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Abstract
Purpose  Limited data is reported regarding the bone mineralization around dental implants in the first months from inser-
tion. The study analyzed the peri-implant bone around loaded and unloaded implants retrieved from human mandible after 
4 months from placement.
Method  The composition and mineralization of human bone were analyzed through an innovative protocol technique using 
Environmental-Scanning-Electron-Microscopy connected with Energy-Dispersive-X-Ray-Spectroscopy (ESEM/EDX). Two 
regions of interest (ROIs, approximately 750×500 μm) for each bone implant sample were analyzed at the cortical (Cortical 
ROI) and apical (Apical ROI) implant threads. Calcium, phosphorus, and nitrogen (atomic%) were determined using EDX, 
and the specific ratios (Ca/N, P/N, and Ca/P) were calculated as mineralization indices.
Results  Eighteen implant biopsies from ten patients were analyzed (unloaded implants, n=10; loaded implants, n=8). For 
each ROI, four bone areas (defined bones 1–4) were detected. These areas were characterized by different mineralization 
degree, varied Ca, P and N content, and different ratios, and by specific grayscale intensity detectable by ESEM images. 
Bony tissue in contact with loaded implants at the cortical ROI showed a higher percentage of low mineralized bone (bone 
1) and a lower percentage of remodeling bone (bone 2) when compared to unloaded implants. The percentage of highly 
mineralized bone (bone 3) was similar in all groups.
Conclusion  Cortical and apical ROIs resulted in a puzzle of different bone “islands” characterized by various rates of min-
eralization. Only the loaded implants showed a high rate of mineralization in the cortical ROI.
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Introduction

Histological and biochemical investigations of peri-implant 
bone tissue indicate great cell turnover with different cells 
involved in neo-angiogenesis, vascularization, bone forma-
tion, and remodeling, which are responsible for new bone 
morphology [1–7].

Osseointegrated dental implants should possess thigh 
and strict bone tissue around the subcrestal threads [4, 8]. 
For this reason, bone implant contact is usually calculated 
on histological samples [9–11]. Bone in contact with the 
implant surface and bone around the implant can be influ-
enced by mechanical loads, particularly in the early months 
after insertion [4].

In recent years, different animal models have been used 
to study bone morphology around implants immediately 
after insertion and during bone healing [12–17]. However, 
animal models usually have discrepancies when directly 
translated to humans. In some studies, no occlusal load was 
applied to the implants [14–17]. In other studies, femoral 
or tibial bones were used, with obvious biological and bio-
mechanical differences [12, 13, 18, 19].

Several studies have considered retrieved human den-
tal implants as samples to obtain more information on 
the morphology of the bone around and in contact with 
the implant surface in clinical conditions [1–3, 5–7, 10, 
20, 21]. These morphological studies demonstrated great 
remodeling activity with many modifications of bone 
and with an active role of the blood cloth and other tis-
sues [1–3, 5–7]. The roles of necrotic bone debris, smear 
layer, and fibrous tissue have only partially been described 
in these studies [3, 5, 20, 21]. Moreover, limited data is 
reported regarding the bone mineralization and composi-
tion around dental implants in the first months from their 
insertion in human mandible.

Environmental Scanning Electron Microscopy (ESEM) 
connected with Energy Dispersive X Ray Spectroscopy 
(EDX) allows to evaluate the element content (atomic %) 
of inorganic and organic samples. Recently, a protocol 
to investigate the bone mineralization around retrieved 
dental implants has been conceived [22, 23]. This analy-
sis has been used to investigate the composition of bone 
around implants using histological preparations from 
human biopsies, providing a direct comparison with the 
optical information from the same histological prepara-
tion [22–25].

The aim of this study was to investigate the bone miner-
alization and morphology around dental implants retrieved 
from the human mandible after 4 months under two different 
loading conditions. One implant group was loaded after 2 
months, and the other group was left unloaded.

Methods

Detailed information on the clinical procedures have been 
reported in a previous paper [5]. The protocol of the study 
was approved on October 8, 2014, (CURN 07- 2014) by 
the Ethical Committee of the Corporación Universitária 
Rafael Núñez, Cartagena de Indias, Colombia.

Sample size calculation has been performed following a previ-
ous paper [26]. PS Power and Sample Size Calculations software 
(Version 3.0) was used [27]. In order to reach Power analysis 0.9 
and α error 0.05, a minimum of 12 implants per group were nec-
essary. This number was further increased to 16 to compensate 
for any losses or problems with biopsies analyses.

All procedures were made according to the recommen-
dations of the declaration of Helsinki [28]. The study was 
designed in accordance with the CONSORT guidelines [29].

Healthy, nonsmoker volunteers were recruited and had to 
fulfill strict inclusion criteria [5]. Patients received two mini-
implants (5-mm height, 3.5-mm width, Sweden & Martina, 
Due Carrare, Padova, Italy) in the posterior region of the 
mandible (molar areas). All surgeries were conducted on 
fully-healed crests in sites with adequate bone volumes and 
height and without the need for any bone graft procedures.

All implants were characterized by a ZirTi surface (Swe-
den & Martina, Due Carrare, Padova, Italy), obtained by zir-
conium microspheres sandblasting and by hydrofluoric acid, 
sulfuric acid, and hydrochloric acid etching treatments [30].

All surgical procedures were performed by a skilled oper-
ator. After local anesthesia, full-thickness flaps were raised, 
and an osteotomy performed with a series of drills with 
increasing diameter. Final alveolar socket preparation was 
2.8 mm in width in the apical portion, 3.0 mm in width in the 
cortical portion, and 5.0 mm in depth. Implants were placed 
with the cortical margin flush to the bony crest. A healing 
screw was positioned to allow a non-submerged placement.

Implant loading protocol was selected according to Gallucci 
et al. [31]. After 2 months, each patient had one implant ran-
domly loaded with a cement-retained crown (loaded group); 
the other implant was left unloaded (unloaded group). In loaded 
group, cemented resin crowns were inserted and maintained 
up to 4 months from placement. Crowns were designed only to 
have vertical contacts, which were checked at 3 months and 4 
months from implant placement [5]. In the unloaded group, the 
healing screw was maintained up to 4 months from placement.

Histological biopsies preparation

Detailed information on the histological preparation has 
been reported in a previous paper [5]. After 4 months from 
installation, mini-implants were removed with a trephine 
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bur. Biopsy specimen containing the implants were fixed 
in 10% buffered formalin immediately after retrieval.

The specimens were first dehydrated in alcohol and then 
included in a glycol methacrylate resin (Technovit 7200 
VLC; Kulzer, Wehrheim, Germany). Subsequently, they 
were polymerized and sectioned using a diamond steel disc 
along the major axis of the implants at approximately 150 
mm and ground to about 30 μm. The sections were stained 
with acid fuchsin and toluidine blue.

Optical microscopy and ESEM‑EDX microanalysis

Optical microscopy (OM) was used to identify the peri-
implant bone morphology.

The biopsies were then placed on the ESEM stub and 
examined without any prior preparation (uncoated samples) 
following the previously-validated protocol set by Gandolfi 
et al. [22–25]. Operative parameters were established as fol-
lows: low vacuum 100 Pascal, accelerating voltage of 20–25 
kV, working distance of 8.5 mm, and 133-eV resolution in 
Quadrant Back-Scattering Detector mode (0.5 wt% detection 
level, amplification time 100 μs, measuring time 60 s). All 
images were taken with the same parameters and at the same 
magnification on each implant ROI.

Two regions of interest (ROI) of 750 × 500 μm were 
selected in correspondence to the first cortical (Cortical 
ROI) and the last apical thread (Apical ROI) with bone 
tissue (Fig. 1).

The mineral content was measured using EDX with ZAF 
correction in areas of approximately 30×30 μm, and the 
qualitative and semiquantitative element contents (weight 
% and atomic %) were evaluated. The presence of calcium 
(Ca), phosphorous (P), nitrogen (N), and relative atomic 
ratios (Ca/P, Ca/N, and P/N) were calculated for all spectra. 
EDX mapping was also performed to detect the elemental 
distribution of Ca, P, N, and C in the selected ROIs (Fig. 2).

In each ESEM image, areas with different gray intensi-
ties (electron densities) were identified. The value of gray 
intensity from dark to light was provided by the Image J 
software (NIH software, Bethesda, MD, USA) and used to 
set bone areas with different elemental concentrations and 
morphologies. Bone 1 corresponds to the lowest electron 
density (dark gray), and bone 4 corresponds to the high-
est electron density (light gray) (Fig. 2). EDX mapping 
was also performed to analyze the mineralization gradient 
(Fig. 2). The grayscale intensity was then correlated with 
the EDX data following a previous methodology [32] that 
was applied in other histological biopsy analyses [24, 25].

Fig. 1   Cortical and apical ROIs selection from a histological sample
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The extension of different electron-dense bone areas was 
measured, and the scale bar provided by ESEM was used for 
ImageJ calibration. Three measurements were performed 
for each ROI and the mean values (μm2) were recorded. For 
each ROI, the bone area percentage was calculated.

Analyses of distant bone areas were performed to assess 
mineralization of the mature cortical bone.

The following bone areas were identified through ESEM/
EDX based on grayscale intensity and organic/inorganic ion 
content (Fig. 2):

•	 Bone 1: Low-electron-density areas. ESEM images 
appear as dark gray areas, indicating a low mineralized 
bone or bone marrow area characterized by low inorganic 
(Ca, P) and high organic (N) content.

•	 Bone 2: Medium-electron-density areas. ESEM images 
appeared as medium-gray areas with numerous lacunae. 
These areas were defined as remodeled bone, character-
ized by moderate inorganic (Ca, P) and organic content 
(N).

•	 Bone 3: High-electron-density areas. Highly mineralized 
areas with high Ca, P, and N. Light gray areas are defined 
as mature old bone and are characterized by high inor-
ganic and low organic contents.

•	 Bone 4: High-electron-density areas. Highly mineral-
ized areas with a dense and homogeneous structure 
with high Ca and P. Light gray with high Ca/N and 
P/N and Ca/P areas were defined as the cortical bone 
tissue (Table 1).

Statistical analysis

Statistical data were analyzed using SigmaPlot software 
(Systat Version 13.0, USA).

One-way ANOVA was performed to detect statistically 
significant differences in the atomic values content and ratios 
among the bone types. Two-way ANOVA followed by a 
Holm-Sidak test (normality test p > 0.05, equal variance 
test p > 0.05) was performed to detect statistically signifi-
cant differences between loaded and unloaded biopsies in 
both coronal and apical ROIs. The p value was set at 0.05.

Results

Five patients were excluded from the study because of chi-
kungunya viral infections. One patient was excluded due to 
biopsy damage during histological processing. Other two 
biopsies of loaded implants from two patients were not 
analyzed because of histological slide detachment. A total 
of 18 implant biopsies were analyzed: ten included one 
unloaded implant and eight included one loaded implant 
(Fig. 3). Two representative histological samples, one from 
unloaded and one from loaded group are depicted in Fig-
ure S1, Supplementary material.

OM and ESEM‑EDX analysis of loaded implants

Representative OM and ESEM images of cortical and apical ROIs 
from one loaded implant are reported in Figs. 4 and 5 respectively. 
Bone areas division/identification is reported in Fig. 6.

At Cortical ROI, low mineralized area was generally 
observed close to the implant surface (bone 1). Medium 
mineralized areas were detected approx. 300 μm from the 
implant surface (bone 2). High electron dense areas (bone 
3) were detected close to bone 2 and at the limits of Corti-
cal ROI (approx. 500 to 750 μm from the implant surface).

At the apical ROI, low mineralized areas (bone 1) were 
uniformly distributed. Medium mineralized area (bone 2) was 
detected close to the implant surface, while highly mineralized 
areas were observed at the limits of the ROI (bone 3).

EDX spectra showed the mineral content of the different 
bone areas in the coronal and apical ROIs (Figs. 4 and 5).

OM and ESEM‑EDX analysis of unloaded implants

Representative OM and ESEM images of one loaded implant 
cortical and apical ROIs are reported in Figs. 7 and 8 respec-
tively. Bone areas division/identification is reported in Fig. 9.

At Cortical ROI, low electron dense areas (bone 1) were 
mostly detected in sites close to the implant surface, while 
medium electron dense areas (bone 2) were predominant 
close to the implant surface and at distant sites. High elec-
tron dense areas were mostly observed at sites over 500 μm 
from the implant surface.

At apical ROI, a higher presence of bone 1 was 
observed, with limited bones 2 and 3.

Bone areas distribution in the entire ROIs

The distribution of bone areas in the entire ROIs is 
reported in Fig. 8 and Table 2.

At Cortical ROI, loaded implants showed lower per-
centages of bone 1 (20.15±7.77) and higher percentages 

Fig. 2   Bone areas calibration performed on the biopsy of one 
unloaded implant. The area observed at OM (approx. 200× magnifi-
cation) was analyzed through ESEM and EDX (500× magnification). 
Greyscale electron density values were then calculated on each image 
to determine grayscale threshold. Three different gray scale steps 
were identified on the analyzed area, each of these corresponded to 
an area with different gray intensity. These data were correlated to the 
semiquantitative EDX analysis of the mineral (Ca and P) and organic 
(N) content

◂
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of bone 2 (51.63±12.02) when compared to unloaded 
implants (percentages of bones 1 and 2 were 35.6±14.8 
and 38.9±11.1 respectively) (Table 2). Bone 3 showed 
similar values in both loaded and unloaded implants. This 
trend was observed also at the Apical ROI, where signifi-
cantly lower percentages of bone 1 and higher percent-
ages of bone 2 were detected in loaded implants (Fig. 10).

Bone 4 was not detected in cortical and apical ROI 
(Table 2). Only few samples of loaded group showed this 
bone area in distant sites from the cortical ROI (in 2/8 of 
cases).

Bone area distribution at peri‑implant bone 
interface

The bone area distribution at peri-implant bone surface is 
reported in Table 2.

At cortical ROI, loaded implants had a high percent-
age of bone 1 (50.8±17.4), moderate percentage of bone 
2 (30.0±12.65) and low presence of bone 3 (18.3±12.1). 
This distribution is significantly different in the unloaded 
implants, where lower percentages of bone 1 (36.8±15.8) 
(p<0.05) were detected at cortical ROI (p<0.05).

Table 1   EDX atomic values (mean±SD) of Ca, P and N, Ca/N, P/N, Ca/P on the analyzed bone. In the vertical column, significant differences 
(different letters, p<0.05) among bone types are indicated

Ca P N Ca/N P/N Ca/P

Bone 1 Dark gray 1.10±0.5a 0.85±0.4a 13.63±2.3a 0.07±0.05a 0.06±0.04a 1.18±0.03a
Bone 2 Medium gray 1.52±0.6b 1.21±0.5b 12.59±1.6a 0.13±0.06b 0.10±0.05b 1.25±0.03b
Bone 3 Light gray 2.32±0.9c 1.72±0.6c 10.08±1.5b 0.21±0.07c 0.15±0.05c 1.34±0.04c
Bone 4 Light gray 2.78±0.7d 2.50±0.5d 11.68±1.2b 0.24±0.06c 0.19±0.04d 1.45±0.07d

Fig. 3   Flowchart of the study. ESEM-EDX was performed on 18 implant biopsies, 8 comprising a loaded implant, 10 comprising an unloaded 
implant
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At apical ROI, loaded implants showed low percent-
ages of bone 1 (22.0±17.5), high percentage of bone 2 
(65.0±16.5), and low percentages of bone 3 (13.0±11.8).

Apical surface of unloaded implants showed higher per-
centage of bone 1 (37.5±15.8), lower presence of bone 2 
(50.1±12.0), and similar presence of bone 3 (13.4±8.6). No 
presence of bone 4 was detected at the interface in any cases.

Discussion

This study analyzed the bone tissues around loaded or unloaded 
human-retrieved implants and their level of tissue mineralization. It 
was focused on a portion of the peri-implant bone of approximately 
500–700 μm of thickness, which was defined as the ROI. This 
region corresponded to the dimensions of the biopsy specimen.

Fig. 4   Representative A OM and B ESEM images of one loaded 
implant. Scale bar (300 μm) is reported for comparison in both 
images. E EDX analysis performed on the ESEM-image. Values are 

expressed as atomic percentages. Representative spectra of C bone 2 
and D bone 3 are reported
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The possibility of obtaining retrieved human biopsies 
and histological sample preparations allowed a “photogra-
phy” of the morphological situation and mineral composi-
tion of bone 4 months after implant placement. The analy-
sis was performed on histological samples using an ESEM 
connected to EDX [22, 23]. Mineralization analyses by 

ESEM-EDX on bone histological biopsies has been inno-
vatively proposed and validated by Gandolfi et al. for bone 
biomaterials in animal models [22] and for bone around 
retrieved implants in human [23–25].

The detection of different grayscale intensity areas (by 
ESEM) was associated with the calculation of organic (low 

Fig. 5   Representative A OM and B ESEM images of one loaded 
implant Apical ROI. Scale bar (300 μm) is reported for comparison in 
both images. E EDX analysis performed on the ESEM-image. Values 

are expressed as atomic percentages. Please note the lower peaks of 
Ca and P in the spectra of C bone 1 when compared to D bone 2
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z number elements, such as N) and inorganic (high z num-
ber elements, such as Ca and P) atomic percentages and 
ratios (by EDX) [22–25], allowing the creation of a map 
just around the implant (in the ROI) to compare with the 
morphological analyses previously performed by optical 
microscopy [24, 25].

This study identified different bone areas character-
ized by different levels of mineralization and different 
morphologies.

Bone architecture around the implant in the ROI under-
went several modifications after the initial loading, in 
accordance with previous studies [12, 33–38].

In the selected ROIs, a dynamically active newly 
formed tissue was observed, which envelops and wraps 
all the implants creating a 400–700-μm thick nest/tissue. 
This tissue contained areas of moderate/high mineraliza-
tion (bones 2 and 3, respectively) mixed with areas of low 
mineralization but rich in protein/collagen (bone 1), as 

Fig. 6   Bone type classification 
in the selected A cortical and B 
apical ROI
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demonstrated by the low Ca/N and P/N ratios. The low-
mineralized areas showed high vascularization (detected 
by optical microscopy). In the periphery of ROIs, a dense 
mineralized bone was classified as bone 4 and probably 
represented the sound “old” bone not affected by the 

biological modification induced by implant site prepara-
tion and implant placement.

The presence of different bone areas creates a puzzle 
that may well represent the active modification that takes 
part in the first months after placement [8, 35–41]. This 

Fig. 7   Representative A OM and B ESEM images of 1 unloaded 
implant. Scale bar (300 μm) is reported for comparison in both 
images. E EDX analysis performed on the ESEM-image. Values are 

expressed as atomic percentages. Please note the higher Ca and P 
peaks in the EDX spectra of C bone 3 when compared to (D) bone 1
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bone structure is not far from the concept of honeycomb 
structure. The region around the implant (in this study, the 
ROI) contained different tissues with different elasticities 
and stiffnesses that can be compressed (and released) dur-
ing mechanical repetitive loading. Accordingly, a recent 
study reported that the interface between the implant and 
bone is highly dynamic and “evolves” through a more 

mineralized and stiff structure [42]. This is probably the 
biological reason for the different mineralized regions.

The study demonstrated that after 4 months, the pres-
ence of bones 3 and 4 at the cortical level was very modest 
and lower when considering the bone in contact with the 
implant interface. Bone 4, in particular, was detected only 
on distant sites from the investigated ROI and in a limited 

Fig. 8   Representative A OM and B ESEM images of 1 unloaded 
implant apical ROI. Scale bar (300 μm) is reported for comparison 
in both images. E EDX analysis performed on the ESEM-image. Val-

ues are expressed as atomic percentages. Please note the higher EDX 
peaks of Ca and P of C bone 2 when compared to D bone 1
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number of specimens. New bone mineralization, formation 
of bones 2 and 3, started from the apical area and grew 
from deeper bone to superficial/cortical bone, contribut-
ing to the creation and maturation of cortical bone around 
the implant emergency. These findings suggests that the 
formation of a sound and complete cortical bone requires 
additional time.

The effect of implant loading on peri-implant bone was 
also analyzed in this study. Interestingly, a 2-month load-
ing period induced a marked difference in terms of bone 
mineralization when compared with unloaded implants. 
The bone in strict contact with the implant surface showed 
interesting and unexpected results. In the cortical ROI, 
the unloaded group showed a larger percentage of bone 2 
thighs with implant surface, while the loaded group had 
a higher percentage of bone 1, the less mineralized bone 
type.

Implant loading induced the formation of a less min-
eralized but more elastic structure, represented by thin 
layers of low-mineralized bone structures that may reduce 
occlusal trauma and loading stress on healing tissue. Dur-
ing implant loading, the apical ROI underwent higher 
stress. In this way, the bone remodeling activities started 
from the most apical ROI and continued to the cortical 
ROI, which underwent fewer mechanical stimuli at the 
interface. A previous study reported that under physiologi-
cal ranges (tolerated micromotion between 50 and 150 μm) 
[43], mechanical stimulation (i.e., loading) of implants 
decreases osteoclast activator signaling molecules (i.e., 
osteoprotegerin), leading to the differentiation of mesen-
chymal stem cells into osteoblasts and favoring new bone 
apposition [43]. Bone tissue acts as an elastic nest/cham-
ber that can be deformed by loading, resulting in a reduced 
mineralized bone in contact with the cortical ROI [44].

The percentage of bone 3 (higher mineralization) in close 
contact with the implant surface was similar in both the 
groups. These percentages are probably sufficient to prevent 
dislocation and excessive movement of the implant.

The limitations of this study were the use of small-diam-
eter implants. The dimensions of the implant were selected 
to allow easy removal of the implant with a limited residual 
bone defect [5]. The reduced dimension may be responsible 
for the observed bone morphology, as many studies have 
demonstrated that the greater the diameter, the lower the 
MBL [45, 46]. It should be highlighted that an early load-
ing protocol was performed in the loading group. The load-
ing protocol has been scientifically validated in a previous 
meta-analysis [31] but could lead to some discrepancies to 
the clinical practice, where definitive load is usually applied 
after 6 months.

The present results are not completely comparable with 
those reported by a previous histomorphometric study, 
which found only a slightly higher bone implant contact 
in loaded implants than in unloaded implants [5]. In the 
present study, only two different regions of interest were 
evaluated at the cortical and apical levels. Therefore, the 
percentage of bone in contact with the implant surface var-
ied with previously published data that analyzed the entire 
bone implant contact.

Fig. 9   Bone areas division/identification in the selected cortical and 
apical ROI of the unloaded implant

Table 2   Percentages of bone areas (mean± SD) measured at corti-
cal ROI and apical ROI after 4 months from implant placement. In 
the horizontal row, significant differences (different letters, p<0.05) 
among ROIs are indicated

Loaded n=8 Unloaded n=10

Cortical ROI Apical ROI Cortical ROI Apical ROI

Bone 1 20.1±7.8a 25.6±15.1a 35.6±14.8b 42.9±18.1b
Bone 2 51.6±12.0a 54.7±8.3a 38.9±11.1b 34.6±12.1b
Bone 3 28.2±11.1a 18.3±12.1a 25.1±10.3a 19.5±9.6a
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Conclusions

The study demonstrated that at least three different bone 
areas were identified on the basis of different mineralization 
levels and colors at ESEM in close contact with the implant 
surface and in the ROI. Four months after placement, the 
unloaded implants showed a more homogeneous distribution 
of bone 1, the less mineralized tissue, while the 2-month 
loaded implant showed more mineralized bone 2 in the ROI.
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