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In load-balancing problems there is a set of clients, each wishing to select a resource from a set of permissible
ones to execute a certain task. Each resource has a latency function, which depends on its workload, and
a client’s cost is the completion time of her chosen resource. Two fundamental variants of load-balancing
problems are selfish load balancing (a.k.a. load-balancing games), where clients are non-cooperative selfish
players aimed at minimizing their own cost solely, and online load balancing, where clients appear online
and have to be irrevocably assigned to a resource without any knowledge about future requests. We revisit
both problems under the objective of minimizing the Nash Social Welfare, i.e., the geometric mean of the
clients’ costs. To the best of our knowledge, despite being a celebrated welfare estimator in many social
contexts, the Nash Social Welfare has not been considered so far as a benchmarking quality measure in load-
balancing problems. We provide tight bounds on the price of anarchy of pure Nash equilibria and on the
competitive ratio of the greedy algorithm under very general latency functions, including polynomial ones.
For this particular class, we also prove that the greedy strategy is optimal, as it matches the performance of
any possible online algorithm.
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1 INTRODUCTION

In load-balancing problems there is a set of clients, each wishing to select a resource from a set of
permissible ones to execute a certain task. Each resource has a latency function, which depends
on its workload, and a client’s cost is the completion time of her chosen resource. These problems
stand at the foundations of the Theory of Computing and have been studied under a variety of
objective functions, such as the maximum client’s cost (a.k.a. the makespan) [66–68, 75] and the
average weighted client’s cost (see Reference [39] for an excellent survey).

Two extensively studied variants of load-balancing problems are selfish load balancing [92] (a.k.a.
load-balancing games) and online load balancing [66]. Selfish load balancing, where clients are
non-cooperative selfish players aimed at minimizing their own cost solely, constitutes a notable
subclass of weighted congestion games [83] and, as such, enjoys some nice theoretical properties.
For instance, load-balancing games always admit pure Nash Equilibria [69]. Moreover, under the
assumption that all tasks have unitary weight (unweighted congestion games), any best-response
dynamics converges to a pure Nash Equilibrium in polynomial time [1]. In online load balanc-
ing, instead, clients appear online and have to be irrevocably assigned to a resource without any
knowledge about future requests.

1.1 Social Welfare Functions and the Nash Social Welfare

Interpreting the set of clients of a load-balancing problem as a society, and adopting the terminol-
ogy of welfare economics, the makespan and the average weighted client’s cost objective functions
get called, respectively, the Egalitarian (ESW) and the Utilitarian Social Welfare (USW). In
the following, we aim at providing a comprehensive picture of the comparison between the Nash
Social Welfare function and other well-studied social welfare functions, such as ESW and USW.

Let us first focus on the case in which utilities represent profits to be maximized. In this case,
also the social welfare functions must be maximized. Generally speaking, given an n-dimensional
vectorx = (x1, . . . ,xn ) of positive utilities, the USW is defined as 1

n

∑
i xi , while the ESW as mini xi .

Moreover, the Nash Social Welfare (NSW) [80] is defined as (
∏

i xi )
1
n , i.e., as the geometric mean

of the clients’ utilities.
The NSW, besides possessing appealing mathematical properties that make it a powerful tool

in many economical scenarios,1 is also a celebrated welfare measure in all those settings in which
the well-being of a population is addressed by a combination of personal profits and, therefore,
has to be maximized [30, 48, 64, 81]. In these settings, in fact, NSW satisfies the following set of
appealing properties [71, 78, 79]:

• Pareto optimality and monotonicity, prescribing that an outcome in which the utility of a
player improves while all other utilities do not get worse has to be preferred;
• Pigou-Dalton transfer principle, stating that a transfer of utilities from the rich to the poor

leaving unchanged the sum of utilities (i.e., the USW) is desirable as long as it does not bring
the rich to a poorer situation than the poor;
• independence of unconcerned agents, requiring that the preference relation between two util-

ity profiles does not change if a player having the same utility in both of them changes her
utility to a same value in both profiles;
• independence of common utility scale, stating that the preference relation between two utility

profiles does not change if both of them are multiplied by the same value.

1For instance, the NSW is related to the computation of equilibria in Fisher markets [12, 30, 46] and fair outcomes in
allocation problems [4, 28, 30, 35, 37].
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Pareto optimality is a measure of efficiency that is satisfied by the USW, but not achieved by
the ESW (think, for instance, to profit vectors (10, 3) and (3, 3); while USW prefers the first, ESW
is indifferent between the two). Conversely, the Pigou–Dalton transfer principle is a measure of
social equity realized by the ESW, but not achieved by the USW (given profit vectors (3, 3) and (5, 1),
ESW prefers the first, while USW is indifferent between the two). Thus, with respect to these two
properties, we can say that NSW is a better social welfare function, given that it is able to achieve
at the same time the equity guaranteed by the ESW and the efficiency proper of the USW.

Moreover, while independence of common utility scale is also satisfied by both the USW and
the ESW, independence of unconcerned agents is satisfied by the USW, but it is not achieved by
ESW2 (given profit vectors (1, 3) and (1, 2), ESW is indifferent between the two, but if the first
agent changes her utility to 4, then the preference relation between the two profiles changes, as
(4, 3) is preferred by ESW to (4, 2), but not vice versa).

Another interesting property of the NSW, which is not fulfilled by the ESW and the USW, is
player-specific scale-independence, stating that the preference relation between two utility profiles
does not change if the utilities of different players are scaled by player-specific values in both pro-
files. More formally, if profit vector (x1, . . . ,xn ) is preferred to profit vector (x ′1, . . . ,x

′
n ), then it also

holds that, given any n positive real constants c1, . . . , cn , profit vector (c1x1, . . . , cnxn ) is preferred
to profit vector (c1x

′
1, . . . , cnx

′
n ). This property, which strengthens that of the independence of com-

mon utility scale, yields a stronger social equity with respect to that of the Pigou–Dalton transfer
principle. In fact, while the latter implicitly assumes that players’ utilities are in the same scale (and
therefore, the more equal they are, the fairer the outcome is), player-specific scale-independence
applies to settings in which the player’s utilities may intrinsically differ by several orders of mag-
nitude. To this respect, consider a situation in which the range of utilities of different players is
very wide, and this discrepancy is not due to an unfair outcome, but is rather a direct consequence
of the different nature of the players’ strategies. Here, the utility of few influential players may
be able to determine almost completely the value of the ESW or USW. More precisely, on the one
hand, players with an intrinsic low profit are taken in higher consideration by ESW: Consider 10
players and the profit vectors (11, 1,000, 1,000, . . . , 1,000) and (10, 2,000, 2,000, . . . , 2,000), in the
context of a game in which the first player’s maximum possible profit is 11 and the other players’
maximum possible profit is 2,000. ESW prefers the first vector, in which the first player is experi-
encing her best possible profit and the other players one half of their best possible profit, even if in
the second vector almost all players are experiencing their best possible profit (and the first player
a profit being 10/11 of her maximum possible profit). On the other hand, players with an intrinsic
high profit may be able to determine almost completely the value of the USW: Consider 10 players
and the profit vectors (2,000, 10, 10, . . . , 10) and (1,900, 20, 20, . . . , 20), in the context of a game in
which the first player’s maximum possible profit is 2,000 and the other players’ maximum possible
profit is 20. USW prefers the first vector, in which the first player is experiencing her best possible
profit and the other players’ one half of their best possible profit, even if in the second vector al-
most all players are experiencing their best possible profit (and the first player a profit being 19/20
of her maximum possible profit). It is worth noticing that in both the above-mentioned scenarios,
the NSW prefers the second vector, thus taking more properly into account the well-being of all
players, independently on how large (or small) is the order of magnitude of their utilities.

2Actually, if we consider the leximin ordering social function [78, 79] that is a refinement of ESW, then the property
of independence of unconcerned agents is recovered. More precisely, in the leximin social function, once sorted in non-
decreasing order, profit vectors are compared as follows: Consider the first component for which one vector is different
from another one: It is preferred the vector having this component greater than the corresponding one of the other vector.
Roughly speaking, ties are resolved looking at further components of the sorted vectors.
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When moving from profit maximization to cost minimization, as it happens in the setting of
congestion and load-balancing games considered in this work, the social welfare functions need
to be minimized and things slightly change. First, while the definitions of USW and NSW remain
unchanged, the ESW has to be defined as maxi xi . Moreover, while USW and ESW keep verifying
the same properties satisfied in the profit maximization case, it is worth noticing that the NSW
no longer satisfies the Pigou-Dalton transfer principle (given cost vectors (5, 1) and (3, 3), NSW
prefers the first, while the second should be favored). However, NSW still enjoys the remaining
aforementioned properties: Pareto optimality, independence of unconcerned agents, independence
of common scale, and player-specific scale-independence. Among these, we consider the latter of
fundamental importance, and we provide in the following a clarifying example, along the same
lines of the ones provided in the case of profit maximization. Recall that, in the case of profit
maximization, players with an intrinsic low profit are taken in higher consideration by the ESW,
while USW is mostly influenced by those with an intrinsic high profit. Interestingly, unlike the case
of profit maximization, when considering cost minimization it holds that the players being able
to determine almost completely the values of the ESW and the USW are, for both social welfare
functions, those with an intrinsic higher cost.

To this respect, consider a communication or transportation network in which there are some
“heavy” clients aiming at communicating at a global scale (e.g., national traffic) and other “light”
ones corresponding to more local communication requests (e.g., local traffic). In the context of load-
balancing games, a similar situation arises when there are both “heavy” clients, owning highly
time-consuming tasks, and “light” clients, requiring for the processing of faster tasks. In these
situations, the cost of few specific clients (the heavy ones) may determine almost completely the
values of the ESW and the USW, while the NSW is able to take into account the costs of all players,
including the light ones. For example, consider 10 clients such that the first has a minimum possible
cost of 1,000 and the others have a minimum possible cost of 10, and we have two alternative cost
vectors (1,400, 20, 20, . . . , 20) and (1,500, 10, 10, . . . , 10). Both ESW and USW prefer the first vector,
while NSW prefers the second one. In this alternative, 9 players are experiencing the best possible
cost, with the first player charged 1.5 times her minimum possible cost. In the first vector, instead,
while the first player is only slightly better (i.e., she is experiencing a cost of 1.4 times the optimal
one), all other players are doubling their cost. In fact, in the context of load-balancing problems,
since clients with big jobs need to wait longer times either way, improving their cost by some
amount will not have the same impact as it would have if we reduced the cost of small job owners
by the same amount. In general, the benefit of a speedup is often better captured by the relative
improvement (e.g., a one-minute improvement for a one-hour job will not have the same impact as
a one-minute improvement for a five-minute job). Therefore, the NSW objective is able to distribute
the speedup, and in this way it aims to balance fairness and efficiency.

The above example can be exploited to obtain evidence of the fact that this type of equity is a
corollary of player-specific scale-independence. In fact, the NSW is a robust social welfare function
and does not change its induced preference relation if we scale the costs of the first player by a
factor equal to 1/100, thus making the players’ minimum costs in the same scale. More generally,
in load-balancing games, we could define a client’s cost as the ratio between the completion time
of her chosen resource and the completion time she could obtain when being the only client in
the system (i.e., when she is the unique user of the fastest resource in her strategy set), and with
this respect the NSW is the only correct measure to use when averaging normalized results, that
is, results that are presented as ratios to reference values [57].

For all these reasons, we believe that, although losing some of its tremendous expressiveness
when moving from profit maximization to cost minimization, the NSW remains a significant
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enough measure which should be considered for investigation, as done with the ESW and the
USW.

1.2 Related Work

Selfish Load Balancing. The literature concerning the efficiency of Nash equilibria in selfish load
balancing is highly tied with that of its superclass of congestion games. In the following, we first
focus on results for the mostly studied case of the USW. In this setting, it is assumed that all clients
selecting the same resource experience the same cost.

The efficiency of pure Nash equilibria in congestion games has been first considered in
References [7, 42], where it has been independently shown that the price of anarchy is 5/2 and
(3 +
√

5)/2 for, respectively, unweighted and weighted congestion games with affine latency func-
tions. These bounds have been extended to load-balancing games in Reference [33]. However,
under the additional assumption that the game is symmetric (i.e., all resources are available to any
client), the price of anarchy improves to 4/3 [76]. Exact bounds for both weighted and unweighted
congestion games with polynomial latency functions have been given in Reference [2] and ex-
tended to even unweighted load-balancing games and symmetric weighted load-balancing games
in References [14, 62], respectively. These results have been further generalized in Reference [23],
where it is proved that, under general latency functions encompassing polynomial ones, the worst-
case price of anarchy of both symmetric weighted congestion games and unweighted congestion
games is attained by load-balancing instances. This worst-case behavior, however, does not occur
under identical resources, where load-balancing games exhibit better performance with respect to
general congestion games. For instance, for affine latency functions, the price of anarchy drops
to 2.012067 for unweighted games [33, 90] and to 9/8 for symmetric weighted games [76]. Tight
bounds for this last class of games under polynomial and more general latency functions have
been given in References [23, 61].

For the class of non-atomic congestion games (a variant assuming that each client’s task is in-
finitesimally small with respect to the workload required by the whole society and suited to model
communication and transportation networks), a number of papers [13, 84, 87, 88] provide bounds
on the price of anarchy under general latency functions and prove that, under mild assumptions,
they are tight even for a two-node network with two parallel links. An interesting connection
between load-balancing games and non-atomic congestion games has been uncovered in Refer-
ence [58], where it is shown that, under fairly general latency functions, the price of anarchy of
unweighted symmetric load-balancing games coincides with that of non-atomic congestion games.

Less has been done for the ESW. The study of the price of anarchy was initiated in Reference [74],
where weighted congestion games ofm parallel links with linear latency functions are considered.

The price of anarchy in this case is Θ(
log m

log log m
). The lower bound was shown in Reference [74] and

the upper bound in Reference [50]. For load-balancing games, the price of anarchy is Θ(
log n

log log n
),

wheren is the number of players [61], while for unweighted congestion games it is Θ(
√
n) [42]. The

price of anarchy of non-atomic congestion games with general non-decreasing latency function is
proven to be Ω(n) in Reference [85].

Online Load Balancing. The performance of greedy load balancing, with respect to the USW
and under affine latency functions, has been studied in References [8, 33, 90]. The authors of
Reference [8] consider a more general model where each client has a load vector denoting her
impact on each resource (i.e., how much her assignment to a resource will increase its load), and
the objective is to minimize the Lp norm of the load of the resources. Their results, together with

Reference [33], imply a competitive ratio of the greedy algorithm equal to 3 + 2
√

2 ≈ 5.8284 for
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the USW. This bound carries over also to the case of weighted clients where the objective is to
minimize the average weighted latency. A combination of the results in References [33, 90] shows
that the competitiveness of greedy load balancing is 17/3 for different resources and between 4 and
2
3

√
21 + 1 ≈ 4.05505 for identical resources. The competitive ratio of the greedy algorithm applied

to congestion games with general latency functions has been characterized in Reference [23].
A different online algorithm (usually termed one-round walk starting from the empty state)

for load balancing is analyzed in References [18, 44]. Its competitive ratio is shown to be 2 +
√

5
under affine latency functions. Bounds for the case of polynomial latencies are given in References
[15, 24, 73], while more general latency functions are considered in References [23, 91], with respect
to atomic and non-atomic congestion games, respectively.

Concerning the ESW, most of the literature investigates the case of identical resources, usually
termed machines [3, 10, 53, 56, 63, 66, 72]. We notice that the scheduling problem with related
(respectively, identical) machines is a special case of the weighted load-balancing problem with
linear latency functions (respectively, identical resources with linear latency functions). For m
identical machines, the greedy algorithm achieves a competitive ratio of exactly 2 − 1

m
[66], and

this bound is proven the best possible one form = 2, 3 in Reference [53]. The currently best-known
algorithm achieves a competitive ratio of 1.9201 [56] for any m, and no algorithm can achieve a
competitive ratio better than 1.88 [89]. For related machines, a tight bound of logm is shown in
References [6, 9], while the case of unrelated machines with the objective of minimizing the norm
of the machine loads is considered in Reference [31].

1.3 Our Contribution

We revisit both selfish and online load balancing under the objective of minimizing the NSW. To the
best of our knowledge, this is the first work adopting the NSW as a benchmarking quality measure
in load-balancing problems. Indeed, the performances of Nash equilibria in load-balancing games,
as well as the competitive ratio for online load balancing, have been widely studied under the USW
and the ESW (see Related Work section for further details), but never under the NSW. Furthermore,
most of the literature on NSW is about the problem of allocating a set of items among players with
the aim of maximizing the NSW [30, 35, 37, 46, 48, 64], while in this work the NSW is considered
as a quality measure to be minimized.

We analyze the price of anarchy [74] of pure Nash equilibria (the loss in optimality due to
selfish behavior) and the competitive ratio of online algorithms (the loss in optimality due to lack
of information) under very general latency functions. These questions have been widely addressed
under the USW and the ESW, but never under the NSW.

We notice that, by adopting the NSW as a new metric, we are not going to modify the set of Nash
equilibria, but only their social values. The main difference between the NSW and the classical
notion of USW consists in the fact that, while in the latter the players’ costs are summed, in the
former they are multiplied. This may lead to think that, by turning the costs into their logarithms,
a classical utilitarian analysis can be easily adapted to deal with the NSW. Actually, this is not the
case. In fact, on the one hand, using this idea for bounding a performance ratio (e.g., the price of
anarchy or the competitive ratio), one obtains a bound on the ratio between two logarithms (each
one having the product of the players’ costs as argument). On the other hand, we are interested in
bounding the ratio between the argument of these logarithms, and there is no direct correlation
between these two ratios (notice that logarithm of the latter ratio is equal to the difference between
the corresponding utilitarian social costs, and therefore it is not related to the former one). Thus,
the analysis of the NSW requires different proof arguments. To have another evidence of this fact,
it is worth noticing that the results obtained for the NSW substantially differ from the ones holding
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Table 1. Tight Bounds on the Performance of Load Balancing with Polynomial
Latency Functions of Maximum Degree p, under the NSW and the USW

NSW USW

Weighted 2p (Φp )p+1 ∼ Θ
(

p

log(p )

)p+1
, [2]

Unweighted 2p (k+1)2p+1−kp+1 (k+2)p

(k+1)p+1−(k+2)p+(k+1)p−kp+1 ∼ Θ
(

p

log(p )

)p+1
, [2]

Non-atomic
(
e

1
e

)p (
1 − p (p + 1)−(p+1)/p

)−1
∼ Θ

(
p

log(p )

)
, [84]

Online 4p (21/(p+1) − 1)−(p+1) ∼ Θ(p)p+1, [31]

Φp denotes the unique solution of equation xp+1 = (x + 1)p , and k := �Φp �. We
observe that the performance under the NSW case is definitely better (even
asymptotically) than that under the USW case, except for the non-atomic setting.

for the USW, not only from a quantitative point of view, but also from a qualitative one. In fact,
while it is well known (see Reference [33]) that for the USW the simpler combinatorial structure
of load-balancing games does not improve the price of anarchy of general congestion games, our
Theorem A.1 (deferred to the Appendix) and Corollary 3.5 show that, for the NSW, even for the
case of linear latency functions, the price of anarchy drops from n to 2.

All upper bounds shown in this article are quite general, given that they hold for any family
of non-decreasing and positive latency functions. Moreover, the provided matching lower bounds
hold for latency functions verifying mild assumptions; it is worth to remark that they are satisfied
by the well-studied class of polynomial latency functions and by many other ones.

In particular, Theorem 3.1 provides an upper bound to the price of anarchy for the case of
weighted load-balancing games, while Theorem 3.3 gives a matching lower bound that holds even
for symmetric games under mild assumptions. Similarly, we focus on unweighted games (a special
case of weighted ones) by providing tight bounds that, in general, are lower than the ones that can
be obtained for weighted games (see Section 3.2). However, Corollaries 3.5 (or 3.6) and 3.9 show
that, when considering polynomial latency functions of degree p, the two analyses (for weighted
games and for unweighted ones) give the same tight bound of 2p . Furthermore, when considering
weighted games, the tight bound of 2p holds even for symmetric games (Corollary 3.5) and for
games with identical resources (Corollary 3.6).

We also provide a tight analysis holding for non-atomic games (see Section 3.3), and a tight
lower-bound, under mild assumptions, is attained by a simple Pigou-like network [82] (as well as
for the utilitarian social welfare [84]); for the case of polynomial latency functions of degree p,

Corollary 3.12 shows that the price of anarchy is (e
1
e )p 	 (1.44)p .

For the online setting, we analyze the greedy algorithm that assigns every client to a resource
minimizing the total cost of the instance revealed up to the time of its appearance. We provide a
tight analysis of the competitive ratio of the greedy algorithm, and we show that, when considering
polynomial latency functions of degree p, there exists no online algorithm achieving a competitive
ratio better than the one of the greedy algorithm, which is equal to 4p (see Section 4). In Table 1,
we consider the case of polynomial latency functions, and we compare the performance under the
NSW with that under the USW studied in some previous works.

1.4 Article Organization

The rest of the article is structured as follows: Section 2 introduces the model. Sections 3 and 4 are
devoted to the performance analysis of the price of anarchy and of the competitive ratio, under the
selfish and the online setting, respectively. Finally, in Section 5, we give some conclusive remarks
and state some interesting open problems.
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2 MODEL

Given k ∈ N, let [k] := {1, 2, . . . ,k }. A class C of functions is called ordinate-scaling if, for any
f ∈ C and α ≥ 0, the function д such that д(x ) = α f (x ) for any x ≥ 0, belongs to C; abscissa-

scaling if, for any f ∈ C and α ≥ 0, the function д such that д(x ) = f (αx ) for any x ≥ 0,
belongs to C; all-constant-including if it contains all the constant functions (i.e., all functions f
such that f (x ) = c for some c > 0); unbounded-including if all the latency functions f , except for
the constant ones, verify limx→∞ f (x ) = ∞. Let P (p) denote the class of polynomial latencies of
maximum degree p, i.e., the class of functions f (x ) =

∑p

d=0
αdx

d , with αd ≥ 0 for any d ∈ [p]∪ {0}
and αd > 0 for some d ∈ [p]∪ {0}. A function f is quasi-log-convex if x ln( f (x )) is convex. We first
deal with selfish load balancing, and then we turn our attention to the online setting.

2.1 Selfish Load Balancing

(Atomic) Load-balancing Games. A weighted (atomic) load-balancing game, or load-balancing

game for brevity, is a tuple LB = (N ,R, (�j )j ∈R , (wi )i ∈N , (Σi )i ∈N ),where N is a set of n ≥ 1 players
(corresponding to clients), R is a finite set of resources, �j : R>0 → R>0 is the (non-decreasing and
positive) latency function of resource j ∈ R, and, for each i ∈ N , wi ∈ R>0 is the weight of player
i and Σi ⊆ R (with Σi � ∅) is her set of strategies (or admissible resources). As usual, we assume
that each latency function � verifies �(0) = 0.

An unweighted load-balancing game is a weighted load-balancing game with unitary weights. A
symmetric weighted load-balancing game is a load-balancing game in which each player can select
all the resources, i.e., Σi = R for any i ∈ N .

Given a class C of latency functions, let ULB(C) be the class of unweighted load-balancing
games, WLB(C) be the class of weighted load-balancing games, and SWLB(C) be the class of
weighted symmetric load-balancing games, all having latency functions in the class C. We say
that resources are identical if all of them have the same latency function.

Non-atomic Load balancing Games. The counterpart of the class of atomic load-balancing
games is that of non-atomic load-balancing games [11, 82, 93]: These games are a good approxi-
mation for atomic ones when players become infinitely many and the contribution of each player
to social welfare becomes infinitesimally small. A non-atomic load-balancing game is a tuple
NLB = (N ,R, (�j )j ∈R , (ri )i ∈N , (Σi )i ∈N ), where N is a set of n ≥ 1 types of players, R is a finite
set of resources, �j : R>0 → R>0 is the (non-decreasing and positive) latency function of resource
j ∈ R; moreover, given i ∈ N , ri ∈ R≥0 is the amount of players of type i and Σi ⊆ R is the set of
strategies of every player of type i .

Given a class C of latency functions, let NLB(C) be the class of non-atomic load-balancing
games, and SNLB(C) be the class of symmetric non-atomic load-balancing games, all having la-
tency functions in the class C.

Strategy Profiles and Cost Functions. In atomic load-balancing games, a strategy profile is an
n-tuple σ = (σ1, . . . ,σn ), where σi ∈ Σi is the resource chosen by player i ∈ N in σ . Given
a strategy profile σ , let kj (σ ) :=

∑
i ∈N :σi=j wi be the congestion of resource j ∈ R in σ , and let

costi (σ ) := �σi
(kσi

(σ )) be the cost of player i ∈ N in σ .
In non-atomic load-balancing games, a strategy profile is an n-tuple Δ = (Δ1, . . . ,Δn ), where

Δi : R → R≥0 is a function denoting, for each resource j ∈ R, the amount Δi (j ) of players of type
i selecting resource j, so

∑
j ∈Σi

Δi (j ) = ri . Observe that Δi (j ) = 0 if j � Σi . For a strategy profile
Δ, the congestion of resource j ∈ R in Δ, denoted as kj (Δ) :=

∑
i ∈N Δi (j ), is the total amount of

players using resource j in Δ and its cost is given by costj (Δ) = �j (kj (Δ)). The cost of a player of
type i selecting a resource j ∈ Σi is equal to costj (Δ) and each player aims at minimizing it.
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We stress that, in both types of games, the congestion of a resource is a non-negative real number,
except for the case of unweighted atomic games, where it takes integer values.

Nash Social Welfare. In atomic load-balancing games, the Nash Social Welfare (NSW) of a
strategy profile σ is defined as:

NSW(σ ) := ��
∏
i ∈N

costi (σ )wi ��
1∑

i∈N wi

.

Using the previous definition, for unweighted games, we get NSW(σ ) = (
∏

i ∈N costi (σ ))
1
n . Given

a strategy profile σ , let R (σ ) := {j ∈ R : kj (σ ) > 0}. For weighted load-balancing games, we get:

NSW(σ ) = ��
∏
i ∈N

costi (σ )wi ��
1∑

i∈N wi

=
���

∏
j ∈R (σ )

�j (kj (σ ))kj (σ )���
1∑

j∈R (σ ) kj (σ )

.

Let SP(LB) be the set of strategy profiles of an atomic load-balancing game LB. An optimal strat-
egy profileσ ∗ (LB) of a load-balancing game LB is a strategy profileσ ∗ ∈ arg minσ ∈SP(LB) NSW(σ ),
i.e., a strategy profile minimizing the NSW. Analogously, for the non-atomic setting, we have

NSW(Δ) = ���
∏

j ∈R (Δ)

costj (Δ)kj (Δ)���
1∑

j∈R (Δ) kj (Δ)

,

where R (Δ) := {j ∈ R : kj (Δ) > 0}. Let SP(NLB) be the set of strategy profiles of a non-atomic
load-balancing game NLB. An optimal strategy profile Δ∗ (NLB) of a load-balancing game NLB is
a strategy profile Δ∗ ∈ arg minΔ∈SP(NLB) NSW(Δ), i.e., a strategy profile minimizing the NSW.3

Pure Nash Equilibria and Their Efficiency. In the atomic setting, for a given strategy profile
σ , let (σ−i ,σ

′
i ) := (σ1,σ2, . . . ,σi−1,σ

′
i ,σi+1, . . . ,σn ), i.e., a strategy profile equal to σ , except for

strategy σ ′i . A pure Nash equilibrium is a strategy profile σ such that costi (σ ) ≤ costi (σ−i ,σ
′
i ) for

any σ ′i ∈ Σi and i ∈ N , i.e., a strategy profile in which no player can improve her cost by unilateral
deviations.4 Let PNE(LB) be the set of pure Nash equilibria of a load-balancing game LB. The Nash

price of anarchy of LB is defined as:

NPoA(LB) = sup
σ ∈PNE(LB)

NSW(σ )

NSW(σ ∗ (LB))
.

Given a class G of load-balancing games, the Nash price of anarchy of G is defined as NPoA(G) =
supLB∈G NPoA(LB).

3We observe that, for any non-atomic game, there always exists a strategy profile minimizing the Nash social welfare. To
show this, we first recall that the set of pure strategy profiles can be represented as the set of vectors Δ := (Δi (j ))i∈N , j∈Σi

satisfying the linear constraints
∑

j′∈Σi
Δi (j′) = ri and Δi (j ) ≥ 0, for any i ∈ N and j ∈ Σi . This implies that the set

of strategy profiles can be represented as a compact subset of the Euclidean space. Furthermore, we have that a generic
function of type д (x ) := �(x )x = ex ln(� (x )) is continuous in x ≥ 0 if the function � is non-negative and non-decreasing;
thus, since the Nash social welfare NSW(Δ) can be seen as continuous composition of several functions of type д (x ) :=
�(x )x , we have that NSW(Δ) is a continuous function in the variables Δi (j )’s. We conclude that the problem of minimizing
the Nash social welfare is equivalent to that of minimizing a continuous function over a compact set, and by the Weierstrass
Theorem, such a problem always admits a minimum.
4As shown in Reference [52], a pure Nash equilibrium always exists in weighted load-balancing games. Instead, when
moving to the more general class of weighted congestion games, pure Nash equilibria may not exist (see Reference [60]),
but they continue to exist in the subclass of unweighted congestion games (see Reference [83]).

ACM Transactions on Economics and Computation, Vol. 10, No. 2, Article 8. Publication date: October 2022.



8:10 C. Vinci et al.

In the non-atomic setting, a pure Nash equilibrium is a strategy profile Δ such that, for any
player type i ∈ N , resources j, j ′ ∈ Σi such that Δi (j ) > 0, costj (Δ) ≤ costj′ (Δ) holds, that is, an
outcome of the game in which no player can improve her situation by unilaterally deviating to
another strategy.5 The Nash price of anarchy of a non-atomic game NLB (denoted as NPoA(NLB))
is defined as in the atomic setting, and again, given a class G of non-atomic load-balancing games,
the Nash price of anarchy of G is defined as NPoA(G) = supNLB∈G NPoA(NLB).

2.2 Online Load Balancing

We now introduce online load balancing. There is a natural correspondence between a load-
balancing game and an instance of the online load-balancing problem. When dealing with the
online setting, as usual in the literature, we adopt a different nomenclature. In particular, an in-
stance I of the online load-balancing problem is a tuple I = (N ,R, (�j )j ∈R , (wi )i ∈N , (Σi )i ∈N ),where
N = [n] is a set of n ≥ 1 clients, R is a finite set of resources, �j : R>0 → R>0 is the (non-decreasing
and positive) latency function of resource j ∈ R, and, for each i ∈ N , wi > 0 is the weight of client
i and Σi ⊆ R (with Σi � ∅) is her set of admissible resources. Furthermore, in the online setting
an assignment of clients to resources is called state: A state is an n-tuple σ = (σ1, . . . ,σn ), where
σi ∈ Σi ⊆ R is the resource assigned to player i ∈ N inσ . As in load-balancing games, given a class
of latency latency functions C, let WLB(C) denote class of load-balancing instances with latency
functions in C.

The NSW of a state and the optimal state are defined analogously to the selfish load-balancing
setting.

The online setting. In online load balancing, clients appear in online fashion, in consecutive steps;
when a client appears, an irrevocable decision has to be taken to assign it to a resource. We assume
w.l.o.g. that clients appear in increasing order, i.e., client i ∈ [n] appears before client j ∈ [n] if and
only if i < j. More formally, for any i ∈ [n], an online algorithm has to assign client i to a resource
being admissible for it without the knowledge of the future clients i + 1, i + 2, . . .; the assignment
of client i decided by the algorithm at step i cannot be modified at later steps.

Notice that at each step i > 1 a new instance is obtained by adding client i to the instance of
step i − 1.

Competitive Ratio. Following the standard performance measure in competitive analysis, we
evaluate the performance of an online algorithm in terms of its competitiveness (or competitive

ratio).
An online algorithm A is c-competitive on instance I if the following holds: Let σ and σ ∗ be

the state computed by algorithm A and the optimal state for I, respectively. Then, NSW(σ ) ≤
c ·NSW(σ ∗). The competitive ratio CRA (I) of algorithm A on instance I is the smallest c such that
A is c-competitive on I [29].

Given a class I of load-balancing instances, the competitive ratio CRA (I) of Algorithm A on I
is simply given by the supremum competitive ratio of A over all instances I ∈ I, i.e., CRA (I) =
supI∈I CRA (I).

Greedy algorithm. A natural algorithm proposed in Reference [8] for this problem is to assign
each client to the resource yielding the minimum increase to the social welfare (ties are broken ar-
bitrarily). This results to greedy assignments. Therefore, given an instance of online load balancing,
an assignment of clients to resources is called a greedy assignment if the assignment of a client to
a resource minimizes the total cost of the instance revealed up to the time of its appearance.

5As shown in Reference [11], a pure Nash equilibrium always exists in non-atomic load-balancing games and continues to
exist in the more general class of non-atomic congestion games.
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3 SELFISH LOAD BALANCING

In this section, we focus on selfish load balancing. In particular, in Section 3.1, we deal with the
analysis of the price of anarchy in weighted load-balancing games; in Section 3.2, we consider the
subclass of unweighted load-balancing games; while in Section 3.3, we analyze the price of anarchy
of non-atomic load-balancing games.

3.1 The NPoA for Weighted Load-balancing Games

We first provide an upper bound to the Nash price of anarchy of weighted load-balancing games.
Given a class of latency function C, define

ψ (C) := sup
f1,f2∈C,

k1,k2,o1,o2∈R:k1≥o1>0,o2>k2≥0

(
f1 (k1 + o1)

f1 (o1)

) (o2−k2 )o1
k1o2−k2o1

(
f2 (k2 + o2)

f2 (o2)

) (k1−o1 )o2
k1o2−k2o1

.

Theorem 3.1 (Upper Bound). Let C be a class of latency functions. The Nash price of anarchy of

weighted load-balancing games with latency functions in C is NPoA(WLB(C)) ≤ ψ (C).

Proof. Let LB ∈ WLB(C) be a weighted load-balancing game with latency functions in C,
and let σ and σ ∗ be a worst-case pure Nash equilibrium and an optimal strategy profile of LB,
respectively. Let kj denote kj (σ ) and oj denote kj (σ ∗). Since σ is a pure Nash equilibrium, we
have that costi (σ ) ≤ costi (σ−i ,σ

∗
i ). Thus, we get

∏
i ∈N costi (σ )wi ≤ ∏

i ∈N costi (σ−i ,σ
∗
i )wi .

Since costi (σ ) = �σi
(kσi

) and costi (σ−i ,σ
∗
i ) ≤ �σ ∗i (kσ ∗i

+wi ), it holds that

∏
i ∈N

costi (σ )wi =
∏
i ∈N

�σi
(kσi

)wi =
∏

j ∈R (σ )

�j (kj )
∑

i :j=σi
wi =

∏
j ∈R (σ )

�j (kj )
kj

and ∏
i ∈N

costi (σ−i ,σ
∗
i )wi ≤

∏
i ∈N

�σ ∗i (kσ ∗i
+wi )wi ≤

∏
i ∈N

�σ ∗i (kσ ∗i
+ oσ ∗i

)wi

=
∏

j ∈R (σ ∗ )

�j (kj + oj )
∑

i :j=σ ∗
i

wi
=

∏
j ∈R (σ ∗ )

�j (kj + oj )
oj .

By putting together the above inequalities, we get∏
j ∈R (σ )

�j (kj )
kj =

∏
i ∈N

costi (σ )wi ≤
∏
i ∈N

costi (σ−i ,σ
∗
i )wi ≤

∏
j ∈R (σ ∗ )

�j (kj + oj )
oj . (1)

By exploiting the properties of the logarithmic function and by using (1), we obtain

ln (NPoA(LB)) = ln
����

(∏
j ∈R (σ ) �j (kj )

kj

) 1∑
i∈N wi

(∏
j ∈R (σ ∗ ) �j (oj )oj

) 1∑
i∈N wi

����
≤ ln

����
(∏

j ∈R (σ ∗ ) �j (kj + oj )
oj

) 1∑
i∈N wi

(∏
j ∈R (σ ∗ ) �j (oj )oj

) 1∑
i∈N wi

����
=

∑
j ∈R (σ ∗ ) oj

(
ln(�j (kj + oj )) − ln(�j (oj ))

)
∑

i ∈N wi
. (2)
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Since
∑

i ∈N wi =
∑

j ∈R kj =
∑

j ∈R oj , we have that (2) is upper bounded by the optimal solution of
the following optimization problem OP on some linear variables (α j )j ∈R :

OP : max
(α j )j∈R

∑
j ∈R (σ ∗ ) α joj

(
ln(�j (kj + oj )) − ln(�j (oj ))

)
∑

j ∈R α jkj
(3)

s.t.
∑
j ∈R

α jkj =
∑
j ∈R

α joj , α j ≥ 0 ∀j ∈ R.

Indeed, (2) is the solution of OP obtained by setting α j = 1 for each j ∈ R. We have the following
lemma:

Lemma 3.2. The optimal value of OP is at most

sup
k1≥o1>0,
o2>k2≥0,
f1,f2∈C

(o2 − k2)o1 (ln( f1 (k1 + o1)) − ln( f1 (o1))) + (k1 − o1)o2 (ln( f2 (k2 + o2)) − ln( f2 (o2)))

k1o2 − k2o1
.

Proof of Lemma 3.2. First, by exploiting the structure of OP, we can introduce the normaliza-
tion constraint

∑
j ∈R α jkj =

∑
j ∈R α joj = 1 without affecting the optimal value of OP. By introduc-

ing such normalization constraint, OP becomes the following linear program LP:

LP : max
(α j )j∈R

∑
j ∈R (σ ∗ )

α joj

(
ln(�j (kj + oj )) − ln(�j (oj ))

)
(4)

s.t.
∑
j ∈R

α jkj = 1,
∑
j ∈R

α joj = 1, α j ≥ 0 ∀j ∈ R.

By standard arguments of linear programming, we have that an optimal solution of LP is given by
a vertex of the polyhedral region defined by the linear constraints of LP, and such vertex can be
obtained by nullifying at least |R | − 2 variables. Thus, we can assume w.l.o.g. that in an optimal
solution of LP there are at most two variables, say, α1 and α2, such that α1 ≥ 0 and α2 ≥ 0. If both
variables α1 and α2 are (strictly) positive, then we have that they are univocally determined by the
constraints α1k1 + α2k2 = 1 and α1o1 + α2o2 = 1, so

α1 =
o2 − k2

k1o2 − k2o1
, α2 =

k1 − o1

k1o2 − k2o1
, α j = 0 ∀j ≥ 3. (5)

By symmetry, we can assume w.l.o.g. that k1o2 − k2o1 > 0, so k1 > o1 ≥ 0 and o2 > k2 ≥ 0.
Now, assume that one variable among α1 and α2 is null, and assume w.l.o.g. that α2 = 0. In this

case, we necessarily get k1 = o1 > 0 and α1 = 1/o1, and the value of the objective function of
LP becomes ln( f1 (2o1)) − ln( f1 (o1)). Anyway, we obtain the same value of the objective function
by using in (4) the values of α1 and α2 considered in (5), and by setting k1 = o1 > 0 and o2 >
k2 ≥ 0. We also observe that, if o1 = 0 and α1,α2 > 0, then the value of the objective function is
ln( f2 (k2+o2))− ln( f2 (o2)) ≤ ln( f2 (2o2))− ln( f2 (o2)), i.e., at most equal to the value of the objective
function in which one of the two variables among α1 and α2 is null. Thus, we may omit the case
o1 = 0.

We conclude that, by considering the objective function of LP with the values α1 and α2 defined
in (5), and by considering the supremum of the objective function over k1 ≥ o1 > 0 and o2 > k2 ≥ 0,
we obtain the upper bound of the claim. �

By Lemma 3.2, and by continuing from (2), we have that the upper bound provided in Lemma 3.2
is higher or equal than ln(NPoA(LB)). Thus, by exponentiating this inequality, we get NPoA(LB) ≤
ψ (C). Hence, by the arbitrariness of LB ∈ WLB(C), the claim follows. �
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In the following theorem, we show that the upper bound derived in Theorem 3.1 is tight under
mild assumptions on the latency functions.

Theorem 3.3 (Lower Bound). Let C be a class of latency functions. (i) If C is abscissa-scaling

and ordinate-scaling, then NPoA(WLB(C)) ≥ ψ (C). (ii) If C is abscissa-scaling, ordinate-scaling, and

unbounded-including, then the previous inequality holds even for symmetric weighted load-balancing

games.

Sketch of the proof. Here, we only describe the lower bounding instance used to show part
(i) of the claim. The Appendix contains the full proof of part (ii), in which we analyze a more
complex lower bounding instance than that of part (i); furthermore, the full proof of part (i) is
presented in the Appendix as particular case of part (ii).

In the following, we will consider a lower bounding instance LB(m,k,h, f ,д) parametrized by
an integerm ≥ 4, two real numbers k ≥ 1 and h ∈ (0, 1), and two latency functions f ,д ∈ C. Then,
we will show that, for any fixed M < ψ (C), we can opportunely choose the above parameters in
such a way that the Nash price of anarchy of LB(m,k,h, f ,д) is at least M , thus showing the claim.
The considered lower bound instance is similar to those used in References [23, 33] to provide
lower bounds on the price of anarchy w.r.t. the USW.

Given an integer m ≥ 4, two real numbers k ≥ 1 and h ∈ (0, 1), and two latency functions
f ,д ∈ C, let LB(m) := LB(m,k,h, f ,д) be a weighted load-balancing game with 2m resources
r1, . . . , r2m , where the latency function �r j

of resource r j is defined as �r j
(x ) := α j f̂j

(
βjx

)
with:

f̂j :=
⎧⎪⎨⎪⎩ f if j ≤ m − 1

д if j ≥ m
, βj :=

⎧⎪⎪⎨⎪⎪⎩
(

1
k

) j−1
if j ≤ m − 1(

1
h

) j−m (
1
k

)m−1
ifm ≤ j ≤ 2m

, (6)

α j :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(

f (k )
f (k+1)

) j−1
if j ≤ m − 1(

д (h)
д (h+1)

) j−m (
f (k )

д (h+1)

) (
f (k )

f (k+1)

)m−2
ifm ≤ j ≤ 2m − 1

д (h)
д (1)

(
д (h)

д (h+1)

)m−1 (
f (k )

д (h+1)

) (
f (k )

f (k+1)

)m−2
if j = 2m

. (7)

We have 2m − 1 players, and each player j ∈ [2m − 1] has weight w j := 1/βj+1 and can select
resource r j or r j+1 only. We observe that all the latency functions of LB(m) belong to C, as C is
abscissa-scaling and ordinate-scaling.

Let σ be the strategy profile in which each player j ∈ [2m − 1] selects resource r j . Observe that,
by construction of α j , βj ,w j , the following properties hold:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α j f (k ) = α j+1 f (k + 1) if j ≤ m − 2

α j f (k ) = α j+1д(h + 1) if j =m − 1

α jд(h) = α j+1д(h + 1) ifm ≤ j ≤ 2m − 2

α jд(h) = α j+1д(1) if j = 2m − 1

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
βjw j = k, w j = k

j if j ≤ m − 1

βjw j = h, w j = h
j+1−mkm−1 ifm ≤ j ≤ 2m − 1

βj+1w j = 1 if j ≤ 2m − 1

. (8)

By exploiting (8), one can easily show that σ is a pure Nash equilibrium. To this aim, we
fix an arbitrary player j, and we show that her cost does not change when she deviates
from resource r j to resource r j+1 in σ . If j ≤ m − 2, then by using (8), we get costi (σ ) =

�r j
(kr j

(σ )) = α j f̂j (βjw j ) = α j f (k ) = α j+1 f (k + 1) = α j+1 f (βj+1w j+1 + βj+1w j ) = α j+1 f̂j+1

(βj+1 (w j+1+w j )) = �rh
(krh

(σ−i , {r j+1})). The cases j =m−1,m ≤ j ≤ 2m−2, and j = 2m−1 can be
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separately considered by exploiting (8), so one can analogously show that costi (σ ) = α j f̂j (βjw j ) =

α j+1 f̂j+1 (βj+1 (w j+1 +w j )) = costi (σ−i , {r j+1}), where we set w2m := 0.
Let σ ∗ be the strategy profile in which each player j selects resource r j+1. By standard calcula-

tions, one can show that, for any ϵ > 0, there exists a sufficiently large m such that the following
inequalities hold:

NPoA(LB(m)) (9)

≥ NSW(σ )

NSW(σ ∗)
(10)

=
���

∏2m−1
j=1

(
α j f̂j

(
βjw j

))w j

∏2m
j=2

(
α j f̂j

(
βjw j−1

))w j−1

���
1∑2m−1

j=1 wj

= ��
(
f (k + 1)

f (1)

)∑m−2
j=1 k j (

д(h + 1)

д(1)

)∑2m−2
j=m−1 h j+1−mkm−1��

1∑m−2
j=1 k j +

∑2m−1
j=m−1 hj+1−m km−1

≥ lim
m→∞

��
(
f (k + 1)

f (1)

)∑m−2
j=1 k j (

д(h + 1)

д(1)

)∑2m−2
j=m−1 h j+1−mkm−1��

1∑m−2
j=1 k j +

∑2m−1
j=m−1 hj+1−m km−1

− ϵ (11)

=

(
f (k + 1)

f (1)

) 1−h
k−h

(
д(h + 1)

д(1)

) k−1
k−h

− ϵ, (12)

where (10) holds, sinceσ is a pure Nash equilibrium, and (11) holds by choosing a sufficiently large
m. Thus, (12) provides a parametric lower bound on the Nash price of anarchy.

Now, we fix an arbitrary M < ψ (C), and we choose the parameters m,k,h, f ,д in such a way
that (12) is at least equal to M . By definition of ψ (C), we have that there exist f1, f2 ∈ C and
k1,k2,o1,o2 ≥ 0 such that k1 ≥ o1 > 0,o2 > k2 ≥ 0, and a sufficiently small ϵ > 0 such that

(
f1 (k1 + o1)

f1 (o1)

) (o2−k2 )o1
k1o2−k2o1

(
f2 (k2 + o2)

f2 (o2)

) (k1−o1 )o2
k1o2−k2o1

> M + ϵ .

Let f ,д be two latency functions such that f (x ) := f1 (o1x ) and д(x ) := f2 (o2x ), and let k := k1/o1

and h := k2/o2; we observe that f ,д belong to C, as C is abscissa-scaling and ordinate-scaling.
Since

(
f1 (k1 + o1)

f1 (o1)

) (o2−k2 )o1
k1o2−k2o1

(
f2 (k2 + o2)

f2 (o2)

) (k1−o1 )o2
k1o2−k2o1

=

(
f (k + 1)

f (1)

) 1−h
k−h

(
д(h + 1)

д(1)

) k−1
k−h

,

we have that (
f (k + 1)

f (1)

) 1−h
k−h

(
д(h + 1)

д(1)

) k−1
k−h

> M + ϵ . (13)

We first assume that h > 0. In such case, as k ≥ 1 and h ∈ (0, 1), we can use inequality (12) with the
considered parameters k,h, f ,д. Thus, by putting (12) and (13) together, we have that the above
lower bounding instance LB(m), for a sufficiently large m, guarantees a Nash price of anarchy of
at least M , and this shows the claim of part (i).

If h = 0, we can consider a load-balancing game defined as LB(m), but restricted to the first m
resources and to the firstm−1 players. By using the same proof arguments as those used for h > 0,
one can show the claim as well. �
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When considering functions belonging to the class P (p) of polynomials of maximum degree p,
the following technical lemma holds:

Lemma 3.4. ψ (P (p)) = 2p .

Proof. We have that

ψ (P (p)) = sup
k1≥o1>0,o2>k2≥0,f1,f2∈P (p )

(
f1 (k1 + o1)

f1 (o1)

) (o2−k2 )o1
k1o2−k2o1

(
f2 (k2 + o2)

f2 (o2)

) (k1−o1 )o2
k1o2−k2o1

= sup
k1≥o1>0,
o2>k2≥0,

α0, ...,αp,≥0
β0, ...,βp ≥0

��
∑p

d=0 αd (k1 + o1)d

∑p

d=0 αdo
d
1

��
(o2−k2 )o1

k1o2−k2o1 ��
∑p

d=0 βd (k2 + o2)d

∑p

d=0 βdo
d
2

��
(k1−o1 )o2

k1o2−k2o1

= sup
k1≥o1>0,
o2>k2≥0

�� max
d ∈[p]∪{0}

(k1 + o1)d

od
1

��
(o2−k2 )o1

k1o2−k2o1 �� max
d ∈[p]∪{0}

(k2 + o2)d

od
2

��
(k1−o1 )o2

k1o2−k2o1

= sup
k1≥o1>0,o2>k2≥0

((
k1 + o1

o1

)p ) (o2−k2 )o1
k1o2−k2o1

((
k2 + o2

o2

)p ) (k1−o1 )o2
k1o2−k2o1

= sup
k≥1,0≤h<1

(
(k + 1)

1−h
k−h (h + 1)

k−1
k−h

)p

, (14)

where (14) can be obtained by setting the real values k := k1/o1 and h := k2/o2. Now, we show

that the maximum value of function F (k,h) := (k + 1)
1−h
k−h (h + 1)

k−1
k−h over k ≥ 1 and 0 ≤ h < 1 is

equal to 2. Observe that ln(F (k,h)) = 1−h
k−h

ln(k + 1) + k−1
k−h

ln(h + 1) ≤ ln( 1−h
k−h

(k + 1) + k−1
k−h

(h + 1)),
where the last inequality holds, since ln(F (k,h)) is defined as convex combination of ln(k + 1) and
ln(h + 1), and because of the concavity of the natural logarithm. Thus, we get

F (k,h) ≤ 1 − h
k − h (k + 1) +

k − 1

k − h (h + 1) =
(k − h) + (k − h)

k − h = 2. (15)

Finally, since F (k,h) = 2 for k = 1 and h = 0, and because of (15), we have that the maximum of
F (k,h) over k ≥ 1 and 0 ≤ h < 1 is 2. Thus, we get that (14) is at most 2p . �

Given Lemma 3.4, and, since the class of polynomial latency functions is ordinate-scaling,
abscissa-scaling, and unbounded-including, the following corollary of Theorems 3.1 and 3.3 es-
tablishes the exact Nash price of anarchy for polynomial latency functions:

Corollary 3.5 (Polynomial Latencies). The Nash price of anarchy of weighted load-balancing

games with polynomial latency functions (even for symmetric games) of maximum degree p is

NPoA(WLB(P (p))) = NPoA(SWLB(P (p))) = ψ (P (p)) = 2p .

When considering games with identical resources and polynomial latency functions, the price
of anarchy does not decrease, as shown in the following corollary of Theorem 3.3, whose proof is
deferred to the Appendix.

Corollary 3.6 (Polynomial Latencies + Identical Resources). The Nash price of anarchy of

weighted load-balancing games with polynomial latency functions of maximum degreep and identical

resources is at least 2p .
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3.2 The NPoA for Unweighted Load-balancing Games

We first provide an upper bound to the Nash price of anarchy of unweighted load-balancing games.
Given a class of latency function C, define

ξ (C) := sup
f ∈C,k ∈N,o∈[k]

(
f (k + 1)

f (o)

) o
k

.

Theorem 3.7 (Upper Bound). Let C be a class of latency functions. The Nash price of anarchy of

unweighted load-balancing games with latency functions in C is NPoA(ULB(C)) ≤ ξ (C).

Proof. Let LB ∈ ULB(C) be an unweighted load-balancing game with latency functions in C,
and let σ and σ ∗ be a worst-case pure Nash equilibrium and an optimal strategy profile of LB,
respectively. Let kj denote kj (σ ) and oj denote kj (σ ∗). As in Theorem 3.1, we get∏

j ∈R (σ )

�j (kj )
kj ≤

∏
j ∈R (σ ∗ )

�j (kj + 1)oj . (16)

By exploiting the properties of the logarithmic function, we get

ln (NPoA(LB)) = ln
����

(∏
j ∈R (σ ) �j (kj )

kj

) 1
n

(∏
j ∈R (σ ∗ ) �j (oj )oj

) 1
n

����
≤ ln

����
(∏

j ∈R (σ ∗ ) �j (kj + 1)oj

) 1
n

(∏
j ∈R (σ ∗ ) �j (oj )oj

) 1
n

���� (17)

=

∑
j ∈R (σ ∗ ) oj (ln(�j (kj + 1)) − ln(�j (oj )))∑

j ∈R kj
,

where (17) comes from (16). Now, let R+ := {j ∈ R (σ ∗) : kj ≥ oj }. We have that∑
j ∈R (σ ∗ ) oj (ln(�j (kj + 1)) − ln(�j (oj )))∑

j ∈R kj

≤
∑

j ∈R (σ ∗ ) oj (ln(�j (kj + 1)) − ln(�j (oj )))∑
j ∈R (σ ∗ ) kj

≤
∑

j ∈R+ oj (ln(�j (kj + 1)) − ln(�j (oj )))∑
j ∈R+ kj

(18)

≤max
j ∈R+

oj (ln(�j (kj + 1)) − ln(�j (oj )))

kj

≤ sup
f ∈C,k ∈N,o∈[k]

o(ln( f (k + 1)) − ln( f (o)))

k
,

where (18) holds, because for any j ∈ R (σ ∗) \ R+, it holds that oj (ln(�j (kj + 1)) − ln(�j (oj ))) ≤ 0.
Therefore, we conclude that

ln (NPoA(LB)) ≤ sup
f ∈C,k ∈N,o∈[k]

o(ln( f (k + 1)) − ln( f (o)))

k
,

and by exponentiating the previous inequality, we get the claim. �

In the following theorem, we show that the upper bound derived in Theorem 3.7 is tight under
mild assumptions on the considered latency functions:
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Fig. 1. The LB used in the proof of Theorem 3.8. Columns represent resources and squares represent players
(number j inside a square means that the player belongs to group Nj ). (a): The Nash equilibrium σ ; (b): The
strategy profile σ∗.

Theorem 3.8 (Lower Bound). Let C be a class of latency functions. If C is ordinate-scaling, then

NPoA(ULB(C)) ≥ ξ (C).

Sketch of the proof. Here, we only provide the structure of the lower bounding instance and
the main steps on how to show the claim (the full proof of the theorem is deferred to the Appendix).
Similarly as in Theorem 3.3, the lower bounding instance we consider is parametrized by some
integers and a latency function of C, and we will show that an opportune choice of such parameters
guarantees a Nash price of anarchy arbitrarily close to ξ (C). Given an integerm > 0, two integers
k,o with k ≥ o > 0, and a latency function f ∈ C, let LB(m) := LB(m,k,o, f ) be an unweighted
load-balancing game with (k −o+1)m+o resources, partitioned intom groups R1,R2, . . . ,Rm such
that R j := {r j,0, r j,1, . . . , r j,k−o } for any j ∈ [m − 1], and Rm := {rm,0, rm,1, . . . , rm,k }. Each resource
r j,h has latency function �r j,h

(x ) := α j,h f (x ), with

α j,h :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

f (k )
f (k+1)

) j−1
if h = 0

f (k )
f (1)

(
f (k )

f (k+1)

) j−1
otherwise.

We have n := mk players split into m groups N1,N2, . . . ,Nm of k players each. For j ∈ [m − 1],
the set of strategies Σj of players of group Nj is R j ∪ {r j+1,0}, and the set of strategies Σm of
players in Nm is Rm . We observe that all the latency functions of LB(m) belong to C, as C is
ordinate-scaling.

Let σ be the strategy profile such that, for any j ∈ [m], all k players of group Nj select resource
r j,0, so each resource r j,0 has congestion k , and all the remaining resources have null congestion
(see Figure 1(a)). Similarly to Theorem 3.3, one can show that σ is a pure Nash equilibrium.

Let σ ∗ be a strategy profile defined as follows: (i) for any j ∈ [m − 1], o players of group Nj

select resource r j+1,0, and each of the k − o remaining players of Nj selects a distinct resource of
R j \ {r j,0}; (ii) all the k players of group Nm select a distinct resource of Rm \ {rm,0}. Thus, in σ ∗,
any resource of type r j,0 with j > 1 has congestion o, resource r1,0 has null congestion, and the
remaining resources have unitary congestion (see Figure 1(b)).
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By standard calculations, and similarly to Theorem 3.3, one can show that, for any ϵ > 0, there
exists a sufficiently largem such that

NPoA(LB(m)) ≥ NSW(σ )

NSW(σ ∗)
≥

(
f (k + 1)

f (o)

) o
k

− ϵ . (19)

Now, we fix an arbitrary M < ξ (C), and we choose f ∈ C, k ∈ N, o ∈ [k], and ϵ > 0 in such a
way that (

f (k + 1)

f (o)

) o
k

> M + ϵ ; (20)

we observe that, by definition of ξ (C), the above parameters exist. By putting inequalities (19)
and (20) together, we have that NPoA(LB(m)) > M for a sufficiently large m, and this shows the
claim. �

The following result for polynomial latency functions holds and can be shown analogously to
Corollary 3.5 (the proof is deferred to the Appendix).

Corollary 3.9 (Polynomial Latencies). The Nash price of anarchy of unweighted load-

balancing games with polynomial latency functions of maximum degree p is NPoA(ULB(P (p))) =
ξ (P (p)) = 2p .

3.3 The NPoA for Non-atomic Load-balancing Games

In this subsection, we consider Non-atomic Load balancing Games, in which there is a finite num-
ber of player types (belonging to set N ), and an amount ri ∈ R≥0 is associated to type i (for
every i ∈ N ). It is worth noticing that these games represent a good approximation for atomic
ones when players become infinitely many and the contribution of each player to social welfare
becomes infinitesimally small.

We first provide an upper bound to the Nash price of anarchy of non-atomic load-balancing
games. Given a class of latency function C, define

η(C) := sup
f ∈C,k≥o>0

(
f (k )

f (o)

) o
k

,

where k and o are two positive real numbers.

Theorem 3.10 (Upper Bound). Let C be a class of latency functions. The Nash price of anarchy

of non-atomic load-balancing games with latency functions in C is NPoA(NLB(C)) ≤ η(C).

Proof. Let NLB ∈ NLB(C) be a non-atomic load-balancing game with latency functions in C,
and let Δ and Δ∗ be a worst-case pure Nash equilibrium and an optimal strategy profile of NLB,
respectively. Let kj denote kj (Δ) and oj denote kj (Δ∗).

For any player type i and pair (j, j∗) of resources, let α i
j, j∗ be the amount of players of type i

selecting resource j in Δ and resource j∗ in Δ∗. Clearly, it holds that, for any i ∈ N ,
∑

j, j∗ ∈R α i
j, j∗ = ri .

Since Δ is a pure Nash equilibrium, if there exists i ∈ N such that α i
j, j∗ > 0, then we have that

costj (Δ) ≤ costj∗ (Δ). For any j, j∗ ∈ R, let Aj, j∗ =
∑

i ∈N α i
j, j∗ . Clearly, it holds that

costj (Δ)Aj, j∗ ≤ costj∗ (Δ)Aj, j∗ . (21)

Since, for any j ∈ R (Δ),
∑

j∗ ∈R Aj, j∗ = kj and, symmetrically, for any j∗ ∈ R (Δ∗),
∑

j ∈R Aj, j∗ = oj ,
it follows that ∏

j, j∗ ∈R
costj (Δ)Aj, j∗ =

∏
j ∈R (Δ)

costj (Δ)kj (22)

ACM Transactions on Economics and Computation, Vol. 10, No. 2, Article 8. Publication date: October 2022.



Nash Social Welfare in Selfish and Online Load Balancing 8:19

and ∏
j, j∗ ∈R

costj∗ (Δ
∗)Aj, j∗ =

∏
j ∈R (Δ∗ )

costj (Δ)oj . (23)

By multiplying (21) over all pairs of resources in R and by exploiting (22) and (23), we obtain∏
j ∈R (Δ)

�j (kj )
kj =

∏
j ∈R (Δ)

costj (Δ)kj =
∏

j, j∗ ∈R
costj (Δ)Aj, j∗

≤
∏

j, j∗ ∈R
costj∗ (Δ)Aj, j∗ =

∏
j ∈R (Δ∗ )

costj (Δ)oj =
∏

j ∈R (Δ∗ )

�j (kj )
oj . (24)

By exploiting the properties of the logarithmic function, we get

ln (NPoA(LB)) = ln
����

(∏
j ∈R (Δ) �j (kj )

kj

) 1∑
i∈N ri

(∏
j ∈R (Δ∗ ) �j (oj )oj

) 1∑
i∈N ri

����
≤ ln

����
(∏

j ∈R (Δ∗ ) �j (kj )
oj

) 1∑
i∈N ri

(∏
j ∈R (Δ∗ ) �j (oj )oj

) 1∑
i∈N ri

���� (25)

=

∑
j ∈R (Δ∗ ) oj ln(�j (kj )) −

∑
j ∈R (Δ∗ ) oj ln(�j (oj ))∑

i ∈N ri

=

∑
j ∈R (Δ∗ ) oj (ln(�j (kj )) − ln(�j (oj )))∑

j ∈R kj
,

≤
∑

j ∈R+ oj (ln(�j (kj )) − ln(�j (oj )))∑
j ∈R+ kj

(26)

≤ max
j ∈R+

oj (ln(�j (kj )) − ln(�j (oj )))

kj

≤ sup
f ∈C,k≥o>0

o(ln( f (k )) − ln( f (o)))

k
,

where (25) comes from (24), and (26) is obtained by using similar arguments as in Theorem 3.7 (in
particular, see inequalities (18)). Therefore, we conclude that

ln (NPoA(NLB)) ≤ sup
f ∈C,k≥o>0

o(ln( f (k )) − ln( f (o)))

k
,

and by exponentiating the previous inequality, we get the claim. �

In the following theorem, we show that the upper bound derived in Theorem 3.10 is tight under
mild assumptions on the considered latency functions, even for symmetric games. In particular,
the considered tight lower-bound is a simple Pigou-like network [82], which is a symmetric load-
balancing game with two resources only; thus, the worst-case price of anarchy is attained by the
simplest possible combinatorial structure, as well as this fact holds for the utilitarian social wel-
fare [84].

Theorem 3.11 (Lower Bound). Let C be a class of latency functions. If C is all-constant-including,

then NPoA(SNLB(C)) ≥ η(C).

Proof. To show the theorem, we equivalently show that, for any M < η(C), there exists a
symmetric non-atomic load-balancing game NLB ∈ SNLB(C) such that NPoA(NLB) > M . Fix an
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arbitrary M < η(C). Let f ∈ C and k ≥ o > 0 two positive real numbers such that (
f (k )
f (o) )

o
k > M .

Let NLB be a symmetric non-atomic load-balancing game with a unique player type, say, 1, and
two resources having latency defined as �1 (x ) := f (x ) and �2 (x ) := f (k ). Assume that the amount
of players of type 1 is r1 = k . Let Δ be the strategy profile in which all players select resource
1, and let Δ∗ be the strategy profile in which an amount o of players selects resource 1 and the
remaining one (i.e., k − o) selects resource 2. We trivially have that Δ is a pure Nash equilibrium.
Thus, we obtain

NPoA(NLB) ≥ NSW(Δ)

NSW(Δ∗)
=

(
�1 (k )k

�1 (o)o�2 (k − o)k−o

) 1
k

=

(
f (k )k

f (o)o f (k )k−o

) 1
k

=

(
f (k )

f (o)

) o
k

> M,

and the claim follows. �

The following result for polynomial latency functions holds.

Corollary 3.12 (Polynomial Latencies). The Nash price of anarchy of non-atomic load-

balancing games with polynomial latency functions of maximum degreep (even for symmetric games)

is NPoA(NLB(P (p))) = NPoA(SNLB(P (p))) = η(P (p)) = (e
1
e )p 	 (1.44)p .

Proof. By applying Theorems 3.10 and 3.11, we get that

NPoA(NLB(P (p))) = η(P (p))) = sup
α0,α1, ...,αp ≥0,k≥o>0

��
∑p

d=0 αdk
d

∑p

d=0 αdod
��

o
k

= sup
k≥o>0

(
max

d ∈[p]∪{0}

kd

od

) o
k

= max
d ∈[p]∪{0}

sup
k≥o>0

(
kd

od

) o
k

= max
d ∈[p]∪{0}

�� sup
k≥o>0

(
k

o

) o
k ��

d

= �� sup
k≥o>0

(
k

o

) o
k ��

p

=

(
sup
x>0

x
1
x

)p

=
(
e

1
e

)p
.

�

4 ONLINE LOAD BALANCING

Recall that, in the setting considered in this section, clients appear in online fashion, in consecutive
steps; when a client appears, an irrevocable decision has to be taken to assign it to a resource. We
assume that clients appear in increasing order, i.e., client i ∈ [n] appears before client j ∈ [n] if
and only if i < j.

We first provide an upper bound on the competitive ratio of the greedy algorithm. Given a class
of latency functions C, define

ζ (C) := sup
f1,f2∈C,

k1,k2,o1,o2∈R:k1≥o1>0,o2>k2≥0

(
f1 (k1 + o1)k1+o1

f1 (k1)k1 f1 (o1)o1

) o2−k2
o2k1−o1k2

(
f2 (k2 + o2)k2+o2

f2 (k2)k2 f2 (o2)o2

) k1−o1
o2k1−o1k2

,

where we set f2 (0)0 := 1.

Theorem 4.1 (Upper Bound). Let C be a class of quasi-log-convex functions. The competitive

ratio of the greedy algorithm G applied to load-balancing instances with latency functions in C is

CRG (WLB(C)) ≤ ζ (C).

Proof. The high-level structure of the proof is similar to that of Theorem 3.1, but here we resort
to more sophisticated calculations and we use the further hypothesis of quasi-log-convex latency
functions.

Let I ∈ WLB(C) be a load-balancing instance with latency functions in C, and let σ and σ ∗ be
the states returned by the greedy algorithm and an optimal strategy profile of LB, respectively.
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Let kj denote kj (σ ) and oj denote kj (σ ∗). For any i ∈ N and resource j, let (σ i ) be the par-
tial state in which the first i clients have been assigned according to σ , and let (σ i−1, j ) be the
state in which the first i − 1 clients have been assigned according to σ and client i is assigned
to resource j. By definition of greedy algorithm, we have that σi ∈ arg minj ∈R NSW(σ i−1, j ) =

arg minj ∈R
∏

l≤i costl (σ i−1, j )∏
l≤i−1 costl (σ i−1 )

= arg minj ∈R
�j (kj (σ i−1, j ))kj (σ i−1, j )

�j (kj (σ i−1 ))kj (σ i−1 )
, where we set �j (0)0 := 1. Thus, we

can equivalently define the greedy assignment by saying that each client i is assigned to the re-

source j minimizing
�j (kj (σ i−1, j ))kj (σ i−1, j )

�j (kj (σ i−1 ))kj (σ i−1 )
, so

�σi
(kσi

(σ i ))kσi (σ i )

�σi
(kσi

(σ i−1))kσi (σ i−1 )
≤
�σ ∗i (kσ ∗i

(σ i−1,σ ∗i ))
kσ ∗

i
(σ i−1,σ ∗i )

�σ ∗i (kσ ∗i
(σ i−1))

kσ ∗
i

(σ i−1 )
. (27)

We have that:

∏
i ∈N

�σi
(kσi

(σ i ))kσi (σ i )

�σi
(kσi

(σ i−1))kσi (σ i−1 )
=

∏
j ∈R (σ )

∏
i ∈N :σi=j

�j (kj (σ i ))kj (σ i )

�j (kj (σ i−1))kj (σ i−1 )

=
∏

j ∈R (σ )

�j (kj (σn ))kj (σ n ) (28)

=
∏

j ∈R (σ )

�j (kj )
kj , (29)

where (28) is obtained by exploiting telescoping properties. Furthermore, we get

∏
i ∈N

�σ ∗i (kσ ∗i
(σ i−1,σ ∗i ))

kσ ∗
i

(σ i−1,σ ∗i )

�σ ∗i (kσ ∗i
(σ i−1))

kσ ∗
i

(σ i−1 )

=
∏
i ∈N

�σ ∗i (kσ ∗i
(σ i−1) +wi )

kσ ∗
i

(σ i−1 )+wi

�σ ∗i (kσ ∗i
(σ i−1))

kσ ∗
i

(σ i−1 )

≤
∏
i ∈N

�σ ∗i (kσ ∗i
+wi )

kσ ∗
i
+wi

�σ ∗i (kσ ∗i
)
kσ ∗

i

(30)

=
∏

j ∈R (σ ∗ )

∏
i ∈N :σ ∗i =j

�j (kj +wi )kj+wi

�j (kj )kj

≤
∏

j ∈R (σ ∗ )

∏
i ∈N :σ ∗i =j

�j (kj +
∑

t ≤i :σ ∗t =j wt )
kj+

∑
t≤i :σ ∗t =j wt

�j (kj +
∑

t<i :σ ∗t =j wt )
kj+

∑
t<i :σ ∗t =j wt

(31)

=
∏

j ∈R (σ ∗ )

�j (kj +
∑

t :σ ∗t =j wt )
kj+

∑
t :σ ∗t =j wt

�j (kj )kj
(32)

=
∏

j ∈R (σ ∗ )

�j (kj + oj )
kj+oj

�j (kj )kj
, (33)

where (32) is obtained by exploiting telescoping properties, and (30) and (31) easily come from the
following fact:
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Fact 1. Given a quasi-log-convex latency function f , we have that
f (x+z )x+z

f (x ) ≤ f (x+y+z )x+y+z

f (x+y )x+y for

any x ,y, z ≥ 0.

Proof. Since the function д such that д(t ) = t ln( f (t )) is convex, we have that д(x +z)−д(x ) ≤
д(x +y+z)−д(x +y) for any x ,y, z ≥ 0, thus, by exponentiating the previous inequality, the claim
follows. �

By putting together (27), (29), and (33), we get

∏
j ∈R (σ )

�j (kj )
kj =

∏
i ∈N

�σi
(kσi

(σ i ))kσi (σ i )

�σi
(kσi

(σ i−1))kσi (σ i−1 )

≤
∏
i ∈N

�σ ∗i (kσ ∗i
(σ i−1,σ ∗i ))

kσ ∗
i

(σ i−1,σ ∗i )

�σ ∗i (kσ ∗i
(σ i−1))

kσ ∗
i

(σ i−1 )

≤
∏

j ∈R (σ ∗ )

�j (kj + oj )
kj+oj

�j (kj )kj
. (34)

By exploiting the properties of the logarithmic function, we obtain

ln (CRG (I))

= ln
����

(∏
j ∈R (σ ) �j (kj )

kj

) 1∑
i∈N wi

(∏
j ∈R (σ ∗ ) �j (oj )oj

) 1∑
i∈N wi

����
≤ ln

������
(∏

j ∈R (σ ∗ )
�j (kj+oj )kj +oj

�j (kj )kj

) 1∑
i∈N wi

(∏
j ∈R (σ ∗ ) �j (oj )oj

) 1∑
i∈N wi

������
(35)

=

∑
j ∈R (σ ∗ )

(
(kj + oj ) ln(�j (kj + oj )) − kj ln(�j (kj )) − oj ln(�j (oj ))

)
∑

i ∈N wi
, (36)

where (35) comes from (34). Since
∑

i ∈N wi =
∑

j ∈R kj =
∑

j ∈R oj , we have that (36) is upper
bounded by the optimal solution of the following optimization problem OP on some linear vari-
ables (α j )j ∈R :

OP : max

∑
j ∈R (σ ∗ ) α j

(
(kj + oj ) ln(�j (kj + oj )) − kj ln(�j (kj )) − oj ln(�j (oj ))

)
∑

j ∈R α jkj

s.t.
∑
j ∈R

α jkj =
∑
j ∈R

α joj , α j ≥ 0 ∀j ∈ R.

We have the following lemma, whose proof is omitted, since it is similar to that of Lemma 3.2.

Lemma 4.2. The optimal value of OP is at most

sup
k1≥o1>0,o2>k2≥0,f1,f2∈C

(o2 − k2)F ( f1,o1,k1) + (k1 − o1)F ( f2,o2,k2)

k1o2 − k2o1
,

where F ( f ,o,k ) := (k + o) ln( f (k + o)) − k ln( f (k )) − o ln( f (o)).
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By continuing from (36) and by using Lemma 4.2, we get

ln (CRG (I)) ≤ sup
k1≥o1>0,o2>k2≥0,f1,f2∈C

(o2 − k2)F ( f1,o1,k1) + (k1 − o1)F ( f2,o2,k2)

k1o2 − k2o1
.

By exponentiating the previous inequality, we get the claim. �

We have that the analysis derived in Theorem 4.1 is tight if the considered latency functions are
abscissa-scaling and ordinate-scaling.

Theorem 4.3 (Lower Bound). Let C be a class of latency functions and let G be the greedy algo-

rithm. If C is abscissa-scaling and ordinate-scaling, then CRG (WLB(C)) ≥ ζ (C).

The proof of Theorem 4.3 is technically similar to that of Theorem 3.3 and is deferred to the
Appendix.

The following result for polynomial latency functions holds.

Corollary 4.4 (Polynomial Latencies). The competitive ratio of the greedy algorithm applied

to weighted load-balancing instances with polynomial latency functions of maximum degree p is

CRG (WLB(P (p))) = ζ (P (p)) = 4p .

The proof of Corollary 4.4 is analogue to that of Corollary 3.5 and is deferred to the Appendix.
We show that, when considering polynomial latency functions, the upper bound of

Corollary 4.4 is tight for any online algorithm, i.e., we are able to provide a matching lower bound
to the online load-balancing problem.

Theorem 4.5 (Polynomial Latencies - Lower Bound w.r.t. Any Online Algorithm). The

competitive ratio of any online algorithm A applied to load-balancing instances with polynomial

latencies of maximum degree p is at least CRA (P (p)) ≥ 4p , even for instances with identical resources.

Sketch of the proof. We equivalently show that, for any online algorithm A and ϵ > 0, there
exists a load-balancing instance I such that CRA (I) ≥ 4p − ϵ . We construct an instance similar to
that defined in Theorem 17 of Reference [33]. Given an integerm ≥ 0 and a real numberw > 0, let
I(m) be a load-balancing instance with identical polynomial latency functions of type �(x ) = xp ,
and recursively defined as follows:

• If m = 0, then I(m) has no clients and there is a unique resource denoted as fundamental

resource of I(0).
• Ifm ≥ 1, then: (i) I(m) contains a sub-instance equivalent to I(i − 1) for any i ∈ [m]; (ii) I(m)

has a further resource r denoted as fundamental resource of I(m); (iii) there are further m
clients such that, for any i ∈ [m], the ith client has weight wi := 2i−1 and can select among
r and the fundamental resource r (i ) of the sub-instance of type I(i − 1) included in I(m); (iv)
for any client i ∈ [m], r and r (i ) are, respectively, denoted as first and second resource of
the ith client included in I(m).

One can show that, for any ϵ > 0, there exists a sufficiently largem such that CRA (I(m)) ≥ 4p − ϵ ,
and this shows the claim. The proof of this last fact is deferred to the Appendix. �

5 CONCLUDING REMARKS AND OPEN PROBLEMS

To the best of our knowledge, this is the first work that adopts the NSW as a benchmarking quality
measure in load-balancing problems. Several open problems deserve further investigation.

Our article mostly focuses on evaluating the performance of selfish and online load balancing.
Concerning complexity issues, it is worth noticing that, on the one hand, when considering un-
weighted players, an optimal configuration with respect to the NSW can be easily computed in
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polynomial time by exploiting the same techniques developed in References [38, 77] for the USW;
on the other hand, when considering weighted players, a simple reduction from the NP-complete
problem PARTITION shows that the problem becomes NP-hard. Therefore, an interesting open
problem is that of providing better polynomial time approximation algorithms for the weighted
case and polynomial latency functions (we notice that, as shown in Corollary 4.4, the greedy algo-
rithm provides a constant approximation factor).

Finally, other interesting research directions connected with our work are the following: (i)
considering other quality metrics to evaluate the performance under the NSW (e.g., the price of
stability [5, 16, 20, 40, 41, 55], the efficiency of one-round walks starting from the empty-state
[18, 23, 44, 73]); (ii) analyzing other sub-classes of load-balancing games and online load-balancing
problems (e.g., symmetric unweighted games, unweighted instances for the online setting); (iii)
applying the NSW to other resource selection games (e.g., congestion games [83] and their variants
[5, 17, 19, 22, 26, 27, 49, 51, 59]) and to more general cost-minimization settings; (iv) designing
mechanisms to improve the performance under the NSW (e.g., taxing mechanisms [24, 36, 47],
Stackelberg strategies [25, 54, 58, 86], coordination and cost-sharing mechanisms [32, 34, 43, 45,
65, 70]).

A APPENDIX

A.1 Lower Bound for Linear Congestion Games

Unweighted congestion games are a further generalization of unweighted load-balancing games.
The difference is that the strategy set of each player i ∈ N is a collection Σi ⊆ 2R \ {∅}, i.e., a
strategy is a non-empty subset of R. Furthermore, given a strategy profile σ = (σ1, . . . ,σn ) (with
σi ∈ Σi ), the cost of each player i ∈ N is costi (σ ) :=

∑
j ∈σi
�j (kj (σ )), where kj (σ ) := |i ∈ N :

j ∈ σi | is the congestion of resource j in strategy profile σ . In the following theorem, we show
that, even for linear latency functions, the Nash price of anarchy of unweighted congestion games
with linear latency functions is non-constant in the number of players, differently from the case
of load-balancing games. This fact exhibits a substantial difference with respect to the case of
the price of anarchy when the considered social welfare function is the sum of the players’ costs.
Indeed, in such case, the price of anarchy for linear congestion games is finite, and the price of
anarchy of load-balancing games is as high as that of general linear congestion games.

Theorem A.1. The Nash price of anarchy of linear congestion games is at least n1−o (1) , where n is

the number of players (and o(1) is an infinitesimal w.r.t. to n).

Proof. We show that, for any ϵ ∈ (0, 1/2), there exists a congestion game CG with linear latency
functions and n ≥ 2 players such that:

NPoA(CG) ≥ �nϵ�1−
�nϵ �

n , (37)

and this fact will imply the claim, as �nϵ�1−
�nϵ �

n ∈ Θ(n1−ϵ ) for any fixed ϵ ∈ (0, 1/2). Let ϵ ∈ (0, 1/2),
n ≥ 2, and m := �nϵ�. Let CG(n, ϵ ) be an unweighted congestion game with n players defined as
follows: The set of resources is organized into three groups R1,R2,R3, with R j := {r j,1, . . . , r j,n−m }
for any j ∈ [2], and R3 := {r3,1, . . . , r3,m }. The latency function of each resource r j,h is �r j,h

(x ) :=
α jx , where α1 = m + 1, α2 = 1, and α3 = m. There are two groups of players N1,N2, with N1 :=
{i1,1, . . . , i1,n−m } and N2 := {i2,1, . . . , i2,m }. Each player i1,h ∈ N1 has two strategies S1,h and S∗1,h
defined as S1,h := {r1,h } and S∗1,h := {r2,h }, and each player i2,h ∈ N2 has two strategies S2,h and
S∗2,h defined as S2,h := R2 and S∗3,h := {r3,h }. Let σ (respectively, σ ∗) be the strategy profile such
that each player it,h plays strategy St,h (respectively, S∗

t,h
), for any t ∈ [2]. One can easily show
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that costi (σ ) = costi (σ−i ,σ
∗
i ) for any player i , thus σ is a pure Nash equilibrium. We have that:

NPoA(CG(n, ϵ ))

≥ NSW(σ )

NSW(σ ∗)

=
���
���
∏
i ∈N1

costi (σ )

costi (σ ∗)
���
���
∏
i ∈N2

costi (σ )

costi (σ ∗)
���
���

1
n

=
���
���
∏
i ∈N1

costi (σ−i ,σ
∗
i )

costi (σ ∗)
���
���
∏
i ∈N2

costi (σ−i ,σ
∗
i )

costi (σ ∗)
���
���

1
n

=

((
α2 (m + 1)

α2

)n−m (
α3

α3

)m) 1
n

= (m + 1)
n−m

n

≥ �nϵ�1−
�nϵ �

n , (38)

thus (37) holds, and the claim follows. �

A.2 Proof of Theorem 3.3 (full version)

First, we deal with part (ii) of the claim: Let us assume that C is abscissa-scaling, ordinate-scaling,
and unbounded-including. To prove part (ii), we equivalently show that for any M < ψ (C) there
exists a game LB ∈ WLB(C) such that NPoA(LB) > M .

We first assume without loss of generality that C contains at least a non-constant latency func-
tion. Indeed, if it is not case, then we have that ψ (C) = 1 ≤ NPoA(C), and the claim immediately
follows.6 Let f1, f2 ∈ C, k1,k2,o1,o2 ≥ 0 such that k1 ≥ o1 > 0,o2 > k2 ≥ 0, and a sufficiently small
ϵ > 0 such that (

f1 (k1 + o1)

f1 (o1)

) (o2−k2 )o1
k1o2−k2o1

(
f2 (k2 + o2)

f2 (o2)

) (k1−o1 )o2
k1o2−k2o1

> M + ϵ .

Let f ,д be two latency functions such that f (x ) := f1 (o1x ) and д(x ) := f2 (o2x ), and let k := k1/o1

and h := k2/o2 two positive real numbers; we observe that f ,д belong to C, since C is abscissa-
scaling and ordinate-scaling. Since

(
f1 (k1 + o1)

f1 (o1)

) (o2−k2 )o1
k1o2−k2o1

(
f2 (k2 + o2)

f2 (o2)

) (k1−o1 )o2
k1o2−k2o1

=

(
f (k + 1)

f (1)

) 1−h
k−h

(
д(h + 1)

д(1)

) k−1
k−h

,

we have that(
f (k + 1)

f (1)

) 1−h
k−h

(
д(h + 1)

д(1)

) k−1
k−h

> M + ϵ , for some f ,д ∈ C, k ≥ 1, and h < 1. (39)

Observe that f and д can be chosen in such a way that they are non-constant functions. Indeed,
if one function among f and д is constant, then it is sufficient replacing it with an arbitrary non-
constant function of C, so (39) holds as well (we recall that we have initially assumed without

6If all the latency functions of C are constant, then we can alternatively show that NPoA(C) = 1 without invoking The-
orem 3.1. Indeed, given a game in which all the latency functions are constant, the equilibrium strategy of each player
is to select the cheapest resource (whose cost does not depend on the players’ actions) within her strategy set, thus any
equilibrium is also an optimal strategy profile.
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loss of generality that C contains at least a non-constant latency function). Since C is unbounded-
including and f ,д are non-constant, we have that limx→∞ f (x ) = limx→∞ д(x ) = ∞.

First, we assume that h > 0. Given two integers m ≥ 3 and s ≥ 1, let LB(m, s ) be a
symmetric weighted load-balancing game where the resources are partitioned into 2m groups
R1,R2,R3 . . . ,R2m . Each group R j has s j−1 resources and the latency function of each resource

r ∈ R j is defined as �r (x ) := α j f̂j (βjx ) with

f̂j :=
⎧⎪⎨⎪⎩ f if j ≤ m − 1

д if j ≥ m
, βj :=

⎧⎪⎪⎨⎪⎪⎩
(

s
k

) j−1
if j ≤ m − 1(

s
h

) j−m (
s
k

)m−1
ifm ≤ j ≤ 2m

, (40)

α j :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(

f (k )
f (k+1)

) j−1
if j ≤ m − 1(

д (h)
д (h+1)

) j−m (
f (k )

д (h+1)

) (
f (k )

f (k+1)

)m−2
ifm ≤ j ≤ 2m − 1

д (h)
д (1)

(
д (h)

д (h+1)

)m−1 (
f (k )

д (h+1)

) (
f (k )

f (k+1)

)m−2
if j = 2m

. (41)

The set of players N is partitioned into 2m − 1 sets N1,N2, . . . ,N2m−1, and each group Nj has s j

players having weight w j := 1/βj+1. We observe that all the latency functions of LB(m, s ) belong
to C, as C is abscissa-scaling and ordinate-scaling.

Let σ be the strategy profile in which, for any j ∈ [2m− 1], each resource of group R j is selected
by exactly s players of group Nj (see Figure 2(a)). Observe that, by construction of α j , βj ,w j , the
following properties hold:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
α j f (k ) = α j+1 f (k + 1) if j ≤ m − 2

α j f (k ) = α j+1д(h + 1) if j =m − 1

α jд(h) = α j+1д(h + 1) ifm ≤ j ≤ 2m − 2

α jд(h) = α j+1д(1) if j = 2m − 1

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
βjw js = k, w j |Nj | = k j if j ≤ m − 1

βjw js = h, w j |Nj | = hj+1−mkm−1 ifm ≤ j ≤ 2m − 1

βj+1w j = 1 if j ≤ 2m − 1

. (42)

By exploiting (42) and the fact that limx→∞ f (x ) = limx→∞ д(x ) = ∞, one can show the following
lemma:

Lemma A.2. By taking a sufficiently large s , the strategy profile σ is a pure Nash equilibrium.

Proof. Let j ∈ [2m − 1], t ∈ [2m], and i be an arbitrary player selecting a resource r j of group
R j in the strategy profile σ , and assume that she deviates to a resource rt of group Rt . We have
three cases:

• t = j + 1: First, assume that j ≤ m − 2. By using (42), we get costi (σ ) = �r j
(kr j

(σ )) =

α j f̂j (βjsw j ) = α j f (k ) = α j+1 f (k + 1) = α j+1 f (βj+1sw j+1 + βj+1w j ) = α j+1 f̂j+1 (βj+1 (sw j+1 +

w j )) = �rh
(krh

(σ−i , {rt })) = costi (σ−i , {rt }). The cases j = m − 1, m ≤ j ≤ 2m − 2,
and j = 2m − 1 can be separately considered by exploiting (42), so one can analogously
show costi (σ ) = α j f̂j (βjsw j ) = α j+1 f̂j+1 (βj+1 (sw j+1 +w j )) = costi (σ−i , {rt }), where we set
w2m := 0.

• t ≤ j : From the previous case, we have that if one player is playing a resource at some level
l , and deviates to some resource at level l + 1, then her cost does not change. Thus, we
necessarily have that the cost of each resource in strategy profile σ is a non-increasing
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Fig. 2. The LB used in the proof of Theorem 3.3. Columns represent resources and squares represent players
(number j inside a square means that the player belongs to group Nj ). (a): a Nash equilibrium σ ; (b): the
strategy profile σ∗.

function of the level l ∈ [2m] that it belongs to. Thus, since t ≤ j, we necessarily have that
costi (σ ) ≤ costi (σ−i , {rt }).

• t > j + 1 : If we consider the asymptotic behavior of costi (σ ) and costi (σ−i , {rt }) with re-
spect to parameter s , then we get costi (σ ) = α j f̂j (βjsw j ) = α j f̂j (Θ(s j−1 · s · s−j )) = Θ(1),

thus costi (σ ) does not depend on s; furthermore, we get costi (σ−i , {rt }) ≥ α j f̂j (βtw j+1) =

α j f̂j (Θ(st−1s−j )) ≥ α j f̂j (Θ(s )), thus, since limx→∞ f̂ (x ) = ∞, we have that costi (σ−i , {rt })
can be arbitrarily large as s increases. We conclude that, by taking a sufficiently large s , we
get costi (σ ) ≤ costi (σ−i , {rt }) for any j and t > j + 1.7

The previous case-analysis shows that player i does not improve her cost after deviating in
favor of any resource rt at level t , for any t ∈ [2m], and thus that σ is a pure Nash equilibrium of
LB(m, s ). �

For any integerm ≥ 3, let sm be a sufficiently large integer such that (according to Lemma A.2)
σ is a pure Nash equilibrium of the game LB(m, sm ). Let σ ∗ be the strategy profile of LB(m, sm ) in
which, for any j ∈ [2m − 1], each resource of group R j+1 is selected by exactly one player of group

Nj (see Figure 2(b)). By exploiting the definitions of α j ,βj , f̂j , w j , and Nj , we have that:

NPoA(LB(m, sm ))

≥ NSW(σ )

NSW(σ ∗)

=
����
∏2m−1

j=1

(
α j f̂j

(
βjsmw j

)) |Nj |w j

∏2m
j=2

(
α j f̂j

(
βjw j−1

)) |Nj−1 |w j−1

����
1∑2m−1

j=1 |Nj |wj

=
�����

(∏m−1
j=1

(
α j f (k )

) |Nj |w j
) (∏2m−1

j=m

(
α jд (h)

) |Nj |w j
)

(∏m−1
j=2

(
α j f (1)

) |Nj−1 |w j−1
) (∏2m

j=m

(
α jд (1)

) |Nj−1 |w j−1
) �����

1∑2m−1
j=1 |Nj |wj

(43)

7We point out that the analysis of the case t > j + 1 (in Lemma A.2) is the unique part of the proof of Theorem 3.3 using
the hypothesis limx→∞ f (x ) = limx→∞ д (x ) = ∞. Furthermore, as we can observe from the proof, if s is not sufficiently
large, then σ is not guaranteed to be a pure Nash equilibrium. Then, if we had simplified the lower bounding instance
by setting s = 1 (thus obtaining the symmetric variant of the lower bounding instance provided in the proof sketch of
Section 3.1), then the resulting instance would have not worked for the symmetric case.
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=
�����
(∏m−1

j=1

(
α j f (k )

)k j ) (∏2m−1
j=m

(
α jд (h)

)h j+1−mkm−1 )
(∏m−1

j=2

(
α j f (1)

)k j−1 ) (∏2m
j=m

(
α jд (1)

)h j−mkm−1 )
�����

1∑2m−1
j=1 |Nj |wj

=
�����
(∏m−2

j=1

(
α j+1 f (k + 1)

)k j ) (∏2m−2
j=m−1

(
α j+1д (h + 1)

)h j+1−mkm−1 )
(α2mд (1))hmkm−1

(∏m−1
j=2

(
α j f (1)

)k j−1 ) (∏2m
j=m

(
α jд (1)

)h j−mkm−1 )
�����

1∑2m−1
j=1 |Nj |wj

(44)

=
�����
(∏m−2

j=1

(
α j+1 f (k + 1)

)k j ) (∏2m−2
j=m−1

(
α j+1д (h + 1)

)h j+1−mkm−1 )
(α2mд (1))hmkm−1

(∏m−2
j=1

(
α j+1 f (1)

)k j
) (∏2m−1

j=m−1

(
α j+1д (1)

)h j+1−mkm−1 )
�����

1∑2m−1
j=1 |Nj |wj

=
�����
(∏m−2

j=1

(
α j+1 f (k + 1)

)k j ) (∏2m−2
j=m−1

(
α j+1д (h + 1)

)h j+1−mkm−1 )
(∏m−2

j=1

(
α j+1 f (1)

)k j
) (∏2m−2

j=m−1

(
α j+1д (1)

)h j+1−mkm−1 )
�����

1∑m−2
j=1 k j +

∑2m−1
j=m−1 hj+1−m km−1

=
���
���

m−2∏
j=1

(
f (k + 1)

f (1)

)k j ���
���

2m−2∏
j=m−1

(
д(h + 1)

д(1)

)h j+1−mkm−1���
���

1∑m−2
j=1 k j+

∑2m−1
j=m−1 hj+1−m km−1

= ��
(
f (k + 1)

f (1)

)∑m−2
j=1 k j (

д(h + 1)

д(1)

)∑2m−2
j=m−1 h j+1−mkm−1��

1∑m−2
j=1 k j +

∑2m−1
j=m−1 hj+1−m km−1

, (45)

where (43) and (44) come from (42). We have two cases: k > 1 and k = 1. If k > 1, then by
continuing from (45) and by considering a sufficiently largem, we get

��
(
f (k + 1)

f (1)

)∑m−2
j=1 k j (

д(h + 1)

д(1)

)∑2m−2
j=m−1 h j+1−mkm−1��

1∑m−2
j=1 k j +

∑2m−1
j=m−1 hj+1−m km−1

=
���
(
f (k + 1)

f (1)

) km−1−k
k−1

(
д(h + 1)

д(1)

)km−1
(

1−hm

1−h

)���
1

km−1−k
k−1

+km−1
(

1−hm+1
1−h

)

=

(
f (k + 1)

f (1)

) km−1−k
k−1

km−1−k
k−1

+km−1
(

1−hm+1
1−h

) (
д(h + 1)

д(1)

) km−1
(

1−hm

1−h

)
km−1−k

k−1
+km−1

(
1−hm+1

1−h

)

=

(
f (k + 1)

f (1)

) 1−h
1−hm+1

1−h
1−hm+1 +km−1

(
k−1

km−1−k

) (
д(h + 1)

д(1)

) km−1
(

k−1
km−1−k

) (
1−hm

1−hm+1

)
1−h

1−hm+1 +km−1
(

k−1
km−1−k

)

≥ lim
m→∞

(
f (k + 1)

f (1)

) 1−h
1−hm+1

1−h
1−hm+1 +km−1

(
k−1

km−1−k

) (
д(h + 1)

д(1)

) km−1
(

k−1
km−1−k

) (
1−hm

1−hm+1

)
1−h

1−hm+1 +km−1
(

k−1
km−1−k

)
− ϵ (46)

=

(
f (k + 1)

f (1)

) 1−h
(1−h )+(k−1)

(
д(h + 1)

д(1)

) k−1
(1−h )+(k−1)

− ϵ (47)
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=

(
f (k + 1)

f (1)

) 1−h
k−h

(
д(h + 1)

д(1)

) k−1
k−h

− ϵ

>M + ϵ − ϵ (48)

=M, (49)

where (46) holds if m is sufficiently large, (47) comes from the fact that k > 1 and h < 1, and (48)
comes from (39).

If k = 1, then by continuing from (45), we get:

��
(
f (k + 1)

f (1)

)∑m−2
j=1 k j (

д(h + 1)

д(1)

)∑2m−2
j=m−1 h j+1−mkm−1��

1∑m−2
j=1 k j+

∑2m−1
j=m−1 hj+1−m km−1

=

(
f (k + 1)

f (1)

) m−2

m−2+ 1−hm+1
1−h

(
д(h + 1)

д(1)

) 1−hm

1−h

m−2+ 1−hm+1
1−h

≥ lim
m→∞

(
f (k + 1)

f (1)

) m−2

m−2+ 1−hm+1
1−h

(
д(h + 1)

д(1)

) 1−hm

1−h

m−2+ 1−hm+1
1−h − ϵ (50)

=

(
f (k + 1)

f (1)

)1 (
д(h + 1)

д(1)

)0

− ϵ

=

(
f (k + 1)

f (1)

) 1−h
k−h

(
д(h + 1)

д(1)

) k−1
k−h

− ϵ (51)

>M + ϵ − ϵ (52)

=M, (53)

where (50) holds if m is sufficiently large, (51) comes from the fact that k = 1 and h < 1, and (52)
comes from (39). By (49) and (53), we have that, for a sufficiently large m, NPoA(LB(m, sm )) ≥ M ,
thus showing part (ii) of the claim.

If h = 0, then we consider a load-balancing game defined as LB(m, sm ), but restricted to the
resources of groups R1, . . . ,Rm and to the players of groups N1, . . . ,Nm−1. By using the same
proof arguments as those used for h > 0, one can show the claim as well.

We now show part (i). Assume that C is abscissa-scaling and ordinate-scaling. Analogously to
the proof of part (ii), we have that (39) holds. Moreover, let LB′(m, s ) be a weighted load-balancing
game equal to game LB(m, s ) defined in the proof of part (ii), except for the strategy set of each
player: For any j ∈ [2m − 1], the strategy set of each player of group Nj is Σj := R j ∪ R j+1.

Let σ and σ ∗ be the strategy profiles defined as in game LB(m, s ). By considering the same proof
arguments of Lemma A.2, one can show that, for any j ∈ [2m − 1], each player of group Nj does
not reduce her cost when deviating unilaterally from σ to any resource r ∈ R j+1; we observe that
the analysis of these restricted deviations does not require that limx→∞ f (x ) = limx→∞ д(x ) = ∞,
differently from the symmetric instance of part (ii) in which all the deviations are possible. Thus,
σ is a pure Nash equilibrium of LB′(m, s ) for any s ≥ 1.

To conclude, if we take a sufficiently large m, an arbitrary s ≥ 1, and by applying to game
LB′(m, s ) the same inequalities as in (49) and (53), then part (i) of the claim follows.

We observe that, for s = 1, the obtained instance is equivalent to the load-balancing game LB(m)
analyzed in the sketch of the proof given in Section 3.1 to show part (i) of this theorem.
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A.3 Proof of Corollary 3.6

Let ϵ > 0. Let LB′(m) be the load-balancing game defined as the game LB′(m, s ) considered in the
proof of part (i) of Theorem 3.3 (last paragraph of Section A.2), with s = 2, k = 1, h = 0, and f ,д
defined as f (x ) = д(x ) = xp . One can easily observe that LB′(m) is a game with identical resources.
Furthermore, because of the proof of Theorem 3.3, there exists a sufficiently large integer m such
that NPoA(LB′(m)) > 2p − ϵ , and the claim follows by the arbitrariness of ϵ > 0.

A.4 Proof of Theorem 3.8 (Full Version)

To prove the theorem, we equivalently show that, for any M < ξ (C), there exists a game LB ∈
ULB(C) such that NPoA(LB) > M .

Fix an arbitrary M < ξ (C). Let f ∈ C, k ∈ N, o ∈ [k], and a sufficiently small ϵ > 0 such that

(
f (k + 1)

f (o)

) o
k

> M + ϵ . (54)

Given an integerm > 0, let LB(m) be an unweighted load-balancing game with (k −o + 1)m +o
resources, partitioned into m groups R1,R2, . . . ,Rm such that R j := {r j,0, r j,1, . . . , r j,k−o } for any
j ∈ [m − 1], and Rm := {rm,0, rm,1, . . . , rm,k }. Each resource r j,h has latency function �r j,h

(x ) :=
α j,h f (x ), with

α j,h :=
⎧⎪⎪⎨⎪⎪⎩
(

f (k )
f (k+1)

) j−1
if h = 0

f (k )
f (1)

(
f (k )

f (k+1)

) j−1
otherwise.

We have n :=mk players split intom groups N1,N2, . . . ,Nm of k players each. For j ∈ [m − 1], the
set of strategies Σj of players of group Nj is R j ∪ {r j+1,0}, and the set of strategies Σm of players in
Nm is Rm . We observe that all the latency functions of LB(m) belong to C, as C is ordinate scaling.

Let σ be the strategy profile such that, for any j ∈ [m], all k players of group Nj select resource
r j,0, so each resource r j,0 has congestion k , and all the remaining resources have null congestion
(see Figure 1(a)). We show thatσ is a pure Nash equilibrium. Given an arbitrary player i of groupNj

with j ∈ [m], such player has a cost equal to �r j,0 (k ) = α j,0 f (k ) = (
f (k )

f (k+1) ) j−1 f (k ) when playing
strategy σi . If j ∈ [m − 1], and player i unilaterally deviates to strategy r j+1,0, then her cost is

�r j+1,0 (k + 1) = α j+1,0 f (k + 1) = (
f (k )

f (k+1) ) j f (k + 1) = (
f (k )

f (k+1) ) j−1 f (k ) = �r j,0 (k ), thus her cost does
not improve. Analogously, if j ∈ [m], and player i unilaterally deviates to any strategy r j,h with

h � 0, then her cost is �r j,h
(1) = α j,h f (1) =

f (k )
f (1) (

f (k )
f (k+1) ) j−1 f (1) = �r j,0 (k ), thus her cost does not

improve as well. We conclude that σ is a pure Nash equilibrium.
Now, let σ ∗ be a strategy profile defined as follows: (i) for any j ∈ [m − 1], o players of group

Nj select resource r j+1,0, and each of the k − o remaining players of Nj selects a distinct resource
of R j \ {r j,0}, (ii) all the k players of group Nm select a distinct resource of Rm \ {rm,0}. Thus, in σ ∗,
any resource of type r j,0 with j > 1 has congestion o, resource r1,0 has null congestion, and the
remaining resources have unitary congestion (see Figure 1(b)).

By some algebraic manipulation, it holds that

NSW(σ )

NSW(σ ∗)

=
���

∏m
j=1 �j,0 (k )k

∏m−1
j=1

(
�r j+1,0 (o)o

∏
r ∈Rj \{r j,0 } �r (1)

) ∏
r ∈Rm\{rm,0 } �r (1)

���
1

km
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=

������
∏m

j=1

((
f (k )

f (k+1)

) j−1
f (k )

)k

∏m−1
j=1

[((
f (k )

f (k+1)

) j
f (o)

)o (
f (k )
f (1)

(
f (k )

f (k+1)

) j−1
f (1)

)k−o
] (

f (k )
f (1)

(
f (k )

f (k+1)

)m−1
f (1)

)k

������

1
km

=

������
∏m

j=1

((
f (k )

f (k+1)

) j
f (k + 1)

)k

∏m−1
j=1

[((
f (k )

f (k+1)

) j
f (o)

)o ((
f (k )

f (k+1)

) j
f (k + 1)

)k−o
] ((

f (k )
f (k+1)

)m
f (k + 1)

)k

������

1
km

=
�����

(∏m
j=1

(
f (k )

f (k+1)

)k j
)
f (k + 1)km

(∏m−1
j=1

(
f (k )

f (k+1)

)k j
)
f (o)o (m−1) f (k + 1) (k−o)(m−1)

(
f (k )

f (k+1)

)km
f (k + 1)k

�����
1

km

=

(
f (k + 1)km

f (o)o (m−1) f (k + 1) (k−o)(m−1) f (k + 1)k

) 1
km

=

(
f (k + 1)o (m−1)

f (o)o (m−1)

) 1
km

=

(
f (k + 1)

f (o)

) o (m−1)
km

. (55)

By using (54) and (55), and by choosing a sufficiently largem, we get

NPoA(LB(m)) ≥ NSW(σ )

NSW(σ ∗)
=

(
f (k + 1)

f (o)

) o (m−1)
km

≥ lim
m→∞

(
f (k + 1)

f (o)

) o (m−1)
km

− ϵ

=

(
f (k + 1)

f (o)

) o
k

− ϵ > M + ϵ − ϵ = M,

thus showing the claim.

A.5 Proof of Corollary 3.9

The claim follows from the following lemma:

Lemma A.3. ξ (P (p)) = 2p .

Proof. We have that

ξ (P (p)) = sup
f ∈P (p ),k ∈N,o∈[k]

(
f (k + 1)

f (o)

) o
k

= sup
α0,α1, ...,αp ≥0,k ∈N,o∈[k]

��
∑p

d=0 αd (k + 1)d

∑p

d=0 αdod
��

o
k

= sup
k ∈N,o∈[k]

(
max

d ∈[p]∪{0}

(k + 1)d

od

) o
k

= sup
k ∈N,o∈[k]

((
k + 1

o

)p ) o
k
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= �� sup
k ∈N,o∈[k]

(
k + 1

o

) o
k ��

p

= 2p , (56)

where (56) holds for the following reasons: First, we have that ( k+1
o

)
o
k = 2 if o = k = 1, thus

showing that 2 ≤ supk ∈N,o∈[k] (
k+1

o
)

o
k ; furthermore, by setting x := k/o, we obtain ( k+1

o
)

o
k =

(x + 1
o

)
1
x ≤ (x + 1)

1
x ≤ 2, where the last inequality is equivalent to the well-known inequality

2x ≥ x + 1, which holds for any x ≥ 1. �

A.6 Proof of Theorem 4.3

Let us assume that C is abscissa-scaling and ordinate-scaling. We equivalently show that for any
M < ζ (C) there exists an instance I ∈ WLB(C) such that NPoA(I) > M .

Let f1, f2 ∈ C, k1,k2,o1,o2 ≥ 0 such that k1 ≥ o1 > 0,o2 > k2 ≥ 0, and let ϵ > 0 be a sufficiently

small number such that (
f1 (k1+o1 )k1+o1

f1 (k1 )k1 f1 (o1 )o1
)

o2−k2
o2k1−o1k2 (

f2 (k2+o2 )k2+o2

f2 (k2 )k2 f2 (o2 )o2
)

k1−o1
o2k1−o1k2 > M + ϵ . Let f ,д ∈ C be

such that f (x ) := f1 (o1x ) and д(x ) := f2 (o2x ), and let k := k1/o1 and h := k2/o2 two positive real
numbers. Since

(
f1 (k1 + o1)k1+o1

f1 (k1)k1 f1 (o1)o1

) o2−k2
o2k1−o1k2

(
f2 (k2 + o2)k2+o2

f2 (k2)k2 f2 (o2)o2

) k1−o1
o2k1−o1k2

=

(
f (k + 1)k+1

f (k )k f (1)

) 1−h
k−h

(
д(h + 1)h+1

д(h)hд(1)

) k−1
k−h

,

we have that
(
f (k + 1)k+1

f (k )k f (1)

) 1−h
k−h

(
д(h + 1)h+1

д(h)hд(1)

) k−1
k−h

> M + ϵ , for some f ,д ∈ C, k ≥ 1, and h < 1. (57)

First, we assume thath > 0. Given an integerm ≥ 3, let I(m) be a load-balancing instance having
2m resources r1, r2, r3 . . . , r2m and 2m − 1 clients such that the set of strategies of each client j is
{r j , r j+1}. Each resource r j has a latency function defined as �j (x ) := α j f̂j (βjx ), and the weight of

each client j is defined as w j := 1/βj+1, where α j , f̂j , and βj are defined as follows:

f̂j :=
⎧⎪⎨⎪⎩ f if j ≤ m − 1

д if j ≥ m
, βj :=

⎧⎪⎪⎨⎪⎪⎩
(

1
k

) j−1
if j ≤ m − 1(

1
h

) j−m (
1
k

)m−1
ifm ≤ j ≤ 2m

, (58)

α j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
f (k )k+1

f (k+1)k+1

) j−1
if j ≤ m − 1(

д (h)h+1

д (h+1)h+1

) j−m (
f (k )д (h)h

д (h+1)h+1

) (
f (k )k+1

f (k+1)k+1

)m−2
ifm ≤ j ≤ 2m − 1

д (h)
д (1)

(
д (h)h+1

д (h+1)h+1

)m−1 (
f (k )д (h)h

д (h+1)h+1

) (
f (k )k+1

f (k+1)k+1

)m−2
if j = 2m

. (59)

We observe that all the latency functions of I(m) belong to C, as C is abscissa-scaling and ordinate-
scaling. By construction of α j , βj ,w j , the following properties hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α j f (k ) = α j+1
f (k+1)k+1

f (k )k if j ≤ m − 2

α j f (k ) = α j+1
д (h+1)h+1

д (h)h if j =m − 1

α jд(h) = α j+1
д (h+1)h+1

д (h)h ifm ≤ j ≤ 2m − 2

α jд(h) = α j+1д(1) if j = 2m − 1

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
βjw j = k, w j = k

j if j ≤ m − 1

βjw j = h, w j = h
j+1−mkm−1 ifm ≤ j ≤ 2m − 1

βj+1w j = 1 if j ≤ 2m − 1

.

(60)
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Let σ be the strategy profile in which each client j is assigned to resource r j . We show that
σ is a state that can be possibly returned by the greedy algorithm when clients are processed in

reverse order w.r.t. index j. We equivalently show that NSW(σ j )
NSW(σ j+1 )

≤ NSW(σ j+1,r j+1 )

NSW(σ j+1 )
for any j ≤ 2m−1,

where σ j denotes the partial assignment in which each client t ≥ j is assigned to resource rt , and
(σ j+1, r j+1) denotes the partial assignment in which each client t ≥ j + 1 is assigned to resource
rt and client j is assigned to resource r j+1. Let j ∈ [2m − 1]. First, assume that j ≤ m − 2. By using
(60), we get

NSW(σ j )

NSW(σ j+1)
= �r j

(kr j
(σ ))krj (σ )

=
(
α j f̂j

(
βjw j

))w j
= (α j f (k ))w j = ��α j+1

f (k + 1)k+1

f (k )k
��

w j

= α
w j

j+1

f (k + 1)kw j+w j

f (k )kw j
= α

w j

j+1

f (k + 1)w j+1+w j

f (k )w j+1
=

(
α j+1 f (k + 1)

)w j+1+w j

(
α j+1 f (k )

)w j+1

=

(
α j+1 f

(
βj+1 (w j+1 +w j )

))w j+1+w j

(
α j+1 f (βj+1w j+1)

)w j+1
=

(
α j+1 f̂j+1

(
βj+1 (w j+1 +w j )

))w j+1+w j

(
α j+1 f̂j+1 (βj+1w j+1)

)w j+1

=
�r j+1 (kr j+1 (σ j+1, r j+1))krj+1 (σ j+1,r j+1 )

�r j+1 (kr j+1 (σ j+1))krj+1 (σ j+1 )
=

NSW(σ j+1, r j+1)

NSW(σ j+1)
.

The cases j = m − 1, m ≤ j ≤ 2m − 2, and j = 2m − 1 can be separately considered by exploiting
(60), so one can analogously get

NSW(σ j )

NSW(σ j+1)
=

(
α j f̂j

(
βjw j

))w j
=

(
α j+1 f̂j+1

(
βj+1 (w j+1 +w j )

))w j+1+w j

(
α j+1 f̂j+1 (βj+1w j+1)

)w j+1
=

NSW(σ j+1, r j+1)

NSW(σ j+1)
, (61)

where we set (α2m f̂2m (β2mw2m ))w2m := 1 andw2m := 0. Now, let σ ∗ be the strategy profile of I(m)
in which each client j ∈ [m − 1] is assigned to resource r j+1. By exploiting the definitions of α j ,βj ,

f̂j , and w j , and by considering a sufficiently largem, we have that:

NPoA(I(m))

≥ NSW(σ )

NSW(σ ∗)

=
���

∏2m−1
j=1

(
α j f̂j

(
βjw j

))w j

∏2m
j=2

(
α j f̂j

(
βjw j−1

))w j−1

���
1∑2m−1

j=1 wj

=

������
∏2m−1

j=1

( (
α j+1 f̂j+1 (βj+1 (w j+1+w j ))

)wj+1+wj

(
α j+1 f̂j+1 (βj+1w j+1 )

)wj+1

)

∏2m
j=2

(
α j f̂j

(
βjw j−1

))w j−1

������

1∑2m−1
j=1 wj

(62)

=

������
∏2m−1

j=1

( (
α j+1 f̂j+1 (βj+1 (w j+1+w j ))

)wj+1+wj

(
α j+1 f̂j+1 (βj+1w j+1 )

)wj+1

)

∏2m−1
j=1

(
α j+1 f̂j+1

(
βj+1w j

))w j

������

1∑2m−1
j=1 wj
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=
���

2m−1∏
j=1

���
(
α j+1 f̂j+1

(
βj+1 (w j+1 +w j )

))w j+1+w j

(
α j+1 f̂j+1 (βj+1w j+1)

)w j+1
(
α j+1 f̂j+1

(
βj+1w j

))w j

���
���

1∑2m−1
j=1 wj

=
���

m−2∏
j=1

�� f (k + 1)k j+1+k j

f (k )k j+1 f (1)k j
��

2m−2∏
j=m−1

��д(h + 1)h j+2−mkm−1+h j+1−mkm−1

д(h)h j+2−mkm−1д(1)h j+1−mkm−1
�����

1∑m−2
j=1 k j +

∑2m−1
j=m−1 hj+1−m km−1

=
���

m−2∏
j=1

(
f (k + 1)k+1

f (k )k f (1)

)k j 2m−2∏
j=m−1

(
д(h + 1)h+1

д(h)hд(1)

)h j+1−mkm−1���
1∑m−2

j=1 k j+
∑2m−1

j=m−1 hj+1−m km−1

≥
(
f (k + 1)k+1

f (k )k f (1)

) 1−h
k−h

(
д(h + 1)h+1

д(h)hд(1)

) k−1
k−h

− ϵ (63)

>M + ϵ − ϵ (64)

=M, (65)

where (62) comes from (61), (63) can be shown by using similar arguments as in the proof of
Theorem 3.3 (see steps (47) and (51)), and (64) comes from (57). By (65), the claim follows.

If h = 0, then we consider a load-balancing instance defined as I(m), but restricted to resources
r1, r2, . . . , rm and to players in [m− 1]. By using the same proof arguments as those used for h > 0,
one can show the claim as well.

A.7 Proof of Corollary 4.4

The proof follows from the following lemma:

Lemma A.4. ζ (P (p)) = 4p .

Proof. We have that

ζ (P (p)) (66)

= sup
k1≥o1>0,o2>k2≥0,f1,f2∈C

(
f1 (k1 + o1)k1+o1

f1 (k1)k1 f1 (o1)o1

) o2−k2
o2k1−o1k2

(
f2 (k2 + o2)k2+o2

f2 (k2)k2 f2 (o2)o2

) k1−o1
o2k1−o1k2

= sup
k1≥o1>0,
o2>k2≥0,

α0, ...,αp ≥0,
β0, ...,βp ≥0

����
(∑p

d=0 αd (k1 + o1)d
)k1+o1

(∑p

d=0 αdk
d
1

)k1
(∑p

d=0 αdo
d
1

)o1

����
o2−k2

o2k1−o1k2 ����
(∑p

d=0 βd (k2 + o2)d
)k2+o2

(∑p

d=0 βdk
d
2

)k2
(∑p

d=0 βdo
d
2

)o2

����
k1−o1

o2k1−o1k2

= sup
k1≥o1>0,o2>k2≥0,

α0, ...,αp,β0, ...,βp ≥0

�����
∑p

d=0 αd (k1 + o1)d

∑p

d=0 αdk
d
1

��
k1 ��

∑p

d=0 αd (k1 + o1)d

∑p

d=0 αdo
d
1

��
o1���

o2−k2
o2k1−o1k2

· �����
∑p

d=0 βd (k2 + o2)d

∑p

d=0 βdk
d
2

��
k2 ��

∑p

d=0 βd (k2 + o2)d

∑p

d=0 βdo
d
2

��
o2���

k1−o1
o2k1−o1k2

= sup
k1≥o1>0,o2>k2≥0

����� max
d ∈[p]∪{0}

(k1 + o1)d

kd
1

��
k1 �� max

d ∈[p]∪{0}

(k1 + o1)d

od
1

��
o1���

o2−k2
o2k1−o1k2
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· ����� max
d ∈[p]∪{0}

(k2 + o2)d

kd
2

��
k2 �� max

d ∈[p]∪{0}

(k2 + o2)d

od
2

��
o2���

k1−o1
o2k1−o1k2

= sup
k1≥o1>0,
o2>k2≥0

�����
(k1 + o1)p

k
p
1

��
k1 �� (k1 + o1)p

o
p
1

��
o1���

o2−k2
o2k1−o1k2 �����

(k2 + o2)p

k
p
2

��
k2 �� (k2 + o2)p

o
p
2

��
o2���

k1−o1
o2k1−o1k2

= sup
k≥1,0≤h<1

���
(

(k + 1)k+1

kk

) 1−h
k−h

(
(h + 1)h+1

hh

) k−1
k−h ���

p

, (67)

where (67) can be obtained by setting k := k1/o1 and h := k2/o2 (k and h are two non-negative real

numbers). Now, we show that the maximum value of function F (k,h) := ( (k+1)k+1

kk )
1−h
k−h ( (h+1)h+1

hh )
k−1
k−h

over k ≥ 1 and 0 ≤ h < 1 is equal to 4. Observe that ln(F (k,h)) = 1−h
k−h

((k + 1) ln(k + 1) −
k ln(k )) + k−1

k−h
((h + 1) ln(h + 1) −h ln(h)) ≤ ( 1−h

k−h
(k + 1) + k−1

k−h
(h + 1)) ln( 1−h

k−h
(k + 1) + k−1

k−h
(h + 1)),

where the second last inequality holds because of the concavity of the functionд defined asд(x ) :=
(x + 1) ln(x + 1) − x ln(x ) and since ln(F (k,h)) is defined as convex combination of д(k ) and д(h).
Thus, we get

F (k,h) ≤
(

1 − h
k − h (k + 1) +

k − 1

k − h (h + 1)

) 1−h
k−h

(k+1)+ k−1
k−h

(h+1)

=

(
(k − h) + (k − h)

k − h

) (k−h )+(k−h )
k−h

= 22 = 4. (68)

Finally, since F (k,h) = 4 for k = 1 and h = 0, and because of (68), we have that the maximum of
F (k,h) over k ≥ 1 and 0 ≤ h < 1 is 4. Thus, we get that (67) is at most 4p . �

A.8 Proof of Theorem 4.5 (Last Part)

To complete the proof of Theorem 4.5, it is sufficient showing that, for any ϵ > 0, there exists a
sufficiently largem ≥ 1 such that CRA (I(m)) ≥ 4p − ϵ .

Given an arbitrary integer m ≥ 1, let σ and σ ∗ be the states of I(m) in which each client is
assigned to her first and second resource, respectively. We have that σ is a state that can be re-
turned by any online algorithm if clients are processed according to the following partial ordering:
(i) given two clients i1 and i2 having their first resource in sub-instances of type I(m1) and I(m2),
respectively, if m1 < m2, then client i1 is processed before client i2; (ii) the clients defined in the
same sub-instance are processed in increasing order with respect to their weights. This fact is true,
since each time the greedy algorithm processes some client i according to the partial ordering
defined above, the congestions of the first and the second resource of that client are equal. Thus,
since the latency functions are equal too, any online algorithm cannot distinguish between the
two resources selectable by each client, and by symmetry, both choices can potentially lead to the
same worst-case competitive ratio.

We have the following fact:

Fact 2. Given two integers m ≥ 1 and i ∈ [m − 1] ∪ {0} such that j ≥ i , the number N (m, i ) of

sub-instances of I(m) equivalent to I(j ) for some j ≥ i is N (m, i ) = 2m−i .

Proof. We show the claim by induction on h(i ) := m − i ≥ 0. If h(i ) = 0, then the unique sub-
instance equivalent to I(j ) for some j ≥ i is the entire instance I(m), thusN (m, i ) = 1 = 2h (i ) = 2m−i

and the base step holds. Now, assume that the claim holds for any h(i ) ≥ 0. Observe that we can
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associate in a one-to-one correspondence each sub-instance that is equivalent to I(j ) for some j ≥ i ,
with a sub-instance equivalent to I(i − 1), that is N (m, i ) = N (m, i − 1) − N (m, i ) ⇒ N (m, i − 1) =
2N (m, i ). Thus, we have that N (m, i−1) = 2N (m, i ) = 2 ·2h (i ) = 2m−i+1 = 2h (i )+1, and the inductive
step holds. �

Let N (m, i ) be defined as in Fact 2 and let R (i ) be the set of fundamental resources for sub-
instances of type I(i ). Observe that, for any i ∈ [m] and resource r such that i clients select r as
first resource, r is the fundamental resource of a sub-instance of type I(i ), i.e., r ∈ R (i ). Thus, by
exploiting Fact 2, we get

NSW(σ ) = ���
∏

i ∈[m]

∏
r ∈R (i )

�(kr (σ ))kr (σ )���
1∑

r ∈R kr (σ )

=
����
∏

i ∈[m]

�
���

i∑
j=1

w j
���
(∑i

j=1 w j

)
|R (i ) |����

1∑
i∈[m]

(∑i
j=1 wj

)
|R (i ) |

=
����
∏

i ∈[m]

�
���

i∑
j=1

2j−1���
(∑i

j=1 2j−1
)
(N (m,i )−N (m,i+1))����

1∑
i∈[m]

(∑i
j=1 2j−1

)
(N (m,i )−N (m,i+1))

=
���
∏

i ∈[m]

(
2i − 1

)p (2i−1)2m−i−1���
1∑

i∈[m] (2i −1)2m−i−1

(69)

and

NSW(σ ∗) = ���
∏

i ∈[m]

∏
r ∈R (i )

∏
j ∈[i]

�(kr (j ) (σ
∗))kr (j ) (σ ∗ )���

1∑
r ∈R kr (σ )

=
���
∏

i ∈[m]

∏
j ∈[i]

�
(
w j

)w j (N (m,i )−N (m,i+1))���
1∑

i∈[m] (2i −1)2m−i−1

=
���
∏

i ∈[m]

∏
j ∈[i]

(
2j−1

)p2j−12m−i−1���
1∑

i∈[m] (2i −1)2m−i−1

=
���
∏

i ∈[m]

2p
(∑i−1

j=0 j2j
)
2m−i−1���

1∑
i∈[m] (2i −1)2m−i−1

=
���
∏

i ∈[m]

2p (i2i−2(2i−1))2m−i−1���
1∑

i∈[m] (2i −1)2m−i−1

. (70)

Let ϵ > 0. By (69) and (70), and by taking a sufficiently large integerm > 1, we get

CRA (I(m)) ≥ NSW(σ )

NSW(σ ∗)
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=
����
∏

i ∈[m]

(
2i − 1

)p (2i−1)2m−i−1

∏
i ∈[m] 2p (i2i−2(2i−1))2m−i−1

����
1∑

i∈[m] (2i −1)2m−i−1

=
����
∏

i ∈[m]

(
2i − 1

)p (2i−1)2−i−1

∏
i ∈[m] 2p (i2i−2(2i−1))2−i−1

����
1∑

i∈[m] (2i −1)2−i−1

=
����

∏
i ∈[m]

(
2i

)p (2i−1)2−i−1

∏
i ∈[m] 2p (i2i−2(2i−1))2−i−1

����
1∑

i∈[m] (2i −1)2−i−1 ∏
i ∈[m]

(
2i − 1

2i

) p (2i −1)2−i−1

∑
i∈[m] (2i −1)2−i−1

=
(
2p )

∑
i∈[m] (−i2−i−1+1−2−i )∑

i∈[m] (1/2−2−i−1 )
∏

i ∈[m]

(
2i − 1

2i

) p (1/2−2−i−1)∑
i∈[m] (1/2−2−i−1 )

. (71)

We have the following fact:

Fact 3.

lim
m→∞

∏
i ∈[m]

(
2i − 1

2i

) p (1/2−2−i−1)∑
i∈[m] (1/2−2−i−1 )

= 1.

Proof. Set αi := p ln( 2i−1
2i ) and βi := (1/2 − 2−i−1). We will equivalently show that

limm→∞
∑m

i=1 αi βi∑m
i=1 βi

= 0, since, by exponentiating this equality, we get the claim. Set am :=
∑m

i=1 αiβi

and bm :=
∑m

i=1 βi . We have that sequence (bm )m≥1 is positive, increasing, and unbounded. Thus,
by the Stolz-Cesaro Theorem, we have that limm→∞

am

bm
= limm→∞

am+1−am

bm+1−bm
. We conclude that

limm→∞
∑m

i=1 αi βi∑m
i=1 βi

= limm→∞
am

bm
= limm→∞

am+1−am

bm+1−bm
= limm→∞

αm βm

βm
= limm→∞ p ln( 2m−1

2m ) = 0,

and the claim follows. �

By continuing from (71), we get

=
(
2p )

∑
i∈[m] (−i2−i−1+1−2−i )∑

i∈[m] (1/2−2−i−1 )
∏

i ∈[m]

(
2i − 1

2i

) p (1/2−2−i−1)∑
i∈[m] (1/2−2−i−1 )

≥ lim
m→∞

(
2p )

∑
i∈[m] (−i2−i−1+1−2−i )∑

i∈[m] (1/2−2−i−1 )
∏

i ∈[m]

(
2i − 1

2i

) p (1/2−2−i−1)∑
i∈[m] (1/2−2−i−1 )

− ϵ

= lim
m→∞

(
2p )

∑
i∈[m] (−i2−i−1+1−2−i )∑

i∈[m] (1/2−2−i−1 ) − ϵ (72)

= lim
m→∞

(
2p ) 2−m−1m+m+21−m−2

1/2(m+2−m−1) − ϵ

=
(
2p ) (

limm→∞
2−m−1m+m+21−m−2

1/2(m+2−m−1)

)
− ϵ

=
(
2p ) (

limm→∞
m

1/2(m )

)
− ϵ

=
(
2p )2 − ϵ

= 4p − ϵ,
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where (72) comes from Fact 3. We conclude that there exists a sufficiently large m ≥ 1 such that
CRA (I) ≥ 4p − ϵ , thus the claim follows.
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