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Abstract: Extra virgin olive oil is a food product from the Mediterranean area that is particularly and
continuously experiencing to increasing instances of fraudulent geographical labeling. Therefore,
origin protection must be improved, mainly based on its intrinsic chemical composition. This
study aimed to perform a preliminary chemical characterization of Abruzzo extra virgin olive oils
(EVOOs) using rare earth elements (REEs). REEs were evaluated in EVOO samples of different
varieties produced in different geographical origins within the Abruzzo region (Italy) in three harvest
years using ICP-MS chemometric techniques. Principal component, discriminant, and hierarchical
cluster analyses were conducted to verify the influence of the variety, origin, and vintage of the REE
composition. The results of a three-year study showed a uniform REE pattern and a strong correlation
in most EVOOs, in particular for Y, La, Ce, and Nd. However, europium and erbium were also found
in some oil samples. Compared with cultivar and origin, only the harvest year slightly influenced the
REE composition, highlighting the interactions of the olive system with the climate and soil chemistry
that could affect the multielement composition of EVOOs.

Keywords: extra virgin olive oil; ICP-MS; rare earth element; lanthanides; chemometric techniques

1. Introduction

Extra virgin olive oil (EVOO) is an important agricultural product. Its consumption is
common in everyday cooking [1,2]. It represents the main fat source of the “Mediterranean
diet”, providing a special aroma and taste due to the contribution of its phytochemical com-
pounds [3]. Its high contents of monounsaturated fatty acid and antioxidant compounds
has beneficial health effects [4–6] in preventing coronary diseases, cancer types, diabetes,
and autoimmune illness [7–9]. Worldwide, olive oil production was estimated as almost
3 million tons for the period from 2021 to 2022, with about 2 million tons produced in
Europe (Spain, 1400 t; Italy, 329 t; Greece, 232 t; and Portugal, 206 t) and about 1 million
tons in non-European countries (Tunisia, 240 t; Turkey, 235 t; Morocco, 200 t; Algeria, 91 t;
Egypt, 20 t; and Argentina, 3 t) [10].

The Abruzzo region produces the fifth largest EVOO volume in Italy, at about 144,000 tons
in 2021 [11]. Owing to local varieties and the specific pedoclimatic conditions in the Abruzzo
region, it is possible to cultivate olive trees over the entire territory, starting from the sea to
the foothills of Majella and the Gran Sasso mountains located 600–700 m above sea level [12].
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Fifty percent of the annual regional EVOO production is concentrated in the Chieti district,
and the Pescara province produces thirty percent. The rest of the production is distributed
in Teramo and L’Aquila districts, with 16 and 4%, respectively. The EVOO produced in
the country is appreciated all over the world as a very-high-quality product [13], and, for
this reason, tracing the origin of EVOO to control product authenticity or adulteration
is fundamental [14–18]. In fact, the adulteration of EVOO with other vegetable oils is
relatively easy to recognize. Conversely, it is difficult to check extra virgin oils produced
from foreign countries or those using imported olives and sold as local products, because
the overall composition of the final product can be almost totally similar to that of local
ones [19].

Here, the focus is not only on food safety and quality control but also on the assess-
ment of the authenticity of the declared geographical origin. Indeed, frauds can have a
significant impact on customer health, confidence in the product, and, consequently, e final
consumption behavior, causing significant economic losses [20,21]. For these reasons, EC
Regulation 1151/2012 provides rules on marketing standards for olive oil and states the
mandatory nature of origin labeling [22]. It introduces discrimination based on geograph-
ical indicators, highlighting that the characteristics of the product are also related to the
geographical origin [23]. The Protected Designation of Origin (PDO) label on olive oil
has become a motivating choice criterion for customers, since olive oil quality and flavor
are linked to the origin of the olives, and they are associated with specific production
practices [24,25].

Even though a method for certifying EVOOs’ geographical origin has not yet been
established in the scientific literature, the discrimination of olive oil production on a ge-
ographic basis, also called geographical authentication, is becoming an important trend
in scientific research, with different analytical chemistry approaches being applied, in-
cluding elemental/isotopic, nuclear magnetic resonance (NMR), mass spectroscopy (MS),
and energy-dispersive X-ray fluorescence (XRF), as well as organic analytical methods
and organoleptic evaluation [22,26–28]. The organic analytical methods are based on the
determination of fatty acids and triacylglycerols [29], but minor metabolites such as phe-
nols [30], aliphatic and terpene alcohols, sesquiterpene hydrocarbons [31], sterols [32,33],
and pigments are also considered. The isotopic profile analysis method is mostly based
on the detection of stable isotope (H, C, and O) ratios, since the isotopic fractionation is
correlated with geographical and climatic parameters [33,34]. The isotopic composition of
strontium (Sr) is also useful, since it reflects local soil and geology [35–37],and, in particular,
the geogenic soil formation that overlies the geological substrate [38,39].

Alternatively, authentication can be realized by evaluating the mineral composition
of olive oils, which gives information regarding the biological demand of the plant, the
bioavailability and mobility of mineral compounds from the soil, and the influence of
agronomic practices such as the use of fertilizers and pesticides. Since olive trees of the
same cultivar, characterized by the same genetics but planted in different countries, produce
different oils, the analysis of their elemental profiles reflects the effect of their interaction
with pedoclimatic conditions and agricultural practices [40–42]. For this reason, to achieve
precise authentication, it is necessary to identify elements acting as natural markers that
are not influenced by secondary sources such as farming practices and anthropic sources
and are suitable for the determination of the origin of EVOO [26,43].

Trace elements concentration in the Earth’s crust do not exceed 1 g/kg, while, in
olive oil, their concentrations, except for Ca, do not exceed a few hundred micrograms
per kilogram (µg/kg) [27]. The concentrations in olive oil may differ according to several
parameters such as olive cultivar [44], irrigation of olive trees [45], use of fertilizers [46],
fluctuation in annual climatic parameters [47], and the positive fractionation that occurs
during the active absorption from the soil and the translocation to the fruits [19]. For
these reasons, no consensus has been reached with regard to a direct and clear correlation
between their concentration in the soil and in the related olive oils [19,47–49].
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Ultra-trace elements, also called rare earth elements (REEs), show wide soil concen-
tration variability around the world, ranging from 0.1 to 700 mg kg−1 [50,51]. Conversely,
several authors have found REE concentrations in olive oils as ranging from 0.002 to
7 ng g−1 [52]. Ultra-trace elements are not essential for the growth and development of
olive tree and are passively absorbed without active fractionation. Therefore, the REE
composition can provide a representative fingerprint of the olive oil since REEs more
proportionally reflect their less-abundant concentrations in soils. Conversely, fractiona-
tion from the original distribution in soil occurs when a certain element is assumed in a
preferential way because it is a nutrient, or it is excluded from absorption because it is
toxic [19,26,36,41,53–57].

For these reasons, REEs are suitable for discriminating foodstuffs on a geographic
basis, acting as geochemical markers as well [58], while major, minor, and trace elements are
useful in authentication schemes based on varietal or technological discrimination [19,26].
Joebstl and coauthors used REEs to identify the geographical origin of pumpkin seed
oil [59] and, lately, some studies deepened the understanding of the relationship among
the production chain and EVOO characteristics [19,57]. Barbera et al. confirmed that
the relationship between the soil and olive fruits depends exclusively on the soil REE
composition [56] and identified an excellent marker to identify the geographical fingerprint
of EVOOs [57].

REEs include ultra-trace elements (yttrium) and lanthanides with an atomic number
ranging from 57 and 71, such as La (lanthanum), Ce (cerium), Pr (praseodymium), Nd
(neodymium), Pm (promethium), Sm (samarium), Eu (europium), Gd (gadolinium), Tb
(terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium),
and lutetium (Lu). Ordering elements by increasing atomic number, the REEs from La
to Gd are considered light rare earth elements (LREEs), with more basic behavior and
higher solubility, whereas the REEs from Tb to Lu are considered heavy rare earth elements
(HREEs), with more acid behavior and lower solubility [51,60,61]. Additionally, middle
rare earth elements (MREEs), which overlap the two groups, include Sm (samarium) and
Eu (europium). Typically, in soils, the LREE concentrations are generally greater than the
HREE concentrations [51].

Based on the previous assumptions, the aim of this study was to evaluate, for the
first time, the REE contents of EVOOs from the Abruzzo region, mainly from Chieti and
Pescara provinces, which produce 80% of the total EVOO in the region. In particular,
29 EVOOs produced during three harvest years (2019, 2020, and 2021) were fingerprinted
with inductively coupled plasma mass spectrometry (ICP-MS). The dataset was analyzed
using chemometric tools, in particular, using principal component analysis (PCA), linear
discriminant analysis (LDA), and hierarchical clustering analysis (HCA), with the aim of
discriminating between olive oil groups.

2. Materials and Methods
2.1. Area Sampled, Local Geology, and Sample Collection

Olive harvest and EVOO extraction were conducted during the 2019, 2020, and
2021 harvesting years. The locations of the olive orchards where the drupes were col-
lected are reported in Figure 1, which shows a simplified geological map of the Abruzzo
region and its position in the coastal Adriatic region (i.e., the outer (eastern) portion of the
Apennines orogenic belt (geological map of Italy: 1:50,000 scale, 361 sheets). In this region,
carbonate rocks in the mountain range are exposed and sandstones alternate with marls in
the adjacent low-lying mountain-foot domains. The soils of the Adriatic coastal region have
developed above a common sedimentary substrate made by clayey–sandy–conglomerate
shallow marine deposits of the Mutignano Formation (Late Pliocene–Lower Pleistocene).
Locally, the soil is featured by silty–clayey eluvial–colluvial, alluvial, and slope Quaternary
continental deposits. All the investigated olive orchards, therefore, were located on soils
that had pedogenized the areas of the Mutignano Formation (FMT), with the exception of
the Alanno site, which, however, developed on lithologies very similar to those of the FMT.
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Figure 1. (a) Simplified geological map showing the different lithologies characterizing the Abruzzo
region (modified from a geological map of Italy on a 1:50,000 scale, sheets: 361; www.isprambiente.
gov.it/Media/carg/note_illustrative/361_Chieti.pdf, accessed on 09 October 2023), processed using
Q-GIS tools and overlaid on a 3D topographic digital elevation model of Italy with a 10 m cell size [62].
Green diamonds indicate the localization of the analyzed olive orchards: LA, Loreto Aprutino; Pi,
Pianella; Al, Alanno; Ca, Casoli; Sc, Scerni; Va, Vasto. (b) Location of Abruzzo region in Italy.

Olives were mechanically harvested in October from nonexperimental orchards, from
20 plants for each cultivar. Olive fruits were at a medium level of ripening, which is
specific for each variety and defined by each producer. EVOOs were extracted within
12–24 h of harvest in an olive mill located in the same municipality as the olive orchard,
with industrial, three-phase, continuous extraction systems. Oils were collected during
the extraction, packaged in dark 750 mL glass bottles, and stored in dark conditions at
about 18 ◦C until analysis. Oil samples were coded with alphanumeric codes based on the
harvest year (Table 1); “A”, “B”, and “C” corresponded to 2019, 2020, and 2021, respectively.
The trees and industrial olive mills were the same during the three years of the research.
Information about the geographical location of the orchards, sample coding, and cultivars
are presented in Table 1.

2.2. Olive Oil Preparation

Prior to inductively coupled plasma mass spectrometry (ICP-MS) analysis, the or-
ganic matter contained in the olive oils was destroyed via mineralization. The EVOO
mineralization was carried out based on the EN 13805:2014 protocol adopted by the Is-
tituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale” (Teramo,
Italy). Briefly, a microwave digestion system, Milestone ultraWAVE ECR (Sorisole, Italy),
equipped with temperature and pressure control was used to digest samples. About 300 mg
of each EVOO sample was weighed directly into disposable glass vessels. The vessels
were then filled with 4 mL of HNO3 (60%) for trace analysis (Merck KGaA, Darmstadt,
Germany) and prepared for digestion. Each digestion cycle was programmed according to
the protocol: step 1—ramp to temperature 230 ◦C and pressure 150 bar in 25 min, at 1500 W
power; step 2—the same conditions maintained for 10 min; step 3—cooling cycle. Each
sample resulting from acid digestion was then diluted to 15 mL with high-purity water
(18.2 MΩ cm−1 resistivity) obtained from an ELGA LabWater PURELAB Option-Q water
purification system (High Wycombe, UK).

www.isprambiente.gov.it/Media/carg/note_illustrative/361_Chieti.pdf
www.isprambiente.gov.it/Media/carg/note_illustrative/361_Chieti.pdf
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Table 1. Olive oil samples: geographical location, sample coding, and cultivars.

Abruzzo Province Geographical Location
(Number of Samples) Sample Code Cultivar

Pescara
(n = 18)

Loreto Aprutino
(n = 2) B2, C6 Frantoio

Pianella
(n = 2) B10, C11 Leccino

Pianella
(n = 2) A7, C7 Arbequina

Pianella
(n = 1) A8 Arbosana

Pianella
(n = 1) A3 Koroneiki

Pianella
(n = 2) A5, C10 Dritta

Alanno
(n = 1) A6 FS17

Alanno
(n = 1) A9 Don Carlo

Loreto Aprutino
(n = 1) B1 Dritta

Pianella
(n = 1) B7 Arbequina

Pianella
(n = 1) B8 Peranzana

Pianella
(n = 1) B9 Koroneiki

Pianella
(n = 1) B6 Arbosana

Pianella
(n = 1) C12 Frantoio

Chieti
(n = 11)

Vasto
(n = 3) A4, B3, C13 Frantene

Vasto
(n = 2) A2, B5 Lecciana

Scerni
(n = 2) B12, C5 Lecciana

Scerni
(n = 2) B13, C4 Koroneiki

Casoli
(n = 1) A1 Arbequina

Scerni
(n = 1) B11 Oliana

Prefixes “A”, “B”, and “C” in the sample code correspond to 2019, 2020, and 2021, respectively. Numbers of
samples are reported in brackets (n).

2.3. ICP-MS Analysis

Digested samples (2 mL) were diluted to 5 mL with ultra-pure water (18 MΩ cm−1)
and subjected to analysis via ICP-MS for major (Na, Mg, K), trace (Ca, Mn, Fe, Zn, Rb, Sr,
Ba), ultra-trace (Al, Ga, V, Cr, Pb), and rare earth elements.

The instrument used was an Agilent 7900 ICP-MS (Agilent Technologies, Tokyo, Japan),
which was used in the Laboratory of Newborn Screening, Proteomics and Endocrinology
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of CAST, University of Chieti. Detailed operating conditions and instrumental parameters
are given in Table S1. The 4th-generation Octopole Reaction System (ORS) was used to
measure, at the same time, some elements (Na, Mg, K, Ca, Fe, Zn, Rb, Al, Ga, Cr, Pb) in
helium (He) mode to reduce spectral interference and noise effects; other elements (V, Mn,
Sr, Ba, and REE) were measured in no-gas mode due to the lack of interference [63].

The optimization of ICP-MS was carried out to obtain the maximum signal intensities
for 7Li, 89Y, 140Ce, and 205Tl using a 1 µg L−1 tuning solution containing Li, Y, Co, Ce,
Mg, and Tl (Agilent Technologies, Palo Alto, CA, USA), while keeping the formation of
oxides 140 CeO+/140Ce+ and doubly charged species Ce2+/Ce+ ratios below 1% and 2%,
respectively. The sample-introduction system was washed between analyses with 2%
HNO3. Two multielement mixtures at 10 µg mL−1 were used in acid solution: (A) Ag, Ba,
Be, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, V, and Zn in 5% HNO3; (B) Ce, Dy, Er,
Eu, Ga, Gd, Ho, In, La, Lu, Nb, Nd, Pr, Sm, Th, Tb, Tm, Y, and Yb in 5% HNO3. These
mixtures were employed to prepare diluted calibration solutions daily, and three calibration
curves were prepared using these multielement mixtures. An internal standard correction
was performed via the online addition of an internal standard solution of Rh (20 µg L−1) in
a T piece. Ultra-pure water (18 MΩ cm−1) was obtained from a Milli-Q system (Millipore,
Bedford, MA, USA). Nitric acid (69% v/v) and an internal standard solution of Rh were
bought from Merk (Darmstadt, Germany) and were ultrapure-grade. Duplicate analysis
was performed for each sample. The full data were recorded with Agilent MassHunter Data
Acquisition software (version 4.2) and processed with Agilent MassHunter Data Analysis
software (version 4.2).

The limit of detection (LOD) and limit of quantification (LOQ) were calculated for the
REEs by analyzing ten experimental blanks. The LOD and LOQ were initially calculated as
signals by employing Equations (1) and (2), respectively:

yLOD = yb + 2tsb (1)

yLOD = yb + 10sb (2)

where t is the constant from a one-sided Student’s t-test at the 95% confidence level for
n − 1 degrees of freedom, yb is the average blank signal, and sb is the corresponding
standard deviation. The corresponding LOD and LOQ concentration values (Table S2) were
obtained by using an appropriate calibration curve satisfying the following relationship:
0.5x1 < LOD < x1, where x1 is the concentration of the first calibration level [64]. Data below
the LOD and LOQ values were excluded from the analysis.

2.4. Data Analysis

Empirical analyses were conducted to study the characteristics of the REEs according
to some variables of interest, and the main features of the observed data were summa-
rized by performing an overall descriptive analysis. The differences between mean REE
concentrations related to year, variety, and origin were evaluated via analysis of variance
(ANOVA) and Kruskal–Wallis tests. Where the ANOVA test assumptions were not satisfied
(normality and homoscedasticity of residues), the Kruskal–Wallis nonparametric test was
used. Significant differences were established at the level of p = 0.05.

In the second step, commonly used foodomics chemometric techniques such as PCA
and HCA were used as exploratory methods, without any a priori knowledge of groups
present in the population [22]. To reduce collinearity among data, PCA was applied to
REE concentrations, and, based on the first two principal components, the LDA, an a priori
knowledge of group membership technique, was performed [65]. Finally, the HCA method,
revealing groups of similarity (clusters), was conducted using Euclidean distances and
Ward’s linkage methods. The graphical output of the analysis was a heatmap, a tree-like
plot, where both rows and columns were clustered [66,67].
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The statistical analysis was performed with XLSTAT using the Addinsoft program
and ClustVis, a web tool freely available at http://biit.cs.ut.ee/clustvis/ [68] (accessed on
1 August 2023).

3. Results and Discussion
3.1. Elemental Profile of Olive Oils

The mean REE concentrations detected in the EVOOs are shown in Figure 2a, while
the mean REE contents (≥LOQ) of each olive oil sample during the 2019–2021 period
from different geographical origins are reported in Table 2. Despite the limited data
on REE contents available in the literature, the concentration range that we detected
ranged between 0.09 and 4.22 ng g−1, in accordance with the results of different authors,
which were well summarized in a recent study [69], who reported ranges varying be-
tween 0.002 and 7 ng g−1 in olive oils from costal region. Our values also agree with
those described by other authors in other areas [2,70–72]. In descending order, the most
abundant REEs were Ce, Y, La, and Nd, which had mean values of 3.27, 2.18, 1.53, and
1.36 ng g−1, respectively. The levels of the remaining elements, such as Pr, Sm, Gd, Dy,
Er, Yb, and Eu ranged from 0.38 to 0.13 ng g−1. Table S3 provides a detailed list of the
REE concentrations found in the literature. To better study and visualize the REE patterns,
chondrite-normalized values were used [73], which provide a reference for the normaliza-
tion of rare earth elements, since they are assumed to reflect the original composition of the
Earth’s crust [74,75]. Except for Eu and Er, which presented slight positive and negative
anomalies, respectively, all the oil samples showed very similar chondrite normalized
patterns, confirming the above-mentioned hypothesis regarding the limited fractionation
that occurs when passing from soil to fruits and to the final EVO [19]. It is evident that the
homogeneous lithological and geomorphological context (Figure 1) strongly affected the
distribution patterns of the REEs in soils and, therefore, the general uniform REE pattern
observed in the EVOOs. Slight content variations, moreover, could reflect the local influence
of bedrock-weathering and soil-leaching processes.

The behavior of REE distributions strictly followed the Oddo–Harkins rule, which
states how elements with an even atomic numbers are more abundant than elements
with immediately adjacent atomic numbers [76,77]. The REE concentration patterns of the
EVOOs (Figure 2b) therefore proportionally reflect the distribution of REEs in soils, pointing
out that different vintages, varieties, and locations seem did not affect the patterns. This
aspect represents one of the prerequisites for a reliable chemical marker of geographical
origin, and so it would be useful to further investigate the potential of REEs in this sense.
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Table 2. REE concentrations (ng g−1) in olive oil samples. Mean and standard deviation (sd) of
n = 3 replicates.

Light Heavy

Sample
Code La Ce Pr Nd Sm Eu Gd Y Dy Er Yb

A1 1.28 2.93 0.37 1.19 0.27 0.09 0.27 2.01 0.37 0.18 0.37
A2 1.71 3.69 0.45 1.44 0.36 0.18 0.36 2.43 0.36 0.36 0.36
A4 1.18 2.59 0.31 1.02 0.31 0.16 0.31 1.65 0.31 0.16 0.31
A5 1.59 3.47 0.40 1.29 0.30 0.20 0.40 2.28 0.40 0.20 0.30
A6 1.52 3.24 0.38 1.43 0.29 0.19 0.38 2.19 0.38 0.29 0.29
A7 1.42 3.09 0.33 1.34 0.33 0.17 0.33 2.09 0.33 0.25 0.33
A8 1.36 3.22 0.39 1.27 0.29 0.10 0.39 2.05 0.39 0.19 0.39
A9 1.46 3.28 0.36 1.37 0.36 0.18 0.36 2.19 0.36 0.18 0.36
B1 1.75 3.60 0.45 1.58 0.34 0.11 0.39 2.53 0.45 0.34 0.34
B2 1.68 3.42 0.36 1.44 0.36 0.12 0.36 2.34 0.36 0.36 0.36
B3 1.52 3.21 0.38 1.36 0.33 0.11 0.33 2.18 0.33 0.27 0.33
B5 1.24 2.60 0.25 1.05 0.25 0.12 0.25 1.80 0.31 0.25 0.25
B6 1.49 3.15 0.34 1.32 0.34 0.11 0.29 2.12 0.34 0.23 0.34
B7 1.57 3.26 0.35 1.40 0.29 0.12 0.35 2.27 0.35 0.23 0.35
B8 1.22 2.55 0.36 1.09 0.24 0.12 0.24 1.70 0.24 0.24 0.24
B9 1.43 3.07 0.33 1.32 0.27 0.11 0.33 2.08 0.33 0.33 0.33
B10 1.63 3.37 0.36 1.44 0.36 0.12 0.36 2.29 0.36 0.30 0.36
B11 1.65 3.35 0.40 1.48 0.34 0.11 0.34 2.33 0.40 0.34 0.34
B12 1.50 3.13 0.38 1.25 0.25 0.13 0.31 2.19 0.38 0.25 0.38
B13 1.43 2.97 0.34 1.31 0.29 0.11 0.34 2.00 0.34 0.23 0.34
C4 2.02 4.20 0.47 1.71 0.31 0.16 0.47 2.80 0.47 0.31 0.47
C5 2.03 4.22 0.47 1.72 0.39 0.16 0.47 2.82 0.47 0.31 0.47
C6 1.53 3.27 0.33 1.42 0.33 0.11 0.33 2.18 0.33 0.33 0.33
C7 1.41 2.94 0.35 1.29 0.23 0.12 0.35 2.00 0.35 0.23 0.35
C10 1.65 3.42 0.35 1.41 0.35 0.12 0.35 2.24 0.35 0.24 0.35
C11 1.62 3.75 0.37 1.37 0.25 0.12 0.37 2.12 0.37 0.25 0.25
C12 1.70 3.52 0.36 1.58 0.36 0.12 0.36 2.30 0.36 0.24 0.36
C13 1.37 2.98 0.37 1.24 0.25 0.12 0.25 1.99 0.37 0.25 0.25

Mean 1.53 3.27 0.37 1.36 0.31 0.13 0.35 2.18 0.36 0.26 0.34

sd 0.21 0.40 0.05 0.17 0.05 0.03 0.05 0.27 0.05 0.06 0.05
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To evaluate the strength of the relationships among the REEs, Pearson correlation
coefficients were calculated and are reported in a correlation matrix (Table 3). A strong
correlation (p < 0.001) was found among Y, La, Ce, Pr, Nd, Gd, and Dy; five of them were
grouped in the light fraction (LREEs). Conversely, the weakly correlated REEs were Eu–Er
(−0.04) and Eu–Yb (0.03). It was evident that similar chondrite patterns corresponded to
stronger concentration correlations.

Table 3. Pearson correlation coefficients.

Variable Y La Ce Pr Nd Sm Eu Gd Dy Er Yb

Y 1.00
La 0.97 1.00
Ce 0.94 0.96 1.00
Pr 0.79 0.75 0.78 1.00
Nd 0.94 0.95 0.91 0.71 1.00
Sm 0.59 0.58 0.55 0.36 0.62 1.00
Eu 0.23 0.22 0.27 0.27 0.14 0.23 1.00
Gd 0.81 0.81 0.85 0.69 0.80 0.48 0.38 1.00
Dy 0.83 0.77 0.81 0.76 0.75 0.34 0.21 0.78 1.00
Er 0.58 0.60 0.49 0.40 0.60 0.33 −0.04 0.29 0.29 1.00
Yb 0.71 0.64 0.62 0.55 0.65 0.55 0.03 0.68 0.62 0.19 1.00

3.2. ANOVA and Kruskal–Wallis Test

The one-way ANOVA was conducted to evaluate the differences between mean REE
concentrations related to the three vintages (2019, 2020, and 2021). The parametric test
assumptions were verified for all REEs, except for Eu (failed both normality and Levene’s
test) and Er (failed normality test). Ten out of eleven REEs did not exhibit any significant
differences (p > 0.05) since there was no variation in the mean REE concentrations among
the vintages. Eu exhibited significant differences between the 2019 and 2020 vintages
(according on Tukey’s HSD test).

The nonparametric Kruskal–Wallis test was conducted to evaluate the differences
between median REE concentrations related to the 12 varieties or cultivars (CVs) and
6 origins. No variation in the REE concentrations was found regardless of origin and the
(p > 0.05), confirming the homogenous pattern distribution that we previously observed.

3.3. PCA

According to the values reported in Table 3, to reduce the collinearity among the data,
principal component analysis (PCA) of the REE concentrations was conducted, and the
results are shown in Table 4. The first two principal components (F1 and F2) explained
75.77% of the total variance (specifically, F1 explained 65.37% and F2 explained 10.4%). The
main variables that influenced the first component were the concentrations of Y, La, Ce,
and Nd (F1 eigenvectors > 0.35), while the variables Eu and Er mainly affected the second
component, with eigenvector values of 0.76 and −0.54, respectively.

According to the loading plot (Figure S1), the vector lengths of Y, La, Ce, and Nd
represented the largest contribution of the variance in the first component. They were
located close to each other, with a small angle in between; out toward the same periphery,
they covariation was strongly positive (very similar patterns) and proportional to the
degree distance from the PC origin. On the other side, europium (Eu), especially, and
erbium (Er), mainly contributed to the second component. The large angle between Eu and
Er highlighted the weak correlation. Sm and Yb, with the shortest vector and being closest
to the origin, presented the lowest absolute variances, and might be better explained by
other factors [57].
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Table 4. Eigenvectors of PCA components F1 and F2.

F1 F2

Y 0.365 −0.072
La 0.360 −0.092
Ce 0.358 0.021
Pr 0.307 0.102
Nd 0.353 −0.160
Sm 0.236 −0.028
Eu 0.103 0.761
Gd 0.328 0.242
Dy 0.316 0.127
Er 0.202 −0.544
Yb 0.275 −0.015

The first component represented elements with strong associations, reflecting similar
behavior or bioavailability in the soil, belonging to the same geochemical groups on
the periodic table, being able to form clusters [47,49,78]. Consequently, according to
Goldshmidt’s geochemical classification, La, Ce, and Nd (LREEs), which have more basic
behavior and higher solubility, were grouped together [47]. In addition to this grouping of
elements, yttrium (HREE), which also characterizes the elemental profile of olive oils, was
shaped by the geochemical processes in the study territory.

A PCA biplot (Figure 3) highlights that samples C4 and C5 presented the highest
concentrations of REEs and were the most positively correlated with F1. Conversely,
EVOOs A4, B5, and B8 presented the lowest concentrations of REEs and were negatively
correlated with F1. With respect to F2, the A samples, belonging to the 2019 vintage,
specifically A4, A9, and A5, presented a highly positive correlation with europium and
a negative one with erbium. Finally, the B and C samples, representing the 2020 and
2021 vintages, respectively, were mostly grouped together.
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Figure 3. Biplot of oil samples and REEs.

Based on the PCA assumptions, a preliminary comparison analysis was performed
including the REE data of three different Italian monocultivar oils: Pisciottana (Calabria
region, D1), Frantoio (Piemonte region, D2), and Taggiasca (Liguria region, D3), as well as
the data from one EU/extra EU EVOO blend (D4). The PCA score plot (Figure S2) shows
the main separation of the samples along F1. EVOOs D1 and D3 were found to be similar
to C4 and C5. EVOO D2 was comparable to A2 and opposite from D1 and D3. Sample D4
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was positioned close to the origin. This result highlighted the better characterization of
Abruzzo EVOOs and Liguria, Calabria, and Piemonte oils compared with the EVOO blend.

3.4. Discriminant Analysis

Linear discriminant analysis (LDA) was performed as a further unsupervised data
elaboration, according to year, variety, and origin. It was applied to the first two prin-
cipal component factors (F1 and F2), and results are depicted in confusion matrices
(Tables 5, S4 and S5, Supplementary Materials). The mean correct classification rates were
78.6% for vintage class (Table 5), 46.4% for geographical location (Table S4), and 32.1%
(Table S5) for the cultivar class.

Table 5. Confusion matrix of samples grouped for vintage.

From\to A B C Total % Correct

A 6 1 1 8 75.00%
B 0 11 1 12 91.67%
C 0 3 5 8 62.50%

Total 6 15 7 28 78.57%

The vintage discrimination supported the previous PCA evaluations, identifying the A
samples’ distribution in the F1 direction, which were opposite to the compact B grouping, in
the observation plot (Figure 4). Furthermore, samples C4 and C5 were spatially separated
as evident C outliers along the F2 direction.
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Figure 4. Observation plot of LDA.

According to Table 5, the 2020 vintage samples were more accurately classified (91.7%)
than those from 2019 and 2021 (75% and 62.5%, respectively). Indeed, from a graphical point
of view (Figure 4), they were located closer to the reference centroid (B) compared with
the A and C samples, where the distance between samples and their respective centroids
was higher.

Concerning cultivar (Table S5), Don Carlo, FS17, Oliana, and Peranzana were correctly
classified (100%), while Koroneiki, Lecciana, Leccino, and Dritta were completely misclassi-
fied (0%). Finally, the geographical locations correctly classified were Alanno, Casoli, and
Loreto, while Pianella, Scerni and Vasto were misclassified (Table S4).
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It is important to note that the low rate of LDA results related to the geographical
location and the cultivar agree with the pairwise Kruskal–Wallis comparison outcomes,
which did not identify significant differences among the EVOOs.

3.5. Cluster Analysis

Aggregative hierarchical cluster analysis (HCA), using Euclidean distances and Ward’s
linkage method, was implemented to interpret the chemometric data based on an input
matrix consisting of 11 chemical variables (REEs) and 28 oil samples. The results of HCA
are shown in a heatmap plot (Figure 5).
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The column clustering highlights the correspondence of the graphical heatmap output
information with a PCA loading plot (Figure S1). Eu, Er, Sm and Yb showed independent
behavior and did not group with the two main clusters of La/Ce/Nd/Y and Gd/Dy/Pr.

The row clustering analysis identified four main groups, also highlighted in the score
plots (Figures 3 and 4), where C4 and C5 presented the highest concentrations of REEs,
while EVOOs A4, B8, and B5, were characterized by the lowest concentrations of REEs.
Moreover, EVOOs A5, A6, A7, and A9 presented the highest concentrations of Eu, while
B1, B2, B10, B11, and A2 had the highest concentrations of Er.

HCA also confirmed that only the vintage influenced the REE concentrations’ ten-
dency to form groupings, while geographical location and cultivar did not, as previously
highlighted by the corresponding confusion matrices. Since the average annual temper-
ature and cumulative precipitation were similar in the three considered years (data not
shown), climate discrimination should be studied considering intrayearly (monthly and
seasonal) climate trends, which could influence the specific phenological stages of olive
tree development. Edaphic factors, such as the bioavailability of inorganic elements in soil
and its chemical characteristics (pH, electrical conductivity, organic matter and inorganic
carbon (CaCO3), should also be considered [71].
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4. Conclusions

The overall results of this preliminary study show that in the high-EVOO-producing
region of Abruzzo, the REE concentration patterns of olive oil, among different varieties,
origins, and vintages, were almost homogeneous, showing the potential to be used as a
marker of geographical origin. Among these three factors, only vintage slightly influenced
REE concentrations, suggesting the possible effect of interactions among soil geochem-
istry, edaphic, and climatic characteristics. Some REEs are more effective and useful than
others in representing the transfer of soil geochemistry to olive oil, in particular, Y, La,
Ce, Nd, because of their larger contribution to the overall variance, having the strongest
correlations, and the most similar patterns. The research outcomes add useful data to the
scarce literature on the REE concentrations in olive oils, which are important for assessing
food quality, especially in Mediterranean countries, where EVOO represents the main
fat source, which is consumed daily. The use of the information gathered in this study
can be a useful starting point for producing a reliable discrimination model that allows
the verification and certification of the geographical origin of EVOOs produced in the
Chieti and Pescara districts of Abruzzo Region. Future use of the developed procedure
with larger data sets will verify its value. Furthermore, the relationships between EVOO
samples originating from different areas and the effects of biogeochemical drivers on the
geographical distribution of the elements require further exploration.
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region, D2), Taggiasca (Liguria region, D3), and EVOO blend (D4); Table S1. ICP-MS instrumentation
and operating conditions; Table S2. LOD and LOQ values of elements in olive oils; Table S3. Range of
REE concentrations in EVOO samples and those found in the literature (ng g-1); Table S4. Confusion
matrix for the training samples based on geographical location; Table S5. Confusion matrix for the
training samples based on cultivar.
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