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Abstract
This study proposed and evaluated a new insurance product, i.e., the variable annuity
product, accompanied by the health status and the guaranteed lifelong withdrawal
benefit (GLWB). Due to specific problems, the insurance sector is now one of the
riskiest industries. The aging of the population and rising medical service costs as
a result of technological advancements are to blame for this. Thus one of the most
basic needs in the health insurance sector is to design an innovative product. In this
article, a mixed discrete-continuous time model is proposed to calculate the fair fee
of the product, calculated using equilibrium condition between premium and benefits.
We considered constant volatility and rate of interest along with health status benefits
and hospitalization coverage. For an illustration of the capability of this product and
some possible improvements in the product, a numerical study, and sensitivity analysis
have been conducted. The results showed that the withdrawal amount and age have a
significant impact on the cost. A rise in the initial insured age and withdrawal amount
increases the fair fee of the product. TheGLWBrider’s guaranteed amount andmedical
expenses are included in the withdrawal amount.
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JEL Classification C02 · G22 · G23

List of symbols
y Initial insured age, i.e., insured age at time period 0
t Time in years
r Rate of interest
h0 Premium paid as lump sum
St Value of the stock price at time t
s0 Initial value of the stock price
γ Rate of the fee charged by the insurance company
W Periodic random withdrawal % of h0

1 Introduction

The popularity of healthcare insurance products and the ever-increasing demand for
such products can be attributed to increased awareness of longevity risk and advance-
ments in medical technology. Because of decreasing mortality and fertility rates, the
population of many wealthy countries is rapidly aging (Cristea et al. 2020). Longevity
increases contribute to risingmedical expenditures and increased demand in the health
insurance industry. Levantesi et al. (2020) used amachine learning technique to predict
mortality and improve longevity. Individuals’ financial responsibilities are reduced by
health insurance in the case of an illness or injury that necessitates hospitalization or
results in a loss of income. The private health insurance market covers most of the
medical expenses in nations without National Health Insurance, such as the United
States. The Health Insurance Portability and Accountability Act of 1996 also requires
practically all individual insurance policies to be guaranteed renewable. However,
their market share remains limited due to the lack of appeal and variety in these prod-
ucts. Looking at the health insurance industry, we can see that spending has increased
dramatically over the last 50 years (Dieleman et al. 2017). Growth and aging of the
human population, increased demand for health care owing to economic development,
and rising healthcare expenditures are all factors that contribute to the rise in health
insurance premiums. Health policymakers in the public sector and management of
private health insurance companies are concerned about the rise of health insurance
and its financing.
This research suggests a new variable annuity product embedded with GLWB benefit
with a dynamic withdrawal strategy dependent on the policyholder’s health status.
We assume that X(t) is a continuous-time Markov chain. This choice is due to the
flexibility of this class of stochastic processes in describing systems that randomly
change state in time, see, e.g., D’Amico and Villani (2021) and De Blasis (2020)
and due to its primary benefits of simplicity and out-of-sample forecasting accuracy.
Moreover the value of health state is influenced only by its current state, and not
by any prior activity. In essence, it can be predicted based solely upon the current
circumstances surrounding the variable.Othermain reason of usingMarkovianmodels
is because they can enrich the point estimates with error estimates or even provide

123



Analysis of fair fee in guaranteed lifelong withdrawal… 385

the whole probability distribution. A large body of literature has shown the ability of
Markov chains to describe disability states (see, e.g., Pitacco 1995) or hospitalization
conditions, andmode of discharge (see, e.g., Jones et al. (2019)). Theworks byManton
et al. (1993), Haberman and Pitacco (2018), Pritchard (2006), Baione and Levantesi
(2014) and Yang et al. (2016) have used continuous-time Markov processes to model
the health status transitions.
The researchonvariable annuitieswith health status influences is significantly less. The
Life Care Annuity-Guaranteed Lifetime Withdrawal Benefit was firstly proposed by
Hsieh et al. (2018). Fard andRong (2014) proposed amodel for valuing ruin contingent
life annuities under the regime-switching variance gamma process. In the direction
of hospitalization coverage based on the claims of families and people covered by
the policy, Tessera (2007) developed two probabilistic models for claim size in health
insurance. A statistical model to predict the incidence and cost of hospitalizations
for a given chronic disease was developed by Rosenberg and Farrell (2008). D’Amato
et al. (2013) analyzed the performance of a portfolio of participating variable annuities
focusing on the minimum income level.
Moosavi and Payandeh (2021) developed a model for the valuation of variable
long-term care annuities with static guaranteed lifetime withdrawal and limited hospi-
talization coverage benefits. They used two investment funds in which the Geometric
Brownian Motion (GBM) model is used with constant volatility. Moreover, they con-
sidered only limited health status states.
The contribution of this article is to present a modeling framework that gives the
policyholder the flexibility to withdraw different amounts according to his/her health
status. A one-time lump sum is invested in a risky fund that follows a GBM. The
expected life and death benefits are calculated, and the fair rate of the fee charged
by the insurance company is determined as the solution of the equilibrium equation
between expected benefits and premium. The remainder of the paper is laid out as
follows: Sect. 2 includes the description of the continuous-discrete time model and
the mathematical formulas needed to determine the fair fee. Section 3 includes data
description along with numerical results of calculating the fee for S&P 500 index and
the effect of age and guaranteed withdrawal amount on the fee. Section 4 summarizes
our contribution and results with some potential further work.

2 Model description

This section presents the random processes involved in analyzing the GLWB with
Markovian health states. The model is mixed discrete-continuous in time because
while the policyholder’s health state and the fund’s value evolve continuously in time,
the payment of the benefits occurs according to a discrete-time scale. This choice
agrees with Piscopo and Haberman (2011), who presented a continuous and discrete-
time model with death and GLWB benefit without any health status benefit but using
mortality rates. The health status changes in time according to a stochastic process
{X(t), t ≥ 0} with state-space E = {1, 2, 3, . . . , D}. The elements 1, 2, 3 . . . rep-
resent different health states of the policyholder and D is the death of the insured.
Moosavi and Payandeh (2021) provided with a continuous-time health model with
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State2:Impairment
in1 or more

IADLs.

State3:1-2
impairments

in ADLs.

State5:5-6
impairments

in ADLs.

State6:
Hospitalized.

State1:Healthy State7:Dead
State4:3-4
impairments
in ADLs.

Fig. 1 The health status of the policyholder according to Moosavi and Payandeh (2021)

GLWB with limited health states i.e. {1, 2, . . . , 7}, with 7 as death (see Fig. 1). In this
section, we will describe the policyholder’s health status as a continuous-timeMarkov
chain with health states E = {1, 2, . . . , D}. The benefits are calculated based on the
policyholder’s health evolution, and the fair fee is computed according to a balance
condition between premium and expected benefits. This will provide the actuarial
sector with a better product that combines the benefit of GLWB and includes health
insurance features.
This paper uses capital letters to denote random variables, and the following notations
are considered.
With the notations mentioned above and for simplicity, let us make some assumptions
that the model’s description will follow.

Assumption 1. We analyze a single index and assume that the premium is a one-time
lump sum investment of h0 made by the insured at the start of the contract, which
makes h0

s0
as the number of initial stocks.

2. The insurance company’s fee is deducted from the funds value when fund units
are canceled at a rate equal to γ .

3. We will assume the fee is charged continuously, and the guarantee (g % of h0) is
deducted by the policyholder over a discrete-time set.

4. Death benefits are paid when the insured dies.
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Let us consider {X(t), t ≥ 0} be a stochastic process describing the health status of
the policyholder at time t . Let Ta be the set of times where the payments of benefits
occur, i.e.,

Ta = {t ≥ 0 : t = ak with a ∈ R
+ and k ∈ N}. (1)

For example if time is measured inmonths, and benefits are paid annually, then a = 12
so that

k = 1, t = 12 months = 1 year ,

k = 2, t = 24 months = 2 year ,

and so on.
At a first stage {X(t), t ≥ 0} is considered to be a continuous-time Markov chain
with finite state space E = {1, 2, . . . , D}. For t > s, let us define pi j (t − s) =
P(X(t) = j |X(s) = i) be the transition probability from state i at time s to state j at
time t and let Q be the generator matrix for {X(t), t ≥ 0} such that

qi j = lim
t→0

pi j (t)

t
∀i �= j and qii = −

∑

j �=i

qi j .

Then, the following formula holds true

pi j (t − s) = P(X(t) = j |X(s) = i) = (eQ(t−s))(i, j) =
⎛

⎝
∞∑

l=0

(t − s)lQl

l!

⎞

⎠

(i, j)

. (2)

Let g(t) be the health expenditure at time t with health state X(t) such that for t ∈ Ta

g(t) = g(X(t)). (3)

It is important to note that the wealth and income of an individual, as well as the
likelihood or probability of getting sick, can all affect health expenditures. It is possible
to take these variables into account as covariates in both the generator matrix Q and
the function g(t). We do not go into further details about this possibility because,
while it is simple to model mathematically, it is not realistic given the lack of actual
information regarding the social conditions of the policyholders.
Let G(t) be the guaranteed amount at time t then specifically, we consider G(t) =
G (X(t)) h0 as a certain percentage of the initial investment to express the random
guaranteed withdrawal rate paid by the insurer to the policyholder at time t = ka, k ∈
N as

G(X(t)) = W (X(t)) + g(X(t)), (4)

where W (X(t)) is the random amount offered by the GLWB rider. Policyholder will
get a variable amount W (X(t)) through out his/her life and along with it he/she can
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withdraw amounts according to his/her health status {X(t), t ≥ 0}, whichmaydepends
on the policyholder’s will also.
Now, to find out the break-even fee (γ ∗), we equate the outflowwhich consists of lump
sum premium h0 to the expected present value (EPV) of the inflows, which consists of
discounted expected life benefit (ELB) and discounted expected death benefit (EDB)
to that of outflows. Hence,

h0 = ELB + EDB. (5)

It is worth noting that a safety margin could be added to the break-even fee to ensure
profits for the insurance company, or loaded premiums could be used instead, see, e.g.,
Furman and Zitikis (2008).

2.1 Computation of life benefit

Benefits are paid as a random amount G(X(t))h0 according to the set of times Ta
periodically. The accumulated benefits over the life of the policyholder are given by

LB(0) =
∑

t∈Ta
G(X(t))h0e

−r t1{X(t) �=D}. (6)

Now, take the conditional expectation of Eq. (6), that is

ELBi = E[LB(0)|X(0) = i] = Ei [LB(0)]. (7)

It denotes the conditional expected life benefits given health state i of the policyholder
at initial time zero. The ELBi can be obtained as follows

ELBi =
∑

t∈Ta
Ei [G(X(t))1{X(t) �=D}]h0e−r t , (8)

where ELBD = 0. This expected value can be evaluated according to the time scale
of benefit payments

ELBi =
∑

k≥1

Ei [G(X(ka))1{X(ka) �=D}]h0e−rka, (9)

=
∑

k≥1

∑

j �=D

G( j)P(X(ka) = j |X(0) = i)h0e
−rka, (10)

=
∑

k≥1

∑

j �=D

G( j)(eQka)(i, j)h0e
−rka . (11)

Formula (11) calls for the evaluation of transition probabilities at various points in
time and entails an infinite summation. A more efficient way to compute the ELBi
is by establishing a system of linear equations for them and solving it using matrix
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representation. The computation are in line with Markov reward formalism, see, e.g.,
D’Amico et al. (2010, 2015).

Proposition 1 The expected life benefits can be calculated according to the following
matrix formula:

ELB =
(
I − e−ra · P(a)

)−1 ∗
(
e−ra · P(a) ∗ G

)
, (12)

where

ELB = [
ELB1, ELB2, . . . , ELBD

]T
with ELBD = 0,

G = [
G(1), G(2), . . . , G(D)

]T
with G(D) = 0.

and P(a) = eQa represents the transition probability matrix at time a, with (*) as
standard matrix product operator.

Proof According to Equation (8) we have that

ELBi = Ei

[∑

k≥1

G(X(ka)1{X(t) �=D}h0e−rka
]
.

The application of the tower property of conditional expectation gives

= Ei

[
E[

∑

k≥1

G(X(ka))1{X(ka) �=D}h0e−rka/X(a)]
]
,

= Ei

[
G(X(a))1{X(a) �=D}h0e−ra

+ E

[ ∑

k≥2

G(X(ka))1{Xak �=D}h0e−rka/X(a)
]]

.

Now we change variable by setting s = k − 1 in the former expectation to get

ELBi = Ei

[
G(X(a))1{X(a) �=D}h0e−ra (13)

+ e−ra
E

[ ∑

s≥1

G(X(sa + a))1{X(sa+a) �=D}h0e−rsa/X(a)
]]

. (14)

Observe now that

E

[ ∑

s≥1

G(X(sa + a))1{X(sa+a) �=D}h0e−rsa/X(a)

]
,

=
∑

s≥1

∑

j �=D

G( j)P(X(sa + s) = j/X(a))h0e
−rsa,

=
∑

s≥1

∑

j �=D

G( j)(eQ(sa))(X(a), j)h0e
−rsa,
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= ELBX(a).

Then,

ELBi = Ei

[
G(X(a))1{X(a) �=D}h0e−ra + e−ra ELBX(a)

]
,

=
∑

j∈E
(e(Qa))(i, j)

[
G( j)h0e

−ra + e−ra ELB j

]
.

The previous equation can be written inmatrix form by using the column-vectorsELB
and G as follows

ELB = e−ra · P(a) ∗
(
G + ELB

)
.

Algebraic manipulations give

(
I − e−ra · P(a)

)
∗ ELB = e−ra · P(a) ∗ G, (15)

which in turn provides

ELB =
(
I − e−ra · P(a)

)−1 ∗ e−ra · P(a) ∗ G, (16)

provided that
(
I − e−ra · P(a)

)−1
exists.

In any case, P(a) is a stochastic matrix, thus its spectral radius ρ(P(a)) = 1 as a
consequence of Perron-Frobenius theorem.
Moreover, observe that the matrix I − e−ra · P(a) can be rewritten as follows:

I − e−ra · P(a) = 1

era

(
era · I − P(a)

)
. (17)

The matrix era · I − P(a) belongs to the class of M-matrix (see Le and Tsatsomeros
2021) and is non-singular if and only if era ≥ ρ(P(a)) = 1 which is trivially satisfied
being e > 1 and a ≥ 0. 	

Remark Proposition 1 provides an exact representation of the ELB in terms of the
model’s parameters. As shown, there is no need to introduce any maximal allowed age
for the policyholder as done in Piscopo and Haberman (2011) or to implement Monte
Carlo simulations as developed by Moosavi and Payandeh (2021).

2.2 Computation of death benefit

According to Piscopo and Haberman (2011), we adopt the GBM hypothesis under the
risk-neutral measure P̃. The conservative GBM model assumes that return volatility
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remains constant throughout time. Under a risk-neutralmetric, the stock price dynamic
for a GBM is

dSt = μStdt + σ StdBt , s0 > 0, (18)

here μ is the drift coefficient, σ 2 is the variance and {Bt , t ≥ 0} is a standard Wiener
process. Then the stock price at time t can be represented as

St = s0e

(
μ− 1

2 σ 2
)
t+σ Bt

. (19)

Moreover, as usual, we denote by γ (in basis points) the insurance fee paid as a func-
tion of the asset. Furthermore we have a sequence of random variables {G(X(t))}t∈Ta
denoting the time-varying withdrawal from the fund at time t . Note that we do
not consider a rate of withdrawal, as rather a sequence of withdrawal of random
amounts depending on the health state of the policyholder. Under these assumptions,
the dynamic of the fund can be described as follows (Fig. 2)

{
dHt = (μ − γ )Stdt + σ StdBt , ∀ t : ak < t < a(k + 1)
Ht = Ht− − G(X(t))h0, ∀ t ∈ Ta .

(20)

Here the present value of expected death benefit can be calculated. Let τ be the time
of death of the policyholder, that is

τ = inf {t ∈ R : X(t) = D}.

Let DBβ(γ ) be the death benefit conditional on the death at time τ = β ∈ R+
then,

DBβ(γ ) = max{Hβ, 0}.

Fig. 2 Dynamic of fund
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It results that

DBβ(γ ) = e(μ−γ−σ 2/2)β+σ Bβ max[0, h0 −
�β�∑

v=1

G(X(va))h0e
−(μ−γ−σ 2/2)va−σ Bva ],

(21)

where �β� = max{k ∈ N : k · a ≤ β}.
Now the expected death benefit is just the discounted expectation of the conditional
death benefit with respect to the random time of death, i.e.,

EDB(γ ) =
∫ ∞

0
e−rβ

E[DBβ(γ )]λ(β)dβ,

where

λ(β) = lim
h→0

P(β < τ ≤ β + h|τ > β)

h
,

is the so-called failure rate function. For an n-state continuous-time Markov chain, it
can be expressed according to Sadek and Limnios (2005)

λ(β) =
⎧
⎨

⎩
−1
R(β

) · dR(β)
dβ

= −α1e
βQ(n−1,n−1) ·Q(n−1,n−1)1(n−1)

α1e
βQ(n−1,n−1)1(n−1)

if R(β) �= 0,

0 if R(β) = 0,
(22)

whereQ is the generator matrix of the Markov chain, α is the initial probability distri-
bution, R(β) the reliability function and 1(n−1) is the unitary vector of the dimension
n − 1. We then have

LB0 + DB0 =
D∑

i=1

αi · ELBi +
∫ ∞

0
e−rβ

E[DBβ(γ )]λ(β)dβ, (23)

hence, we get the final equation as

h0 = αT ∗ ELB + EDB(γ ). (24)

The above equation in γ is solved numerically to obtain the break-even value for the
fee (γ ∗) charged by the insurer.

3 Numerical results and sensitivity analysis

In this section description of the data taken for the numerical calculation is mentioned,
along with the numerical results for the given model.
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3.1 Data description

In this paper, S&P 500 composite index prices from the US market are considered for
the numerical analysis. The indexwas chosen based on data availability and popularity
among the people of the respective country. We considered information from January
1, 1970, until October 31, 2019. The data for S&P 500 index is taken from Thomson
and Reuters Datastream. Furthermore, annual interest rate data for the US market for
the previous 50 years is taken from https://fred.stlouisfed.org/.
In evaluating an insurance health product, the health state of policyholders and their
corresponding transition probabilities play critical roles. According to Moosavi and
Payandeh (2021), a seven-state continuous-time Markov process has been used to
classify an individual’s health status based on his/her ability to perform daily activ-
ities. Successfully performing instrumental activities of daily living (IADL) such as
light housework, laundry, grocery shopping, meal preparation, getting around outside,
money management, and using the telephone and activities of daily living (ADL) such
as eating classified as (level 1), bathing (level 2), dressing (level 3), moving around
(level 4), doing personal hygiene (level 5) and going to the toilet (level 6), see also
Pritchard (2006), Haberman and Pitacco (2018) for more details.
The state of each policyholder begins from state 1 (healthy) and moves to state 2
(impairment in at least one IADLs), state 3 (ADL level = 1 and 2), state 4 (ADL
level = 3 and 4), state 5 (ADL level = 5 and 6), state 6 (stay at a hospital) and finally
state 7 (death). The state transition diagram for the health status of the policyholder is
shown in Fig. 1. This study follows two-year transition probabilities between disability
states calculated from the 1982 and 1984 National Long Term Care Survey, as a
percentage, for males and females mentioned in Pritchard (2006). Table 1 shows the
two-year transition probabilities. For example, the (1, 7)-th entry (i.e., 4.04) of the
matrix represents the chances of dying of a healthy person in percentage within two
years. Parameters μ and σ are first estimated from real data using statistical method
usingR software in order to calculate the expected death benefit EDB. Estimated value
for μ is 4.21 and σ is 1.17. For the numerical calculation RStudio 2021.09.0 Build
351 is used in the system with configuration as follows: AMD Ryzen 5 3500U with
Radeon Vega Mobile Gfx 2.10 GHz, 64-bit operating system, x64-based processor,
and 8GB RAM.

3.2 Numerical calculation

For the numerical analysis the following assumptions are considered:

1. Premium paid is a lump sum amount of 100, i.e., h0 = $100 and a is considered
to be 24 months.

2. The range of break-even fee (γ ∗) is considered to be 0 to 1000 basis points (bp).
3. Initially, the State of each policyholder begins with state 1 (healthy) i.e., α =

(1, 0, 0, 0, 0, 0, 0).
4. Withdrawal is according to the health status of the patient such that for the health

states 1 and 2, the withdrawal amount is assumed to be 2$, for states 3 and 4, it is
assumed to be 3$, and for 5th and 6th state it is assumed to be 4$. That is
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Table 1 Two-year transition probabilities between disability states calculated from the 1982 and 1984
NLTCS, as a percentage, for males and females according to Pritchard (2006)

1984 status
Age 1982 status Healthy IADL only 1–2 ADLs 3–4 ADLs 5–6 ADLs Inst’d Dead

65 Healthy 90.01 2.41 1.92 0.59 0.56 0.47 4.04

71 83.73 3.60 2.41 0.95 0.93 1.11 7.28

76 76.74 5.40 4.08 1.30 1.24 1.94 9.30

65 IADL Only 30.67 31.61 15.67 4.55 4.27 2.19 11.05

71 25.27 32.53 17.48 3.64 2.77 4.93 13.38

76 15.39 30.65 18.73 5.01 5.31 7.53 17.38

65 1–2 ADLs 16.29 12.84 36.49 10.47 6.08 2.95 14.89

71 10.52 12.85 35.00 11.99 5.78 6.94 16.92

76 9.22 12.06 35.08 10.33 6.73 6.09 20.05

65 3–4 ADLs 7.15 6.27 26.77 23.56 12.68 4.73 18.83

71 8.31 4.64 18.09 29.12 18.18 3.98 17.67

76 3.73 4.37 17.57 20.78 16.35 10.97 26.23

65 5–6 ADLs 7.03 5.54 8.85 9.01 33.15 5.86 30.57

71 6.15 4.71 9.13 10.16 28.68 8.03 33.15

76 3.97 3.64 4.98 7.71 34.73 11.56 33.42

65 Inst’d 7.53 0.94 1.59 2.01 0.48 72.24 15.21

71 2.97 0.75 1. 81 1.24 2.36 52.40 38.48

76 1.74 1.48 0.88 0.74 1.48 56.87 36.81

65 Dead 0 0 0 0 0 0 1

71 0 0 0 0 0 0 1

76 0 0 0 0 0 0 1

G = [
2, 2 , 3 , 3 , 4 , 4

]T
.

In order to move further with applying the model, the generator matrix Q of the
Markov chainmust be estimated.We use the results shown in Table 1 due to rough data
unavailability. This table, as previously stated, provides 2-year transition probability
matrices. From the knowledge of thesematrices, it is possible, in some cases, to recover
the generator matrix.
Indeed, the maximum likelihood estimator Q̂ of the generator matrix Q satisfies the
relation P̂ = exp(aQ̂) and it can be obtained as the logarithm matrix,

Q̂ = log(P̂)

a
, (25)

where P̂ is the estimate of transition probability matrix with data observed periodically
at every integer multiple of the real number a. The matrix P̂ = ( p̂i j )i, j∈E can be
estimated according to
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p̂i j = Ki j

Ki
,

where Ki j is the number of transitions from state i to state j , and Ki = ∑D
j=1 Ki j

is the total number of times households have been allocated to state i . The period of
observation is a = 2 years in our application. It should be remarked that the maximum
likelihood estimator of Q under this observational scheme is not guaranteed to exist
or to be unique (see, e.g., Bladt and Sørensen 2005; Regnault 2012). It was proved
in D’Amico and Regnault (2018) that estimator Q̂ exists and is unique whenever
the Markov chain is irreducible, and the transition probability matrix has positive
eigenvalues. The estimate of transition probability matrices is given in Table 1. Thus,
the estimated generator matrix for ages 65, 71 and 76 estimated are given by Q̂65, Q̂71
and Q̂76:

Q̂65 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.1157 0.0396 0.0237 0.0054 0.0057 0.0044 0.0367
0.5195 −1.2726 0.4570 0.0689 0.0876 0.0275 0.1122
0.1952 0.3982 −1.2717 0.3801 0.0983 0.0356 0.1638
0.0174 0.00008 1.0290 −1.7539 0.4354 0.0749 0.1976
0.0608 0.1349 0.1039 0.3188 −1.1832 0.1036 0.4548
0.0883 0.0135 0.01204 0.0453 0.000004 −0.3273 0.1702

0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q̂71 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.1913 0.0629 0.0265 0.0110 0.0117 0.0137 0.0676
0.4540 −1.2719 0.5823 0.0258 0.0585 0.0754 0.1276
0.0940 0.4279 −1.3158 0.4342 0.0408 0.1412 0.1764
0.1069 0.0002 0.5720 −1.4850 0.6984 0.0047 0.1145
0.0707 0.0850 0.1921 0.3470 −1.3976 0.1870 0.5019
0.0382 0.0074 0.0305 0.0176 0.0538 −0.6540 0.5065

0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q̂76 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.2799 0.1012 0.0507 0.0144 0.0110 0.0183 0.0865
0.2782 −1.3390 0.6011 0.0628 0.1035 0.1340 0.0872
0.1279 0.4041 −1.3039 0.4069 0.0797 0.0643 0.2218
0.0185 0.0147 0.7587 −1.8751 0.6317 0.2237 0.2774
0.0540 0.0900 0.0340 0.2974 −1.1518 0.2267 0.4483
0.0212 0.0321 0.0054 0.0140 0.0275 −0.5715 0.4718

0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

According to Eq. (24), the break-even fee is the value of γ for which the expected
discounted benefits equal the premium h0. The break-even fee corresponding to dif-
ferent guarantee amounts for ages 65, 71 and 76 is shown in Table 2. In the table’s
first column, we consider a constant variation ε, which is added to all the elements of
the vector G. Thus, for example when ε is 1.12 the G modifies to

G = [
3.12, 3.12 , 4.12 , 4.12 , 5.12 , 5.12

]T
.

Results from Table 2 illustrate that with the increase in ε, the fee associated with
the contract also increases. Furthermore, there is no need for a break-even charge
corresponding to each guarantee percentage. Even if the cost is 0 bp, a very low
guarantee will not allow the contract’s present value to match the premium. Similarly,
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Table 2 Break even fee (γ ∗) for
age 65, 71 and 76

ε γ for Age 65 γ for Age 71 γ for Age 76

1.12 76.00062 0 0

1.13 178.37623 0 0

1.14 314.39606 0 0

1.15 517.65370 0 0

1.16 930.53027 0 0

1.17 0 0 0

1.18 0 0.40650 13.7546

1.19 0 45.97255 39.09075

1.2 0 97.14045 66.06790

1.21 0 155.48348 94.91331

1.22 0 223.34696 125.90514

1.23 0 304.45578 159.38880

1.24 0 405.26541 195.80020

1.25 0 538.52462 235.70084

1.26 0 735.61659 279.83102

1.27 0 0 329.19493

1.28 0 0 385.20313

a very high guarantee cannot make the contract’s current value equal to the premium,
even if the cost is 3000 bp. Therefore the value of ε has been selected such that the
value of the break-even fee exists between 0 and 1000 basis points.
Additionally, in Fig. 3, plots are drawn of fee vs. value of shift parameter (ε) for
different ages to support our results graphically. Increases in ε enhance the guaranteed
withdrawal amounts while decreasing the death benefit value. The increase in the
value of the life benefit overcomes the reduction in the value of the death benefit as
ε increases. As a result, as the value of ε rises, the value of GLWB as a whole rises
with it. The effect is more significant for younger policyholders, as the difference in
GLWB values corresponding to different ε values decreases and eventually vanishes
as the policyholder’s age at inception rises. Senior policyholders might thus benefit
from a larger guarantee value without having to pay a higher charge.

3.3 Sensitivity analysis

In this section, we will study the change in the expected present value of the contract
with respect to the different parameters.

1. Age: FromFig. 3, it is observed that the initial insured age also impacts the fee, i.e.,
with the increment of initial age, GLWB value increases, and hence γ ∗ increases.
We examine the influence on the death and living benefits of a change in age at
inception y on the GLWB value. As the initial insured age increases, contract
length decreases but also increases the level of the health status, resulting in fewer
withdrawals with an increment in the withdrawal amount and a lower living benefit
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Fig. 3 Break even fee for different age groups

amount. Furthermore, when the initial insured age decreases, the time it takes to
discount the death benefit value is reduced, resulting in a more considerable death
benefit. An increase in initial insured age increases the overall GLWB value since
the loss in living benefit value is lesser than the death benefit value for younger
policyholders. However, for senior policyholders, this gap between the death and
living benefits keeps decreasing.

2. Guaranteedwithdrawal rate: In Fig. 4, the plot of EPV vs. ε is drawn to show the
change in the behavior of the GLWB value with the change in the shift parameter
ε. An increase in ε enhances the overall withdrawal amounts while decreasing the
death benefit value. The increase in the value of the life benefit overcomes the
reduction in the value of the death benefit as ε rises. As a result, as the value of
ε rises, the value of the GLWB as a whole rises with it. The effect is greater for
the senior policyholders, as the GLWB value increases with an increase in age and
ε. Younger policyholders might thus have some benefit from low charges with a
larger guarantee amount.

4 Conclusion and future work

This study proposed and evaluated a new product that is the variable annuity which
is accompanied by the health status and hospitalization coverage benefit along with
the guaranteed lifelong withdrawal benefit. In this article, a mixed continuous-discrete
time model with constant volatility and rate of interest is proposed to calculate the fair
value of the product.
People approaching retirement must be insured from outliving their assets and pro-
tected from aging problems. This product may provide amore comprehensive solution
to all these needs. In this article, expected life and death benefits are evaluated, and
the fair fee is determined.
These products can be made more attractive if the health benefits can be modeled
better to provide an increase in medical and hospitalization costs to the policyholder.
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Fig. 4 EPV versus shift parameter (ε)

As discussed in the sensitivity analysis section, changes in age and Guaranteed with-
drawal amount affect the fair fee (γ ∗) of the product effectively. Future works include
the application of more sophisticated models of health evolution like semi-Markov
processes, and the consideration of path-dependent health-related rewards (see, e.g.,
D’Amico 2011). Generalizations in the actuarial variables, such as the valuation of
surrender benefits using a suitable penalty process, can also be included in future
work. The removal of various financial presumptions, the subsequent application of
stochastic volatility, and the interest rate as considered for a different financial prob-
lem in Bufalo et al. (2022) is also of interest. An interesting challenge is to consider
a multi-dimensional scenario where the fund value depends on a basket of correlated
assets. In this case, n-dimensional diffusion equations should be considered as the
process generating the fund value according to the share invested in each asset.
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