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Abstract

Background and objectives Fetal head-circumference (HC) measurement from ultrasound (US) images provides useful hints
for assessing fetal growth. Such measurement is performed manually during the actual clinical practice, posing issues relevant
to intra- and inter-clinician variability. This work presents a fully automatic, deep-learning-based approach to HC delineation,
which we named Mask-R>CNN. It advances our previous work in the field and performs HC distance-field regression in an
end-to-end fashion, without requiring a priori HC localization nor any postprocessing for outlier removal.

Methods Mask-R>CNN follows the Mask-RCNN architecture, with a backbone inspired by feature-pyramid networks, a
region-proposal network and the ROI align. The Mask-RCNN segmentation head is here modified to regress the HC distance
field.

Results Mask-R2CNN was tested on the HC18 Challenge dataset, which consists of 999 training and 335 testing images. With
a comprehensive ablation study, we showed that Mask-R>?CNN achieved a mean absolute difference of 1.95mm (standard
deviation = £1.92 mm), outperforming other approaches in the literature.

Conclusions With this work, we proposed an end-to-end model for HC distance-field regression. With our experimental

results, we showed that Mask-R>CNN may be an effective support for clinicians for assessing fetal growth.

Keywords Deep learning - Distance fields - Fetal Ultrasound - Head-circumference delineation

Introduction

Measuring fetal-head circumference (HC) is a common task
in the clinical practice for assessing fetal growth. Ultra-
sound (US) imaging is the elected imaging modality for such
assessment due to its accessibility and safety. Nowadays,
HC measurement is performed manually by gynecologists,
which delineate the fetal skull or select skull landmarks on
the US image. Such procedure is time consuming and may
be prone to intra- and inter-clinician variability [1]. To atten-
uate these issues, the medical-image analysis community has
worked in the last decades to develop algorithms for auto-
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matic HC measurement from US images. This automatic
measurement relies on HC delineation, which is a challeng-
ing task. US images present a low signal-to-noise ratio (with
the presence of shadows and specking in the image), possi-
bly resulting in missing edges [1]. For fetuses of the same
gestational trimester, fetal HC varies among fetuses in terms
of skull thicknesses and head size, with different contrast
levels from background tissues. Such variability is further
increased among fetuses of different gestational trimesters.
As an additional challenge for automatic delineation algo-
rithms, HC only covers a small portion of the US image.

To tackle the challenges of structure delineation in differ-
ent fields, recent work [2,3] in the literature has modeled the
delineation problem as a heatmap-regression tasks, where
a convolutional neural network (CNN) is used to regress
a distance field from the contour to be delineated. Follow-
ing such paradigm, in our previous work [4] we presented a
two-step HC distance-field regression approach to fetal head
delineation, which involves fetal-head localization with the
Yolo network followed by an encoder-decoder CNN for HC
distance-field regression. In fact, we showed that perform-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-021-02430-0&domain=pdf
http://orcid.org/0000-0002-4494-8907

1712 International Journal of Computer Assisted Radiology and Surgery (2021) 16:1711-1718
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ing fetal head localization prior regressing the distance fields
significantly improves the delineation performance.

In this paper we move forward with respect to [4] and
hypothesize that Mask-RCNN [5], which was originally
developed for semantic-segmentation tasks, can be used to
provide accurate regression of HC distance fields with an
end-to-end approach. The main contribution of this work is
a unified approach, called Mask-R>CNN (Fig. 1), for fetal-
HC delineation in US images. Our approach modifies the
original Mask-RCNN by replacing the Mask-RCNN ' seg-
mentation head with a new head for distance-field regression.
Considering that our network regresses the distance field, we
call it Mask-R2CNN because one “R” refers to the “region”
proposal approach followed by the standard Mask-RCNN
and the other “R” refers to the distance-field regression task.
The main innovation introduced here is that our approach
regresses distance fields, instead of predicting a segmenta-
tion mask as in the original implementation of Mask-RCNN.
Opposite to [4], the region proposal network (RPN) inherited
from Mask-R>CNN avoids the need of a priori HC localiza-
tion. Furthermore, with our experiments that are carried out
using the publicly available dataset released during the HC18
Grand Challenge,1 we show that the Mask-RZCNN does not
produce spurious prediction. This avoids the need for a pos-
teriori outlier removal, making our model independent from
the definition of post-processing parameters. Mask-R2CNN
is therefore easily generalizable to other datasets without any
modification. The end-to-end approach further allows us sim-
plifying and speeding up the training process, which is an
important aspect to be considered with a view to collect more
US images. At the same time, having a single stage, end-to-
end architecture will allow to easily embed the algorithm in
US machines.

State of the art
Researchers in the medical-image community have been
working in the last couple of decades for providing algo-

rithms for automatic HC delineation. In 2018, the HCI8
Grand Challenge was organized, with the release of a dataset

! https://hc18.grand-challenge.org/.
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of 1334 US images. Such dataset size, coupled with the
growing availability of computational power, unlocked the
potential of deep learning in the field. As a preliminary step
for HC delineation, a number of researchers uses CNNs for
segmenting the fetal head. The work in [6] proposes a CNN
inspired by LinkNet to segment the fetal head and obtain,
thought adding fully connected neurons, the HC main axes,
center and angle. However, the problem of directly regress-
ing measurements may be challenging, posing issues relevant
to overfitting. The work in [7] uses UNet-like CNNs for
head segmentation, showing interesting preliminary results
on small custom datasets. In [8], Mask R-CNN is used for
jointly localizing and segmenting the fetal head. The HCI8
Grand Challenge dataset is used in combination with a cus-
tom dataset of more than 2000 images in [9] to train a
probabilistic UNet. As a result, multiple HC segmentation
hypotheses are provided to the clinicians, which can choose
the best one. Segmentation CNNs with attention mechanism
are investigated in [10,11], showing interesting preliminary
results.

Most of these approaches addresses the problem of HC
delineation through fetal-head segmentation. In [4], the prob-
lem is addressed from a different perspective, by training
a CNN to regress a distance field from the HC. However,
the approach relies on a two-step approach for fetal head
localization and distance-field regression, which is achieved
by modifying UNet to accomplish a regression task. The
regression network is then followed by a parameter-sensitive
post-processing to discard outliers. In this work, we instead
provide a unified framework for HC distance-field regres-
sion, which does not require any a priori HC localization nor
time-consuming or parameter-sensitive post-processing.

Method

The proposed strategy to train Mask-R?CNN relies on dis-
tance fields. As introduced in section “Introduction”, the
rationale behind using distance fields is to smooth the HC
line as to facilitate the network task as opposed to directly
regressing the HC line. To build the distance-field ground
truth, we start from the HC annotation provided by the HCI8
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Fig.2 a Gaussian profile for
building the distance-field
regression ground truth, b
distance-field regression ground
truth, ¢ visual representation of
the bounding box ground-truth
superimposed on the
distance-field regression ground
truth (the bounding box is
thickened for visualization
purposes)

Grand Challenge, which consists of 2-pixels wide ellipses.
We skeletonize the ellipses prior building our distance-field
ground truth. Inspired by [4], we consider a region (Fig. 2)
consisting of all pixels that lie in the rectangular region with
thickness r pixels, centrally aligned with each of the pixel of
the skeletonized HC, and perpendicular to the tangent of the
HC. Each region is built to have a Gaussian intensity profile
with standard deviation r /2. The bounding-box ground truth
is then delineated to completely contain the distance-field
ground truth.

The backbone, RPN and ROI align of Mask-R2CNN fol-
low the standard implementation of Mask-RCNN [5]. The
backbone of Mask-R?CNN is a feature pyramid network
(FPN) that relies on ResNet-101. We chose this configuration
asitachieved the best performance in [5]. The input US image
is hence processed via a sequence of convolution and pool-
ing. The convolutional and identity blocks follow the original
implementation of ResNet [12]. The resulting feature maps
(C1, C2, C3, C4, C5) are further processed by a top-down
pathway with lateral connections. Convolutions in the path-
way are performed with 256 1 x 1 filters. Up-sampling is
performed with 2 x 2 kernels and max pooling with pool
size 1 x 1 and strides 2. The output feature maps (P2, P3,
P4, PS, P6) are processed by the RPN to generate candidates
ROIs. The RPN anchors span 5 scales and 3 aspect ratios, to
account for different HC size and ellipticity. Prior entering
the Mask-R2CNN heads, P2, P3, P4, P5, P6 are processed by
the ROI align, which resizes the candidate ROIs to guarantee
that all ROIs are squared and have the same (small) spatial
sized x d.

Mask-R2CNN heads

Mask-R>CNN has three heads: the classification, bounding-
box and distance-field regression heads, all fed with the ROI
candidates from the ROI align (Fig. 3). In the classification
and bounding-box heads, the ROI-aligned candidates are pro-
cessed by two fully-connected layers with 1024 neurons. The
classification head has a third fully-connected layer with 2
neurons (for fetal head and background), followed by soft-
max. The bounding-box head has a fully-connected layer

with 4 neurons, linearly activated, which predict the anchor
correction factors for the fetal-head class.

The architecture of the distance-field regression head is
summarized in Table 1. The first four convolutions follow
the implementation of the mask head of Mask RCNN. We
replace the upsampling path of Mask RCNN, which origi-
nally consisted of a single transposed convolution with 256
2 x 2 filters with stride 2, with a sequence of up-convolutions.
The upsampling path takes inspiration from the decoder path
of Unet, which we used in our previous work for HC delin-
eation [4]. Using the decoder path of Unet instead of a single
transposed convolution allows us to restore the resolution of
the distance field, and achieve an accurate prediction. Up-
convolution is achieved with 2 x 2 upsampling followed by
convolution with 256 2 x 2 filters. We set the number of
up-convolutions to 3, as a trade-off between regression per-
formance and computational effort. Each up-convolution is
followed by 2 3 x 3 convolutions with 256 filters. All con-
volutions are followed by batch normalization and activation
with the rectified linear unit (ReLU). All convolutions in the
Mask-R?CNN heads are performed in parallel for all ROIs
using time-distributed convolution.

Mask-R2CNN training and ellipse fitting

Mask-R?CNN is trained using the gradient descent with
momentum as optimizer and unitary batch size for mem-
ory constraint. We use a multi-task loss (L), computed
on each ROI, that is defined as L = oLcs + BLpox +
yLqr where L, Lpox and Lgf are the classification,
bounding-box and distance-field regression loss, respec-
tively and «, B, y are constants. The L and Lypox are
identical to those defined in Mask-RCNN. The Lgs is the
root mean square error computed between the distance-
field ground truth and prediction, as in our previous work
[4]. We trained Mask-RZCNN starting from the backbone
pretrained on the COCO dataset, using weights publicly
available online.> We then performed transfer learning by
training the Mask-R2CNN heads alone, freezing the back-
bone. Following consideration in the literature [13], since

2 https://github.com/matterport/Mask_RCNN/releases/download/v2.
0/mask_rcnn_coco.h5.
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the L.s and Lpox drop faster than Lgr, we further trained
the distance-field regression head alone, freezing the other
weights of Mask-R?CNN. Finally, we trained the full Mask-
R2CNN. We selected the best model among epochs as
the one with the lowest L on the validation set. Fol-
lowing similar approaches in the literature (e.g., [6,14])
the output of Mask-R?CNN was thresholded prior per-
forming ellipse fitting using a geometric distance based
method (i.e., ElliFit [15]), which is unconstrained, non-
iterative and computationally inexpensive. From the fitted
ellipse, we derived the semi-major axis length (a), semi-
minor axis length (b), angle of orientation (¢), and cen-
ter (x¢, Ye)), as required by the HCI8 Grand Challenge
organizers.

Experimental setup

Mask-R>CNN was developed using the data released for
the HCI8 Grand Challenge.> The dataset consists of 999
training and 335 testing images acquired from 551 women
at the Department of Obstetrics of the Radbound Univer-
sity Medical Center, Nijmegen, Netherlands [1], using both
the Voluson E8 and the Voluson 730 (General Electric, Aus-
tria). Image size is 800 x 540 pixels, with a pixel physical
size ranging from 0.052 to 0.326 mm, due to sonopraphers’
adjustments when imaging fetuses at different trimesters. For
each image, a sonographer manually delineated the HC by
drawing an ellipse that best fitted the skull. In this work, 300
training images were used as validation set. Challenges of the
testing images included different position of the head in the
image, as well as varying dimension of the fetal head among

3 https://hc18.grand-challenge.org/.
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Table 1 Mask-R2CNN distance-field regression heads

Operator Kernel dimension No. filters Output dimension
Conv 3 256 d x d x 256
Conv 3 256 d x d x 256
Conv 3 256 d x d x 2566
Conv 3 256 d xd x 256
UpSamp 2x2 - 2d x 2d x 256
Conv 2 256 2d x 2d x 256
Conv 3 256 2d x 2d x 256
Conv 3 256 2d x 2d x 256
UpSamp 2 - 4d x 4d x 256
Conv 2 256 4d x 4d x 256
Conv 3 256 4d x 4d x 256
Conv 3 256 4d x 4d x 256
UpSamp 2 - 8d x 8d x 256
Conv 2 256 8d x 8d x 256
Conv 3 256 8d x 8d x 256
Conv 3 256 8d x 8d x 256
Conv 1 1 8d x 8d x 1

Convy convolution, UpSamp upsampling, d x d in the Output dimension
column spatial size of the squared feature map in output from the ROI
align layer. The number of channels is reported, too

the gestational trimesters. Reverberations and shadows were
also present, with resulting poor head contrast.

To train Mask-R>?CNN, the COCO challenge annotation
format was followed. Starting from the HC annotation, we
generated the bounding box that bounded the HC distance
field. Following [4], the distance-field ground truth was
obtained with » equal to 100 pixels. This allowed to fully
cover the head-skull section at each HC point. Prior feeding
Mask-R2CNN, the images were resized to 512 x 512 pix-
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els, using zero padding to avoid changing the image aspect
ratio. Following the original Mask-RCNN implementation,
and considering the HC size in the US images, the RPN
anchor scales were set to [32, 64, 128, 256, 512], with an
anchor ratio of [0.5, 1, 2], where 1 means that the anchor is
squared. We set the ROI Align output size (d x d) to 14 x 14
and considered a total of 150 training ROIs per image, as a
trade off between accuracy and memory consumption.

Mask-R?CNN training was performed using gradient
descent with momentum with an initial learning rate and
momentum of 0.001 and 0.9, respectively. The weights of
the Mask-RZCNN backbone (i.e., ResNet-101) were initial-
ized with the pre-trained COCO weights. The «, B, y values
were set to 1 after preliminary investigation. As introduced
in section “Mask-R>CNN training and ellipse fitting”, Mask-
R?CNN was trained as follows: 50 epochs for the heads
(freezing the other layers), 50 epochs for the distance-field
head (freezing the other layers) and 50 epochs for the whole
network. On-the-fly data augmentation was performed using
scaling, translation, rotation and shearing transformations.
Thresholding prior ellipse fitting was performed using a
threshold of 0.9. The HC physical length [mm] was obtained
by multiplying the HC pixels for the corresponding pixel size
[mm], provided by the HCI8 Grand Challenge organizers.
All the analyses were performed using Keras* on a NVIDIA
RTX 2080TI, with a Xeon €5 CPU and 128 GB RAM. The
implementation of Mask-R>CNN was inspired by [16].

Following the guidelines of the HC18 Grand Challenge,
we submitted our results to the challenge platform and com-
puted the difference (DF) [mm], absolute difference (ADF)
[mm], Hausdorff distance (HD) [mm] and Dice similarity
coefficient (DSC).

Ablation study and comparison with the literature

The ablation study of this work is focused on the distance-
field regression head. As a first study, we investigated
the use of transposed convolution in the upsampling path.
We considered one (Transpl, as in the original Mask
RCNN work), two (Transp2) and three (Transp3) transposed
convolution. We further investigated the use of upconvo-
lution for a fair comparison with [4]: we compared the
proposed upsampling path, which has 3 upconvolutions,
with 1 (Up-convl) and 2 upconvolutions (Up-conv2). This
study allowed us to find the best depth of the upsam-
pling path. It is worth noting that the network proposed
in [4] has 5 up-convolutions. Nonetheless, a comparison
with such a number of up-convolutions was not possible
due to memory constraint. As an additional ablation study,
we evaluated the performance of Mask-R?CNN trained
without the classification head (MaskNoClass). For fair

4 https://keras.io/.

comparison, the ablation study was performed using the
same dataset split, training setting, and computational hard-
ware.

We decided to compare the performance of Mask-
RZCNN against [4], which is the most similar to this
work, and against [6,8,10,14,17] which follow the deep-
learning paradigm and use the HCI8 Grand Challenge
dataset only. We excluded the work in [11] because it
uses a portion of the training set of the HCIS Grand
Challenge for evaluation purposes. We decided to include
also the work in [1], even if it relies on handcrafted fea-
tures, because it introduced the HCI8 Grand Challenge
dataset.

Results

With the ablation study, it emerged that the best perfor-
mance was achieved by Mask-RZCNN, with a mean AD,
which is used for the final ranking of the HCI18 Challenge,
of 1.95 mm (standard deviation= #1.92) and a mean DSC
of 97.90 (£1.11). More specifically, we achieved a mean
AD of 1.48mm (£1.39), 1.73 mm (£1.62) and 3.62mm
(£2.80) for images of first, second and third trimester, respec-
tively. The testing time for one image was ~ 0.9s. The last
row of Fig. 5 shows visual samples of the HC delineation
obtained by Mask-R?’CNN when processing challenging
images in the HCI8 Challenge test set. HC delineation
is shown for fetal heads of varying size and position in
the image. The Transp3 [2.08 mm (£2.05)] and Up-conv2
[2.05mm (£1.86)] achieved closer AD than Mask-R2CNN.
The worst performance was achieved by Transpl [2.71 mm
(£2.42)] and Transp2 [2.69mm (£2.20)]. Visual samples
of the distance-field prediction for the ablation study are
shown in Fig. 4. The distance fields obtained with Transp3
and Mask-R2CNN granted the highest resolution. MaskN-
oClass achieved a mean DSC and AD of 82.31 and 4.14,
respectively, achieving the lowest performance in the abla-
tion study (Table 2).

For the sake of brevity, the performance relevant to the
comparison with the literature are reported in terms of
AD. Mask-R2CNN outperformed [1] [mean AD = 2.80 mm
(standard deviation = 43.30)], [6] [2.12mm (£1.87)], [17]
[2.22 mm (not available)], [14] [2.45 mm (£2.55)], and [8]
[2.33mm (£2.21)]. Our Mask-RZCNN performed slightly
worse than [10], which is the best-performing method
published so far, with a difference in AD estimation of
0.14mm. Mask-R2CNN also outperformed our previous
work [4] when excluding its post processing [2.33 (£3.36)].
Nonetheless, also when including the post processing of
[4], Mask-R2CNN had higher DSC [97.90 (£1.11) vs
97.76 (£1.32)] and close AD (1.95mm (£1.92) vs 1.90 mm
(£1.77)]. Visual results of the distance-field regression out-
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Fig.4 Visual samples of the
predicted distance field
overlapped on a test US image
for each of the ablation study. A
colormap is used for the
predicted distance field for
visualization purposes. First row
(from left to right): Transpl,
Transp2, Transp3. Second row
(from left to right): Up-convl,
Up-conv2, Mask-RZCNN

Table 2 Ablation-study results

Absolute difference Difference Dice similarity coefficient Hausdorff difference
Transpl 2.71(£2.42) —2.11(£2.95) 97.44 (£1.10) 1.46 (£0.83)
Up-convl 2.38(£2.12) —1.37 (£2.88) 97.33 (£1.28) 1.56 (£0.82)
Transp2 2.69 (£2.20) —2.12(£2.76) 97.54 (£1.10) 1.56 (£0.87)
Up-conv2 2.05 (£1.86) 0.15 (£2.77) 97.56 (£1.23) 1.48 (£0.84)
Transp3 2.08 (£2.05) —0.80 (£2.81) 97.83 (£1.07) 1.32 (£ 0.77)
Mask-R?>CNN 1.95 (£ 1.92) —0.31 (£2.73) 97.90 (+ 1.11) 1.45 (£0.24)

The best performance is highlighted in bold. The mean value, with standard deviation in brackets, is reported for each metric. All metrics but the
Dice similarity coefficient are reported in mm

Fig. 5 Visual samples of distance-field prediction. First row: ultra- challenging test images, avoiding the need of post-processing. The last
sound images, second row: prediction by [4], third row: prediction by row shows visual samples of fetal-head delineation with Mask-R2CNN
MaskRZCNN. MaskRZCNN does not produce spurious predictions in

put for Mask-R>CNN and [4] are shown in Fig. 5. The  step, while Mask-R>CNN produced accurate distance-field
method proposed in [4] produced spurious predictions both ~ estimation.
inside and outside the HC area requiring the post processing
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Discussion

In this work, an end-to-end deep-learning approach to accu-
rately delineate HC in fetal ultrasound images was presented.
The approach is based on distance field, moving our previ-
ous approach [4] forward: a modified MaskR-CNN, called
Mask-R>CNN, was built by replacing the segmentation head
with a new head for distance-field regression. To tackle chal-
lenges related to low resolution of the predicted distance field,
which would hamper accurate HC delineation, the original
upsampling of Mask RCNN was replaced taking inspiration
from the upsampling path of UNet. This end-to-end approach
paves the way for embedding Mask-R?CNN directly in US
devices with short inference time, not requiring any pre- or
post-processing.

Mask-R?CNN was developed using the HCI8 Grand
Challenge dataset. The dataset presented multiple chal-
lenges, including poorly visible HC, different HC location
and dimension as well as presence of reverberations, speck-
les and shadows. Despite such challenges, the results of
Mask-R>CNN were encouraging with amean AD of 1.95 mm
(standard deviation £1.92), proving it to be a perfect com-
petitor compared to other HC delineation framework in the
literature. Mask-R>2CNN performed slightly worse on third
trimester images [mean AD of 3.62mm (4+2.80mm) as
opposed to mean AD of 1.48 mm (£1.39 mm) obtained in the
first trimester]. This may be due to the fact that image pixel
dimension is higher on third-trimester images compared to
those belonging to other trimesters. This was also found in
[4].

With our ablation study, we showed the higher the num-
ber of up-convolutions or transposed convolutions, the more
accurate the Gaussian profile regression, as shown in Fig. 4.
The worst results in terms of AD were in fact achieved
with Transpl (i.e., using a single transposed convolution as
in the original Mask RCNN) with a mean AD of 2.71 mm
(£2.42 mm), which was followed by Transp2 and Up-convl
with a mean AD of 2.69mm (£2.20mm) and 2.38 mm
(£2.12mm), respectively. Up-convolutions seemed to per-
formed slightly better compared to transposed convolutions.
Hence, from our experiments up-convolution guaranteed a
better distance-field output resolution than transposed con-
volution, allowing to have a more accurate delineation of
the fetal head contours. This may not be fully appreciated
considering the DSC, as it was computed from the full-
head segmentation masks. Considering the AD, which is the
elected metric for assessing the best method by the HCI8
Grand Challenge organizers, it was always lower for up-
convolution than for transposed convolution. This can be also
appreciated from a qualitative point of view by the visual
samples shown in Fig. 4. MaskNoClass achieved the lowest
results in the ablation study. This may be probably explained
considering that the classification loss of our Mask-R>CNN

had a regularization effect during training. This is in line
with current considerations in the literature about multi-task
learning [13,18].

Mask-R?>CNN was one of the best HC delineator among
state-of-the-art methods tested on the same dataset. The
lower performance of [1,14] may be explained consider-
ing that deep learning is more robust to US challenges than
handcrafted-based and model-based strategies. As regard
lower performance of [6], directly regressing the HC param-
eters, without going through an intermediate step, could be
challenging for the architecture. Our approach also outper-
formed [8,17], in which the HC delineation was performed
as a segmentation problem. Regressing a distance-field by
Mask-RCNN may be therefore a satisfactory way for HC
length computation. Our approach performed slightly worse
compared to [13], with a difference of 0.14 mm in AD estima-
tion which may be probably attributed to the use of attention
mechanism. However, a difference of 0.14 mm can be con-
sidered negligible compared to the whole size of the head
(mean HC= 174.38 mm among the images of the training
set). Mask-RZ2CNN also outperformed our previous work [4]
when its post processing was not considered. The presence
of a RPN allowed to obtain accurate predictions [especially
in those images in which the uterus is particularly evident
(see columns 3-6 in Fig. 5)], avoiding to rely on a post pro-
cessing method to discard outliers. Nonetheless, even when
the post processing was considered, the proposed framework
reached a close AD, with a difference of 0.05 mm. Moreover,
since the up-sampling path of [4] included one more up con-
volution compared to our Mask-R>CNN, adding one more
up-convolution is supposed to further improve the distance-
field prediction. This was not tested in this work due to
memory constraints.

A limitation of the proposed work can be seen in the
limited size of the dataset, which however is the current
benchmark in the field. A possible solution to overcame
this straightforward limitation could be to exploit synthetic
augmentation techniques as proposed in [19]. To directly
delineate the HC, hence avoiding to rely on ellipse fitting,
semantic edge localisation could be also investigated.

Conclusions

In this work, we showed that Mask-RZCNN is able to tackle
the challenges of HC delineation in US images, achieving
an AD of 1.95 mm, without any manual intervention nor pre
or post-processing. We moved forward from our previous
work [4] presenting an end-to-end architecture that can be
easily embedded in US machines and used also in other clin-
ical fields. We hope Mask-R?CNN could be translated in the
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clinical practice to offer true support to clinicians for HC
measurement.
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