mode is observed in the numerical response reported
in Fig. 23, where the vertical force 𝐹 is shown as a function of the
midspan vertical displacement 𝑣.
12
Table 7
Elastic and plastic parameters for concrete and steel.

Fiber Elastic and plastic parameters

𝐸 [GPa] 𝜈 𝐻𝑘 𝐻𝑖 𝜎𝑡 [MPa] 𝜎𝑐 [MPa]

Concrete 33 0.2 0.1𝐸 0.01𝐸 2 100
Steel 200 0.3 0.001𝐸 0.001𝐸 470 470
Tendon 190 0.3 0.003𝐸 0.001𝐸 1674 1674

Table 8
Damage parameters for concrete.

Fiber Damage parameters

𝑌𝑡0 𝑎𝑡 𝑏𝑡 𝑌𝑐0 𝑎𝑐 𝑏𝑐 𝛽

Concrete 1.44 0.9 1.5 × 10−4 14.4 0.2 1 × 10−2 1

In Fig. 23, the displacements 𝑣 are those due to 𝐹 force only.
In beam B2-70-N-B the failure mechanism is ductile and begins with
yielding of the bottom reinforcement, followed by yielding of the pre-
stressing tendon. The top compressed concrete progressively crashes.
The changes in stiffness in the numerical responses of Figs. 23(a)
and 23(b) clearly indicate the two yield points. They follow the same
sequence documented in the experimental test. In beam B3-70-N-B
(Fig. 23(b)), since there is no bottom reinforcement, only yielding
of the tendon is observed, corresponding to the single sharp change
of stiffness in the response. The first reduction in stiffness is due to
the progressive decompression of the section, which leads to concrete
cracking. The structural response of Beam B3-70-N-B exhibits peak
strength similar to the previous beam, as it compensates for the lack
of the bottom rebar with a larger prestressing cable, as stated in [33].

There are some discrepancies with the experimental response that
can be observed in the yielding phases of the two beams, explained
by the fact that the steel constitutive model (that is a Von Mises
plasticity) has a sudden yield threshold while the prestressing steel
typically shows a smoother trend at the beginning of the hardening
phase. There are also slipping phenomena that are neglected in the
numerical model. However, no considerable differences are observed.
In the experiments, the beams show cracks between the two loading
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Fig. 21. Beam discretization; nodes, elements, integration points and localization region (colored). (For interpretation of the references to color in this figure legend, the reader
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Fig. 22. Concrete constitutive law (𝑓𝑐𝑐 = 75 MPa).

oints, in the numerical cases the localization always takes place in the
iddle integration point, where the moment is maximum due to the

eam self-weight. As the displacements gradually increase, the beam
tarts to lightly soften because the concrete contributes little to the
verall response.

Representative section strain and stress distributions are shown in
ig. 24 at 𝑣 = 200 mm. Fig. 24(a) shows the axial strains 𝜀𝑥 (computed
ccording to Eq. (10)), Fig. 24(b) shows the axial stresses 𝜎𝑥 normalized
ith respect to 𝜎𝑦 = 𝑓𝑐𝑐 for concrete and 𝜎𝑦 = 𝜎𝑡 for steel in the mid-

ection at 𝑥 = 2000 mm. Fig. 24(c) shows the parabolic distribution
f the shear strains 𝛾𝑥𝑧 and Fig. 24(d) shows the corresponding shear
tresses 𝜏𝑥𝑧 at 𝑥 = 1000 mm. The highly nonlinear shear response is due
he high damage occurring in the section.

At this level of deflection, the only non-zero stresses remain around
he neutral axis while the rest of the section is completely damaged, as
ig. 25 shows.

.4. Long term analysis and time-dependent effects on a PC beam

The proposed model includes the time-dependent effects that affect
he structural behavior of PC beams, mainly shrinkage and creep in
he concrete and relaxation in the cable. The above time-dependent
henomena are modeled as follows. Let us recall that the fiber strains
re computed using Eq. (23) where 𝜀0 is the cable initial prestressing
train and 𝜀𝑑 (𝑡) accounts for the time-dependent effects. For concrete,
he equations are those proposed in the Model Code for Concrete Struc-
ures [41] where the concrete time-dependent strain 𝜀𝑑 (𝑡) is expressed
s:
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𝑑 (𝑡) = 𝜀𝑐𝑠(𝑡) + 𝜀𝑐𝑐 (𝑡) (57)
ith 𝜀𝑐𝑠 being the shrinkage strain, and 𝜀𝑐𝑐 the creep strain. The
hrinkage strains depend exclusively on time and are easy to compute.
n the other hand, the creep strains require special treatment since

hey depend on the stress applied to the tendon fiber, which in turn,
epends on the strains.

The creep formulation follows the definition of a compliance func-
ion that contains the load application time 𝑡0, the current time 𝑡, and
ther given environmental parameters. Times 𝑡0 and 𝑡 start from the
ime the concrete is cast. The creep function is expressed as:

𝑐𝑐 (𝑡) = 𝐽 (𝑡, 𝑡0)𝜎(𝑡0) + ∫

𝑡

𝑡0
𝐽 (𝑡, 𝜏)

𝜕𝜎(𝜏)
𝜕𝜏

𝑑𝜏 (58)

where the compliance function 𝐽 (𝑡, 𝜏) is defined as:

𝐽 (𝑡, 𝜏) = 1
𝐸 (𝑡)

+
𝜙 (𝑡, 𝜏)
𝐸28

(59)

and 𝐸(𝑡) and 𝐸28 are the concrete Young’s modulus at the generic time 𝑡
nd at 𝑡 = 28 days, respectively, 𝜙(𝑡, 𝜏) is the creep coefficient and 𝜎(𝜏) is

the concrete stress at time 𝜏. It results that, for each stress modification
in the fibers, a variation of the creep strains is produced over time,
determined by the evolution of the compliance function.

For its numerical implementation, Eq. (58) is written in incremental
form, after derivation with respect to 𝑡 and discretization. The following
equation is obtained at time step 𝑡𝑛+1:

𝜀𝑛+1𝑐𝑐 = 𝜀𝑛𝑐𝑐 + 𝛥𝐽
(

𝑡𝑛+1, 𝑡0
)

𝜎0 +
𝑛
∑

𝑘=1
𝛥𝐽

(

𝑡𝑛+1, 𝑡𝑘
)

𝛥𝜎𝑘 (60)

he last step of the analysis in the summation of Eq. (60) is omitted:
his allows to determine the closed form expression for the creep strains
t step 𝑡𝑛+1, considering the whole load history up to step 𝑡𝑛. For
mplementation, the equation can also be written in its total form:

𝑛+1
𝑐𝑐 =

[

𝐽
(

𝑡𝑛+1, 𝑡0
)

− 1
𝐸
(

𝑡𝑛+1
)

]

𝜎0 +
𝑛
∑

𝑘=1
𝐽
(

𝑡𝑛+1, 𝑡𝑘
)

𝛥𝜎𝑘 (61)

A similar approach is used for the cable relaxation strains 𝜀𝑑,𝑝(𝑡), even
though the load variation in the prestressing cables is moderate and
such that it can be neglected, thus only the losses for a constant tension
𝜎𝑝(𝑡0) can be considered:

𝜀𝑑,𝑝(𝑡) = 𝐽 (𝑡, 𝑡0)𝜎𝑝(𝑡0) (62)

o show the time-dependent behavior of the concrete and prestressing
endon, a simple concrete truss with section area 𝐴𝑐 = 100 × 100 mm2

and a centered, straight tendon with diameter 𝐷𝑝 = 10 mm is studied
first and the results are shown in Fig. 26. The beam is cast at 𝑡 = 0 days
and an initial 𝜀0 is applied at 𝑡 = 7 days. At 𝑡 = 40 days, the prestressing
action is increased up to 2𝜀0. At 𝑡 = 80 days, the prestressing strain
is completely removed and residual strains can be observed. Both
differential (Eq. (60)) and total (Eq. (61)) creep formulations are used
to compute the beam axial strain 𝜀.

The last example is a PC beam experimentally monitored for time-
dependent effects over a long time period. The beam geometry is
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Fig. 23. Numerical (solid curves) and experimental (dot curves) pushover tests on beams B2-70-N-B and B3-70-N-B; Global response curves 𝐹 − 𝑣 (midspan displacement) for: (a)
displacements up to 40 mm; (b) displacements up to 200 mm.
Fig. 24. Fiber strains and stresses at two sections of beam B3-70-N-B at 𝑣 = 200 mm: (a) resulting axial strains 𝜀𝑥 and (b) normalized stresses 𝜎𝑥∕𝜎𝑦 at 𝑥 = 2000 mm, (c) shear
strains 𝛾𝑥𝑧 and (d) shear stresses 𝜏𝑥𝑧 at 𝑥 = 1000 mm.
Fig. 25. Concrete damage in the mid-section for beam B3-70-N-B at 𝑣 = 200 mm.

shown in Fig. 27 and the original experimental study is presented
in Breckenridge and Bugg [34]. It is a double-T beam with two pre-
stressing cables with a draped layout. The beam is modeled with only
14
Table 9
Elastic and plastic parameters for concrete and steel.

Fiber Elastic and plastic parameters

𝐸 [GPa] 𝜈 𝐻𝑘 𝐻𝑖 𝜎𝑡 [MPa] 𝜎𝑐 [MPa]

Concrete 23.3 0.2 0.7𝐸 0.01𝐸 70 3
Steel 200 0.3 0.005𝐸 0.001𝐸 460 460
Tendon 169 0.3 0.01𝐸 0.001𝐸 1006 1006

1 element, 9 integration points and 36 fibers per section. This high
number of integration points is selected for a detailed description of
the tendon geometry. The beam discretization is shown in Fig. 28.
The beam self-weight is initially applied as a uniformly distributed
load. The original paper by Breckenridge and Bugg [34] provides the
initial tendon stress 𝜎0 that corresponds to a uniformly applied strain
𝜀0 = 𝜎0∕𝐸𝑝 = 689.5∕169000.0 = 0.0041. The material parameters are
reported in Tables 9 and 10. A high-strength concrete with 𝑓𝑐𝑐 = 43 MPa
is used. The uni-axial cyclic law is reported in Fig. 29.
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Fig. 26. Concrete axial strains on a simple PC truss only due to prestressing. The red curve represents the axial strain in the steel fiber, where the peaks occur following application
of prestressing. Two prestressing strain increments are applied to the steel fiber: 𝜀0 at 𝑡 = 7 days, and 2𝜀0 at 𝑡 = 40 days. The other curves, denoted with total and the increasing
number of time intervals used, represent the axial strain of the beam, which shrinks due to creep. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 27. Geometry of the PC beam with two fully bonded draped tendons [33]: (a) longitudinal view; (b) cross-section A-A’ of the beam B2-70-N-B; (c) fibers’ location.

Fig. 28. Discretization of the PC beam: 1 element and 9 Gauss–Lobatto integration points.
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Fig. 29. Concrete constitutive law for 𝑓𝑐𝑐 = 43 MPa.

Table 10
Damage parameters for concrete.

Fiber Damage parameters

𝑌𝑡0 𝑎𝑡 𝑏𝑡 𝑌𝑐0 𝑎𝑐 𝑏𝑐 𝛽

Concrete 2.16 0.8 10−4 14.4 0.1 7 × 10−3 1

In the experimental campaign [34], 4 different values of the dis-
ributed load are analyzed: 0.0𝑞, 0.5𝑞, 1.0𝑞 and 1.5𝑞, where 𝑞 = 11.1
/mm. The beam is loaded in a 2-phase process and the global response
urve in terms of the vertical reaction 𝐹 versus vertical displacement
is shown in Fig. 30 for load 1.0𝑞. The results are obtained apply-

ng assuming average environmental conditions for the Model Code
ormulas. These are the same conditions reported in [33], that are:
oncrete age at prestressing 𝑡0 = 8 days, relative humidity 𝑈𝑅 = 70,
ffective section height ℎ0 = 107.9 mm. In the first phase, the initial
restressing and the self-weight are applied instantly (point A). After
2 days pass [34] (point B), displacements 𝑣 and curvature 𝜒𝑦 increase
ositively in the whole beam. The creep in the concrete increases
hem, while the concrete shrinkage and the cable relaxation decrease
hem. In the second step, the uniformly distributed load 𝑞 is applied
nstantly (point C) and the resulting curvature is negative at mid-span
nd positive at the end sections, while the displacements are almost
ull. This induces the upper fibers to start creeping and the lower
ibers to recover in the central sections. After point C, the beam is
onitored for 7 years, similarly to the experimental test, producing
egative displacements at mid-span and reaching a midspan deflection
of over 40 mm (point D).

The curves in Fig. 31 show both the experimental and numerical
esults. A good overlap is observed, although some differences emerge
n some of the load cases reported. Observing the experimental results
nly, the trend of the displacement is not uniform over time since it
epends on many factors, many more than those considered in classical
ime-dependent phenomena formulas, such as the seasonal temperature
hanges and the relative humidity fluctuations, briefly discussed in [34]
nd neglected in this paper. For these reasons, some approximations are
o be expected and are deemed acceptable.

Fig. 32 shows the axial strains and stresses at midspan, at 𝑡 = 7 years
or load 1𝑞. Even though the section is completely compressed at the
oad application time, the creep effects carry the beam to a strain state
here concrete begins to crack. The red lines refer to the reinforcement

ibers, that are the only fibers without additional strains 𝜀0, therefore
hey are the only fibers where the strains equal mechanical strains. The
lue lines refer to the tendons. Only the concrete in the compressed
16
Fig. 30. Global response: (A) prestressing and self-weight are applied; (B) response
after 12 days; (C) 𝑞 is applied; (D) response after 7 years.

part of the section is affected by creep: this explain the nonlinear trend
across the section.

Fig. 33 shows the final distribution of concrete damage after 7 years
at midspan. Although no additional information is provided in [34]
about the final state of the beams, the numerical results indicate that
the increase of the positive strains caused by the creep in the lower part
of the section causes damage to emerge.

7. Summary and conclusions

A force-based fiber beam element for prestressed concrete structural
members is presented in this paper. The model is a 3D Timoshenko
beam which considers hysteretic hardening phenomena in steel as well
as damage in concrete with a full 3D constitutive law, which allows
to consider section shear strains alongside axial strains. The model is
intended for fully bonded tendons.

Prestressing is easily applied through initial equivalent strains and
the element contains an algorithm that allows any tendon profile
to be inserted. The tendons are treated as additional fibers, and a
rotation matrix allows to consider tendons that are not normal to the
cross-section. The results confirm that the element works well with as
low as five integration points. However, for complex cable geometry,
additional integration points are needed for a better description of
the tendon profile. The extension of an existing local regularization
technique shows that regularization can be applied to any integration
point, without affecting the numerical efficiency of the element.

Time dependent effects are considered at the fiber level and their
effects are shown through examples including a comparison with four
cases of an available experimental test campaign. An appropriate num-
ber of applications and case studies are presented and used to validate
the model and discuss its characteristics.

The paper shows that the proposed element is accurate both in
the case of nonlinear static an time dependent analyses. It has a low
computational demand: all tests reported required short time to run.
A limited number of elements, integration points and fibers can be
used: in several cases, the number of integration points depends on the
complexity of the geometry of the cable. The formulation is numerically
stable, even when the response softens. The element can be used in the
analysis of bridges and prestressed concrete structures in general.

Future possible enrichments of the model include: application to the
study of prestressed concrete infrastructures including long term and
nonlinear seismic analyses up to failure; extension to partially bonded
tendons with bond–slip; extension to external tendons; extension to
prestressed steel-concrete composite beams; application in the dynamic

field as for example the seismic assessment of bridges.
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Fig. 31. Midspan vertical displacements over a 7 year span for different distributed loads.

Fig. 32. Axial strains from Eq. (14) and normalized axial stresses at midspan for 1𝑞 load case at 𝑡 = 7 years.

Fig. 33. Accumulated concrete damage at midspan for 1.0𝑞 load case at (a) 𝑡 = 1 year, (b) 𝑡 = 7 years.
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