
Modelling Financial Returns with Finite
Mixtures of GED
Modellazione dei Rendimenti Finanziari con Misture
Finite di GED

Pierdomenico Duttilo and Stefano Antonio Gattone

Abstract As widely identified by the empirical evidence, daily returns on financial
assets are not Normally distributed, because they are characterized by excess kur-
tosis and different degrees of skewness. Finite mixtures of distributions have been
proposed in literature to capture these features. In this work a finite mixture of two
Generalized Error Distributions (GED) is applied to fit the distribution of the daily
returns on the Dow Jones Industrial Average (DJIA) index for the period from Jan-
uary 4, 2016 to January 31, 2022. Moreover, in order to highlight the flexibility
of the shape parameter over time, the entire analysis period was divided in three
different sub-periods and for each one the mixture of GED was estimated.
Abstract Come ampiamente identificato dall’evidenza empirica, i rendimenti gior-
nalieri delle attività finanziarie non sono distribuiti normalmente, poiché sono
caratterizzati da curtosi eccessiva e diversi gradi di asimmetria. Per catturare
queste caratteristiche, in letteratura sono state proposte misture finite di distribuzioni.
In questo lavoro viene applicata una mistura finita di due distribuzioni GED (Gen-
eralized Error Distribution) per stimare la distribuzione dei rendimenti giornalieri
dell’indice Dow Jones Industrial Average (DJIA) per il periodo dal 4 gennaio 2016
al 31 gennaio 2022. Inoltre, al fine di evidenziare la flessibilità del parametro di
forma nel tempo, l’intero periodo di analisi è stato suddiviso in tre diversi sottope-
riodi e per ciascuno è stata stimata la mistura di GED.
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1 Introduction

Commonly, financial time series such as daily returns on stocks, indices, currencies,
cryptocurrencies and many others financial assets do not follow a Gaussian distri-
bution because they are characterized by excess kurtosis and different degrees of
skewness. Finite mixtures of distributions have been proposed in literature to cap-
ture these features.
Finite mixture of Normal distributions known also as mixtures of Gaussians are
widely used in this field, for instance Kon (1984) [5] proposed a discrete mixture
of Normal distributions to approximate the excess kurtosis and positive or negative
skewness of daily returns distribution of common stocks and indices. More recent
studies [1, 2, 4] argued that finite mixtures of Gaussians (with two or three compo-
nents) are a good tool to fit the empirical distribution of financial returns. However,
these mixtures impose a priori specific constraints on the form of the returns dis-
tribution since the components are Gaussians. The finite mixture of GED, known
also as the finite mixture of generalized normal distribution can overcome this crit-
ical issue thanks to the flexibility provided by the additional shape parameter νk.
In this framework, the recent contribution of Wen et al. [8] (2020) is remarkable.
They studied a univariate mixture of GED and proposed an expectation conditional
maximization (ECM) algorithm for parameter estimation. Additionally, using data
sets of the S&P 500 and Shanghai Stock Exchange Composite Index (SSEC), it was
found that the mixture of GED better describes the excess kurtosis and skewness of
daily returns compared to mixtures of Gaussians.
This work aims to enrich the existing literature on the use of mixtures of GED in
finance by applying a finite mixture of two generalized error distributions to fit the
distribution of the daily returns on the Dow Jones Industrial Average (DJIA) index.
Besides, the likelihood-ratio test (LR Test) and information criteria were applied
to compare the goodness of fit performance among the mixture of two GED, the
mixture of two Gaussian distributions and the mixture of a Gaussian and a Laplace
distribution [3].
Moreover, the entire analysis period was divided in three different sub-periods and
for each one the mixture of GED was estimated in order to highlight the flexibility
of the shape parameter over time.
The rest of the paper was organized as follows. Section 2 illustrates the method-
ological framework. Section 3 illustrates the empirical application. Finally, Section
4 provides the results discussion and some conclusions.
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2 Methodological Framework

2.1 Generalized Error Distribution

A random variable X is said to have the generalized error distribution with param-
eters µ (location), σ (scale) and ν (shape) if its probability density function (p.d.f.)
is given by

f (x|µ,σ ,ν) = ν
2σΓ (1/ν)

exp

�
−
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x−µ
σ

�����

ν�
, (1)

with Γ (1/ν) =
� ∞
0 t
1/ν−1 exp−t dt, −∞< x< ∞, −∞< µ < ∞, σ > 0, ν > 0.

Thanks to the shape parameter, the GED distribution is a flexible tool to capture a
large class of statistical distributions [7, 8], for example with ν = 1 and ν = 2 GED
becomes a Normal and Laplace distribution, respectively.

2.2 Finite Mixtures of GED

A finite mixture of GED with K components is given by the marginal distribution
of the random variable X
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where νk > 0, σk > 0, µk ∈ R, 0 < πk < 1 and ∑Kk=1πk = 1. With K = 2 the mixture
of two GED is given by:
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(3)

where θ = (π1,π2,µ1,µ2,σ1,σ2,ν1,ν2). The mixture of two GED can be estimated
via the ECM algorithm [8]. As shown by Wen et al. (2020) [8], this model has
important properties because it nests several distributions as its sub-models. Espe-
cially, depending on the value of the shape parameter (νk), the mixture of two GED
reduces to:

1366



4 Pierdomenico Duttilo and Stefano Antonio Gattone

• the mixture of two Gaussians when ν1 = ν2 = 2;
• the mixture of two Laplace distributions when ν1 = ν2 = 1;
• the mixture of a Gaussian and a Laplace distribution when ν1 = 2 and ν2 = 1;
• the mixture of a Gaussian and a GED distribution when ν1 = 2 and ν2 > 0;
• the mixture of a Laplace and a GED distribution when ν1 = 1 and ν2 > 0.

As a result the mixture of GED does not impose a priori specific constraint on the
shape of each component of the mixture [6].

3 Empirical Application

The daily closing prices of the DJIA index between January 4, 2016 to January 31,
2022 were collected for the analysis from https://finance.yahoo.com. Next, the daily
return rt in period t is defined as rt = (lnPt − lnPt−1)100 where Pt and Pt−1 are the
closing prices at time t and t−1, respectively. Panel (a) of Figure 1 shows the daily
returns on the DJIA index.
Estimation results of the mixtures of distributions with two components for the daily
returns on the DJIA index are summarized in Table 1. According to the LR Test and
information criteria the mixture of two GED (Figure 1, panel b) is preferred over
the mixture of two Gaussians and the mixture of a Gaussian and a Laplace distri-
bution. Furthermore, the estimated shape parameters show that the first component
has heavier tails than a Laplace distribution (0.53 < 1), while tail weights of the
second component intermediate between the Gaussian and the Laplace distribution
(1 < 1.12 < 2). These results are in line with those found by Wen et al. (2020)
[8] who estimated the two-component mixture of GED on the daily returns of the
S&P500 identifying a mixture component that allows a more extreme tail behaviour
compared to the other.
In order to highlight the flexibility of the shape parameter over time, the entire

analysis period was divided in three different sub-periods and for each one the two-
component mixture of GED was estimated. As showed in panel (a) of Figure 1 each
sub-period reflects different volatility levels: low (2016-2017), intermediate (2018-
2019) and high (2020-2022). In addition, the latter two sub-periods are characterized
by a higher number of large negative returns, i.e. negative skewness. Finally, Table 2
suggests that the third sub-period has a two-component mixture of GED with heavy
tails compared to the other sub-periods.
It is important to note that the current version of the mixture model proposed in

this work can be cast in the framework of unconditional (with respect to time) esti-
mation which suggests a poor predictive ability. Indeed, previous studies [1, 2, 4, 5,
8] do not apply mixtures of distributions to make predictions. Nonetheless, this work
provides an out-of-sample application of the Value at Risk (VaR) estimation. The
first two sub-periods are taken as “in-sample” observations and the third sub-period
as the “out-of-sample” observations. The estimated �VaRα=0.01 in the “in-sample”
observations is -2.736, -2.482 and -2.364 for the mixture of GED, mixture of Gaus-
sians, and mixture of a Gaussian-Laplace, respectively. The empirical VaRα=0.01 of
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the third sub-period (out-of-sample) is -5.702. The evidence suggests that the third
sub-period is characterised by an extreme VaRα=0.01 value (due to the COVID-19
crisis) and the estimated �VaRα=0.01 of the two-component mixture of GED is the
closest compared to the other two-component mixtures.

4 Conclusion

It has been shown that the mixture of GED is a powerful and flexible tool to fit the
empirical distribution of financial returns. Considering the results of the empirical
application in Section 3 at least two interesting considerations arise. Firstly, the
mixture of GED with two components can model the behaviour of daily returns
more appropriately and steadily compared to benchmark models, i.e. the mixture of
two Gaussians and the mixture of a Gaussian and a Laplace distribution. Secondly,
the estimated shape parameters change over time, they are not constant. Thus, the
shape parameter changes according to the behaviour of daily returns i.e. market
conditions. Consequently, the overall volatility estimated by the mixture in each
sub-period (0.63, 0.97, 1.73) reflects the corresponding volatility level showed by
Figure 1 (low, intermediate and high).

Appendix

Table 1: Estimation results of the two-components mixtures of distributions.

Parameter Mixture of distributions

Gaussian Gaussian-Laplace GED

π1 0.1416 0.5415 0.3221
π2 0.8583 0.4584 0.6778
µ1 -0.4242 0.1353 -0.0721
µ2 0.1245 -0.0095 0.1553
σ1 3.8912 0.6652 0.2115
σ2 0.8876 1.0912 0.6317
ν1 2 2 0.5304
ν2 2 1 1.1245

Stdev1 2.7515 0.4703 1.7759
Stdev2 0.6276 1.5433 0.7468
Stdev 1.2031 1.1031 1.1855

LL -2047.13 -2017.19 -1997.13
LR Test 100.00* 40.12*
AIC 4099.26 4039.37 4001.25
BIC 4130.93 4071.04 4045.59
HQIC 4114.18 4054.30 4022.15
EDC 4133.39 4073.20 4049.03

*p-value = 0.
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Table 2: Estimation results of the two-components mixtures of GED in the three sub-periods.

Parameter Sub-periods

2016-2017 2018-2019 2020-2022

π1 0.4890 0.7942 0.1180
π2 0.5110 0.2058 0.8820
µ1 0.0481 0.1507 -0.5622
µ2 0.1220 -0.4872 0.1198
σ1 0.3940 0.7469 3.4994
σ2 0.8773 2.2960 0.9137
ν1 2.1787 1.5205 1.1075
ν2 1.3384 1.9479 1.2465

Stdev1 0.2674 0.6344 4.2266
Stdev2 0.8402 1.6464 0.9469
Stdev 0.6302 0.9716 1.7267

LL -421.34 -647.61 -857.05
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Fig. 1: Daily returns on the DJIA index and estimation of the density of the two-component
mixture of GED.
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