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Abstract
Principal component analysis, in its standard version, might not be appropriate for 
the analysis of spatial data. Particularly, the presence of spatial heterogeneity has 
been recognized as a possible source of misspecification for the derivation of com-
posite indicators using principal component analysis. In recent times, geographically 
weighted approach to principal component analysis has been used for the treatment 
of continuous heterogeneity. However, this technique poses problems for the treat-
ment of discrete heterogeneity and the interpretation of the results. The aim of this 
paper is to present a new approach to consider spatial heterogeneity in principal 
component analysis by using simulated annealing algorithm. The proposed method 
is applied for the definition of a composite indicator of local services for 121 munic-
ipalities in the province of Rome.
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1 Introduction

Principal component analysis (PCA) is a statistical method employed in many 
applied fields. The statistical and mathematical properties of PCA allow practi-
tioners to derive a set of independent components from large datasets. This col-
lection is obtained by decomposing the eigenstructure of the variance–covariance 
(VC) matrix, which returns loadings corresponding to eigenvectors and compo-
nent scores corresponding to new sets of coordinates (Jolliffe 2002).

PCA is also used to synthetise different variables into multidimensional (i.e., 
composite) indicators (OECD 2008). Component scores from PCA may be con-
sidered less subjective indicators since weights are not arbitrarily assigned but 
data driven. De Muro et al. (2011) and Mazziotta and Pareto (2019), among oth-
ers, criticise this use of PCA, as its weights are defined through a purely sta-
tistical technique and do not always reflect the actual relevance of the particu-
lar variables. Despite these limitations, PCA is largely used to define composite 
measures (Decanq and Lugo 2013).

Standard PCA is also mainstream in the analysis of geographically distributed 
data (Demšar et  al. 2013). However, conventional PCA is often applied to spa-
tial objects, while “geographical effects do not play any role in the PCA itself” 
(Demšar et al. 2013; p. 111). Hence, adapting PCA to spatial issues represents a 
relevant objective for researchers and practitioners.

Indeed, spatial data present particular characteristics that must be considered 
when applying statistical techniques. In the literature, two different spatial effects 
can be considered: spatial dependence and spatial heterogeneity (Anselin 1988). 
While the first implies the analysis of spatial autocorrelation produced by conta-
gion between spatial units (LeSage and Pace 2009), the second considers spatial 
instabilities in estimated coefficients due to spatial regimes or heteroskedasticity 
(Anselin 1988; Postiglione et al. 2013; Murakami and Griffith 2019).

In recent decades, the literature has largely focused on the analysis of spa-
tial dependence. Conversely, spatial heterogeneity has been considered only 
in a smaller and more recent number of contributions. Examples of techniques 
that account for spatial heterogeneity in regression models are geographically 
weighted regression (GWR, Fotheringham et al. 2002) and spatially varying coef-
ficients (Wheeler and Calder 2007).

Presumably, the prevalence of studies about spatial dependence can be 
explained by two factors. Primarily, the analysis of dependence has been explored 
to avoid potential biases due to spatial autocorrelation, particularly while estimat-
ing regressions for geographical data that are popular in theoretical and empirical 
research. Second, sophisticated algorithms are often needed for modelling spa-
tial heterogeneity, especially in a cross-section framework (Andreano et al. 2017; 
Billè et al. 2017). This has left room for the analysis of cross-sectional heteroge-
neity as one of the open challenges for spatial analysts (Postiglione et al. 2013; 
Murakami and Griffith 2019).

PCA is not exempted from a deeper discussion about spatial effects. In this 
sense, a first contribution that considered spatial dependence in PCA, denoted as 
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spatial PCA (i.e., sPCA), was given by Jombart et al. (2008). sPCA defines spa-
tial components through an objective function that combines spatial dependence 
with standard decomposition of the VC matrix. Essentially, this method finds new 
composite measures that no longer maximise the variance of the scores (as in 
PCA) but instead maximises the product of their variance and Moran’s I (Moran 
1950). For an interesting application of sPCA to the definition of a composite 
measure of well-being, see Giacalone et al. (2022).

Concerning spatial heterogeneity, this has been mainly investigated for PCA 
through geographically weighted principal components analysis (GWPCA; Foth-
eringham et al. 2002). In GWPCA, the local VC matrices are obtained by using a 
kernel function so that GW components are influenced more by closer observations, 
and spatial instabilities are approached by obtaining loadings and scores at each 
unit. However, the loadings and components from GWPCA are not always straight-
forward, as results must be listed in wide sets of local loadings or mapped in terms 
of locally relevant variables (i.e., winning variables; Harris et al. 2011).

Following this narrative, this paper contributes to the development of PCA for 
geographical data (Wartenberg 1985; Jombart et al. 2008; Lloyd 2010; Harris et al. 
2011; Sarra and Nissi 2020; Cartone and Postiglione 2021) in the special case of 
spatial heterogeneity. In this sense, our contribution substantially differs from Jom-
bart et  al. (2008) and Giacalone et  al. (2022), who used sPCA to examine spatial 
dependence.

To this end, we consider spatial heterogeneity as a criterion to divide the sam-
ple of observations into smaller homogeneous groups, individuating subpopulations 
as a solution of a combinatorial optimisation problem. We introduce a new algo-
rithm that extends the application of simulated annealing (SA) in spatial regression 
(Postiglione et al. 2013) to the case of PCA (hereafter, SA-PCA). When solving this 
optimisation problem, the proposed algorithm decomposes the VC matrix to com-
pute eigenvalues, eigenvectors, and component scores for a parsimonious number of 
regimes and overcomes the hypothesis of spatial homogeneity.

In this paper, we also note that the SA-PCA algorithm can be an alternative to the 
use of cluster techniques on geographical units when using coordinates and/or other 
attributes (for example, when using k-means) and computation of PCA to each clus-
ter. This method may be denoted as a cluster-specific PCA. In a different manner, 
Libório et al. (2022) have already extended the use of k-means clustering to PCA for 
computing piecewise composite indicators.

However, two main differences exist between a cluster-specific PCA and SA-
PCA. First, by using k-means, clusters are calculated at the first stage, and after, 
components are obtained by applying PCA on groups. Conversely, local loadings 
in SA-PCA are individuated by directly modelling instability in the VC matrix, and 
information from PCA is used step by step in the algorithm for the determination 
of the groups. Second, in our method, spatial information is explicitly accounted 
for. Thus, while cluster-specific PCA is meant to individuate components without 
considering any geographical issue, our proposal aims to tackle unobserved spatial 
heterogeneity by considering space directly in the objective function.

Furthermore, this contribution differs from GWPCA for two main reasons. First, 
SA-PCA does not address nonstationarity in continuous space, as it directly considers 
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the problem of structural differences due to multiple regimes. In fact, spatial hetero-
geneity can also be present in the form of discrete heterogeneity for which parame-
ters vary between spatial regimes or groups of regions (Anselin 2010). Second, in this 
paper, heterogeneous eigenvectors are individuated for a limited number of clusters. 
Thus, in the presence of these features, SA-PCA addresses some critical aspects of 
GWPCA, especially to improve the interpretability of its results.

Since the use of PCA for composite indicators has been extensively explored (Pam-
palon and Raymond 2000; Havard et al. 2008), we start from the definition of a com-
posite measure to evaluate the consequences of spatial heterogeneity. Then, a multidi-
mensional indicator of local services for 121 municipalities in the province of Rome 
is defined. This province is selected as it is one of the most densely populated in Italy.

In the application, various aspects are discussed. SA-PCA, GWPCA and cluster-
specific PCA are performed to treat spatial heterogeneity, and the results are compared. 
The results show that spatial heterogeneity is generally relevant in PCA and that SA-
PCA can be used to efficiently individuate endogenous groups and to capture local 
characteristics. This may enrich the insight in terms of ad hoc policies at the local level.

Last, as highlighted by Jombart et al. (2008), it is meaningless to compare sPCA 
eigenvalues to the sum of all eigenvalues as in PCA. Additionally, the percentage of 
the total criterion associated with an eigenvalue in sPCA cannot be used as a direct 
rule to choose the number of components in terms of the explained variance. Further-
more, since eigenvalues may be both positive and negative in sPCA, it can be difficult 
to select more representative components for PCA. By considering this last drawback 
and our focus on spatial heterogeneity, we limited the comparison of SA-PCA to stand-
ard PCA, GWPCA, and cluster-specific PCA.

The layout of the paper is as follows. Section 2 is devoted to summarising the meth-
odological contribution of the paper, with a review of the main characteristics of PCA 
and applying SA to identify zones of local stationarity for eigenvalues and eigenvectors. 
Section 3 contains the description of the data collected from the ISTAT Statistical Atlas 
of Municipalities and the results of the composite indicator. In this section, we also 
apply our algorithm to compare the results of SA-PCA to those of PCA, GWPCA, and 
cluster-specific PCA. Finally, Sect. 4 presents some concluding remarks and outlines 
the future research agenda.

2  Methodology

PCA is based on the analysis of a centred matrix �nm with n statistical units and m 
variables. The essential idea of PCA is the representation of units in q-dimensional 
subspaces (with q < m ), retaining the maximum amount of statistical information. The 
reduction in data dimensionality allows easier interpretative analysis.

A primary result in PCA is (Jolliffe 2002):

(1)� = ���
t
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where � is the diagonal matrix of eigenvalues, � is the corresponding matrix of 
loadings (i.e., the eigenvectors), and � is the VC matrix. The eigenvalue �j in � rep-
resents the variance of the principal component �j defined as:

where �j is the j-th column of the loading matrix � of � and represents the contribu-
tion of each variable in � to the j-th principal component �j.

Basically, for an adequate q , the component scores related to components q + 1 
to m represent the Euclidean distances alongside the axes of the corresponding 
orthogonal vectors to a q-dimensional linear subspace. The first q components are 
chosen so that this subspace contains the highest proportion of the total variance. 
The first q components are described by:

where �q is the n × q score matrix and �q is the m × q loading matrix with only the 
first q columns of �.

Jolliffe (2002) describes an important property that is very useful for the defi-
nition of our algorithm. Making use of singular value decomposition theorem, 
data matrix � can be written as:

where �j is the j-th column of the matrix � (with �t� = �r ), lj denotes the j-th 
eigenvalue of �t� (with l

j
=

�j

n−1
 ) and �j is the j-th column of the matrix �(with 

�t� = �r ). The rank of � is supposed to be r , and thus, l
j
= 0 (and ��j = 0) for 

j = (r + 1), (r + 2),… ,m.

Equation (4) can be written element by element as:

where dij is the (i, j)-th entry of � and alj is the (l, j)-th entry of �.
Retaining a number of q components (with q < r ), Eq. (5) can be written as:

where dijl
1∕2

j
alj is the part of xil corresponding to the j-th component for 

j = 1, 2,… , q . Householder and Young (1938) and Gabriel (1978) highlighted that 
q
x̃il represents the best rank q approximation to xil , in the sense that 

q
x̃il minimises 

the following function:

(2)�j = ��j

(3)�q = ��q

(4)� =

r∑

j=1

�jl
1∕2

j
�
t
j
=

r∑

j=1

l
−1∕2

j
��jl

1∕2

j
�
t
j
=

r∑

j=1

��j�
t
j

(5)xil =

r∑

j=1

dijl
1∕2

j
alj

(6)q
x̃il =

q∑

j=1

dijl
1∕2

j
alj
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where 
q
xil is any possible rank q approximation to xil. According to (6) and (7), an 

n × m residual matrix � can be defined as the difference between the data matrix � 
and the best rank q approximation 

q
�̃ as:

where 
q�̃ =

∑q
j=1 ��j�

t
j = ��q�t

q
 (see Harris et al. 2015). Equation (8) represents 

the core function of our proposed algorithm.
In standard PCA, the implicit hypothesis is that the VC structure of the process 

is homogenous throughout the geographical area under investigation. This assump-
tion is obviously not always realistic for geographically distributed data (Harris et al. 
2015). Therefore, it is necessary to relax this hypothesis to consider potential hetero-
geneity in principal components.

The first appropriate PCA technique for spatial data is represented by GWPCA 
(Fotheringham et al. 2002; Harris et al. 2011). In this approach, Eq. (1) can be gen-
eralised as (Harris et al. 2015):

where �
(
gi, hi

)
 is the diagonal matrix of local eigenvalues, �

(
gi, hi

)
 is the corre-

sponding matrix of local eigenvectors, �
(
gi, hi

)
 is the local VC matrix, and 

(
gi, hi

)
 

are the geographical coordinates of spatial unit i . The corresponding local compo-
nent scores �

(
gi, hi

)
 are:

GWPCA represents a valid tool to model continuous spatial heterogeneity in 
PCA. The output of GWPCA consists of different loadings and component scores 
defined for each spatial unit. For example, if Eq.  (10) identifies composite indica-
tors, GWPCA defines completely different indices for each spatial unit as a function 
of distinct loadings. This may produce remarkable difficulties in the interpretation of 
the results.

To simplify the interpretation of the phenomena, we propose applying SA to PCA 
to identify groups of spatial units that share the same eigenstructure (i.e., identifying 
the same composite indicators). This approach recalls Postiglione et al. (2013) and 
the enhancements proposed by Postiglione et al. (2017) and Billè et al. (2017). Our 
contribution is described in the next subsection.

2.1  The proposed algorithm

The main idea of the methodology is that the appropriate treatment of spatial het-
erogeneity in PCA is substantially equivalent to partitioning an area into groups 

(7)
n∑

i=1

m∑

l=1

(
q
xil − xil)

2

(8)� = � −
q
�̃

(9)�
(
gi, hi

)
= �

(
gi, hi

)
�
(
gi, hi

)
�
(
gi, hi

)t

(10)�
(
gi, hi

)
= ��

(
gi, hi

)
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of geographical zones that are not necessarily conterminous and have similar 
component scores. Following this, the output is not represented by different load-
ings at each spatial unit as for GWPCA but by distinct loadings for every group of 
regions identified by the SA algorithm.

SA is a stochastic relaxation algorithm that was originally introduced in statis-
tical mechanics by Metropolis et al. (1953) and Kirkpatrick et al. (1983). SA is a 
random-search technique that is based on the analogy between the way in which 
a metal freezes into a minimum energy crystalline structure (i.e., the annealing 
process) and the search for a minimum in a more general system. This approach 
constitutes the basis of an optimisation technique for the solution of many combi-
natorial problems.

Geman et al. (1990) observed that a spatial combinatorial optimisation problem 
might be described through a Markov random field (MRF). The probability meas-
ure of an MRF by using Gibbs distribution is defined through the energy function 
U(�,�), which in our algorithm represents the objective function to be minimised, 
and a control parameter, T  (see Geman and Geman 1984; Postiglione et al. 2013). 
U(�,�) depends on observed data � and the label vector � =

(
k1, k2,… , ki,… , kn

)
 , 

which categorises the heterogeneous zones, identifying clusters of regions.
U(�,�) is defined by considering two different effects: a measure of the goodness 

of fit of the model and a proximity constraint that describes the extent of aggrega-
tion of the spatial units. At the c-th iteration of the procedure, the energy function is 
defined as:

In (11), Ic is the interaction term at iteration c calculated as:

where sil are the entries of the residual’s matrix � defined according to (8). The sec-
ond term of (12) is a penalty constraint defined through a Potts model as:

Vc(�) =
n∑

r=1

n∑

z=1

brz1(k(l)r=k(l)z) (13).

Specifically, brz is the element (r, z) of a binary contiguity matrix, 1(k(l)r=k(l)z) is the 
indicator function of the event and k(l)r = k(l)z , and (1 − �) is a parameter that discour-
ages configurations with nonconterminous units. The parameter (1 − �) is chosen by 
the researcher and models the importance of the proximity between the spatial units. 
We note that, unlike Postiglione et al. (2013), the two parts of the energy function (11) 
are balanced with complementary weights to better control the cooling process.

At the initial value of control parameter T0 , each unit i is randomly classified as 
ki,0 , where ki,0 ∈ {1, 2,… ,K} , and K is the number of clusters. This step defines the 
initial configuration F0 . At the (c + 1) − th iteration, given a current configuration 
Fc , a different configuration Fc ≠ Fc+1 is randomly chosen, defining a new energy 
function U(Fc+1) that is compared with the previous one U(Fc). The old configura-
tion Fc is substituted by the new Fc+1 in accordance with the probability:

(11)U(�,�) = �Ic(�,�) − (1 − �)Vc(�)

(12)Ic(�,�) =

m∑

i=1

n∑

l=1

s2
il
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Probability (14) avoids local minima by defining a positive probability for the 
change in configuration also when the objective function U(F) increases. In essence, 
more likely patterns (i.e., configurations with lower states of energy) are always 
accepted, but it is also possible to accept a poorer configuration.

Another relevant issue that should be addressed before applying our SA-PCA 
algorithm is the choice of the number of groups of regions to be considered. Many 
criteria exist to determine the optimal number of clusters (Gordon 1999). As high-
lighted by Harris et  al. (2015), the variance levels of the components of S are a 
measure of the “goodness of fit” of the projected subplanes. Hence, it seems rea-
sonable to use these in our approach to determine the optimal number of groups. 
Following the idea by Krzanowski and Lai (1988), we consider the pooled within-
group covariance matrix �K for the components of S calculated for any number of 
partitions of the dataset and, in particular, WK = trace

(
�K

)
 . The optimal number of 

groups K maximises the following function:

with:

where K is the number of groups and WK−1 and WK are the traces of the pooled 
within-group covariance matrix for the components of S for K − 1 and K , respec-
tively. This approach is used in our empirical application.

The main steps of our algorithm for considering spatial discrete heterogeneity in 
PCA are summarised in Appendix 1.

3  Empirical results

In this case study, we calculated a composite indicator of local services in the prov-
ince of Rome to evaluate the effects of spatial heterogeneity and to assess the capac-
ity of SA-PCA. In recent studies, there has been rising interest in composite indica-
tors of well-being and development at the local level (Salvati and Carlucci 2014; 
Fusco et  al. 2018). Even in Italy, a discussion on well-being under a multivariate 
perspective is justified by the attention given by official statistics (see, for a broader 
discussion, Mazziotta and Pareto 2019). Therefore, in this paper, we have calculated 
an indicator for targeting disparities in access to private and public services as well 
as for assisting policy-makers in evaluating development at the municipality level.

In the construction of the index, we have briefly considered some theoretical 
aspects suggested by OECD (2008) to better understand the phenomenon under 
investigation. Since there is no unique and generally accepted definition of a com-
posite indicator to evaluate local governance, we have taken inspiration from recent 

(14)Prc,c+1 = min

{

1, exp

(

−
U(Fc+1) − U(Fc)

Tc

)}

(15)KL(K) =
|||
|

Diff (K)

Diff (K + 1)

|||
|

(16)Diff (K) = (K − 1)2∕pWK−1 − K2∕pWK



1547

1 3

Constrained optimization for addressing spatial heterogeneity…

literature in the field of local services and well-being (D’Inverno and De Witte 
2020; Tommaselli et al. 2021). Accordingly, various domains at the local level, such 
as economy, education, health, social care services, environment, local mobility, and 
public transport, have been considered.

Moreover, other variables inspired by recent literature for the case of Italy have 
been added. We have used the number of businesses as a relevant indicator for ter-
ritorial development and potential in wealth generation (Scaccabarozzi et al. 2022). 
We have included the number of accommodation facilities, as they are able to 
increase local attractiveness and preserve cultural heritage (see, for Italy, Cracolici 
and Nijkamp 2009). A variable for local production of quality agricultural goods 
(Protected Geographical Indicator Agriculture, PGI) has been added, as promoting 
those businesses can support socially and environmentally sustainable development 
(Calcagnini and Perugini 2019; ISTAT 2022).

The province of Rome has been selected as it is one of the most populated areas 
in Italy but also as a region that presents a significant amount of spatial heterogene-
ity. In fact, due to the wide range of densely urban areas and rural or inner munici-
palities in the region, it seems particularly suitable to observe the effects of spatial 
heterogeneity on composite indicators (Salvati et al. 2019; Cartone and Postiglione 
2021).

Official data from the Statistical Atlas of Municipalities1 by the Italian National 
Statistical Institute (ISTAT) have been employed in the study. Specifically, we have 
considered the 121 municipalities (“Comuni”) in the province. Depending on data 
availability, data were collected for 2015, except for two variables available only in 
the database for 2014. Hence, through this choice, we can consider a sufficient num-
ber of variables for the phenomenon and in a more recent period than 2011, the last 
census year. In Table 1, the various domains as well as the variables included in the 
indicators are reported.

As a first step, standard PCA is applied after data have been standardised to zero 
mean and unit variance. Complete results from PCA suggest that all first five com-
ponents have eigenvalues above one and should be accounted for following Kaiser’s 
rule (see Appendix 2a). However, for simplicity, only the first two components are 
more deeply explored in Table 2.

From Table 2, we observe that loadings of the first component are characterised 
by a higher magnitude of variables related to water, business and social welfare, all 
negative in sign.

By looking at the results, two issues can be raised with reference to global PCA. 
On one hand, the first two components account for less than half of the total vari-
ance. Hence, by considering a whole map estimation, the representativeness is quite 
low. Cartone and Postiglione (2021) noted that this situation may be linked to spa-
tial heterogeneity, as discarding spatial instabilities may sometimes result in a poor 
specification of composite indicators.

Furthermore, there may be difficulties in gaining evidence from loadings of 
global estimation. Global PCA returns averaged weights over the whole area under 

1 https:// www. istat. it/ it/ archi vio/ 227189.

https://www.istat.it/it/archivio/227189
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Table 2  Loadings, eigenvalues, 
proportion of variance, 
and cumulative proportion 
associated with the first five 
components of PCA on 121 
municipalities in the Province 
of Rome

PC 1 PC 2

PGI −0.3490 0.2662
Business −0.4750 −0.3829
Kindergartens 0.0688 0.1102
Banks −0.0572 −0.4642
Museums −0.1571 0.5936
Water −0.4804 −0.1809
Health 0.0545 −0.3208
Welfare −0.4790 −0.0064
Tourism −0.3900 0.2558
Public transport 0.0672 −0.0386
Eigenvalues 1.6757 1.1771
Proportion of variance 0.2808 0.1386
Cumulative proportion 0.2808 0.4194

Fig. 1  Quantile maps of scores for global PCA. First component scores are mapped on the left A while 
second component is on the right B and relative Getis—Ord clusters are mapped in C and D 
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investigation, and this simplification can preclude a detailed assessment of local ser-
vices at the municipality level. Accordingly, the scores for the first two global PCs 
are mapped in Fig. 1A and B, while the other selected components are reported in 
Appendix 2b. The extent of spatial instabilities for the first two components is also 
evaluated by using local G statistics (Ord and Getis 1995).2 To do so, a k-nearest 
contiguity matrix accounting for neighbours of the five closest municipalities is used 
(see Fig. 1C and D).

In fact, although some characteristics may be common to any municipality in 
the province, the relevance of local services may vary depending on various fac-
tors, such as history and tradition, as well as geographical features (see, for public 
services, Narbón-Perpiñá and De Witte 2018). Hence, to locally examine profiles of 
municipalities, we explicitly account for spatial heterogeneity.

One alternative in order to relax spatial homogeneity is to use GWPCA. As men-
tioned before, this technique allows loadings to locally change by computing the VC 
matrix by using a kernel function, and it can also be applied to wider datasets (Kal-
lio et  al. 2018; Trogu and Campagna 2018). As a starting point for GWPCA, we 
perform a Monte Carlo (MC) test to verify the significant nonstationarity of eigen-
values, as suggested by Harris et al. (2011). Figure 2 reports the results for the test, 
highlighting the significant nonstationarity of eigenvalues (p value = 0.041).

According to Fotheringham et al. (2002), GW technique results are relatively 
insensitive to the choice of the kernel, while bandwidth selection is a crucial step. 
For this reason, bandwidth is carefully investigated in this paper by exploring 
cross-validation (CV) functions for various components and bandwidth levels. 

Fig. 2  Monte Carlo test for the stationarity of eigenvalues

2 The Gi statistic is a measure of local association calculated for each i = 1,… , n , as Gi =
∑

zbizyz∑
zyz

 with 
z ≠ i . Here, bizs are entries of a n × n spatial weight matrix � . Typically, the diagonal elements of � are 
zero, while for z ≠ i , biz = 0 if locations i  and z are not neighbours and biz = 1 if i  and z are neighbours 
according to a proximity criterion.
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Again, the CV function is calculated equivalently to Harris et al. (2011) and by 
using the residuals for various values of the bandwidth based on an adaptive 
bisquare kernel. The choice of an adaptive kernel is justified by the presence of 
irregularities in the spatial configuration.

In Fig.  3, the CV functions calculated for each component are shown. For 
the number of components, q = 2, 4, and 5 , a minimum of the CV function is 
obtained. However, to make results from GWPCA comparable to those of global 
PCA, we consider q = 5 and a bandwidth of 33 according to the minimum of the 
CV function.

An often-used method to visualise results from GWPCA is to map the winning 
variables, i.e., indicating the variable corresponding to loadings with higher mag-
nitude in absolute value at each location. For the phenomenon under study, we 

Fig. 3  Cross-validation scores for an adaptive bisquare kernel

Fig. 4  Map of the winning variables for the first A and second B local component obtained with 
GWPCA
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observe that the winning variables change considerably, a result in line with the 
performed MC test.

In Fig.  4, the maps of the winning variables of the first two components are 
shown. According to the first component, water supply can be considered the win-
ning variable in the municipality of Rome and in the northeast, while the number of 
businesses in tourism is the winning variable in the south. The second component 
is also characterised by significant differences in terms of winning variables, with 
the north being more influenced by public transportation and the south by childcare 
structures.

If maps of winning variables give evidence on the differences across the study 
area, they cannot be considered themselves as maps of strictly homogeneous groups. 
Indeed, in GWPCA, the structure of eigenvectors changes in any spatial unit by con-
struction. Thus, using this technique, it is not directly possible to identify spatial 
regimes. To overcome this shortcoming, we employ our novel algorithm SA-PCA to 
endogenously individuate subgroups of spatial units. This methodology relaxes the 
assumption of homogeneity of the VC matrix, and it provides endogenous spatial 
regimes.

Parameters related to the cooling process have been set according to previous 
successful experiences in the literature (Stander and Silverman 1994; Fouskakis and 
Draper 2002; Postiglione et al. 2013). To avoid falling into local minima, the cool-
ing rate should be set in the interval between 0.80 and 0.99. Hence, the level of � is 
chosen to be equal to 0.95. Additionally, the level of the initial temperature T0 is set 
at approximately 0.05, like Postiglione et al. (2013). After studying the behaviour 
of the energy function (11) for various levels of the two parameters, this combina-
tion ensures the convergence of the algorithm while preventing entrapment in local 
minima at the same time.

Regarding the choice of 1 − � , we investigate various spatial configurations for 
certain levels of the parameter. Some examples of these spatial configurations are 
reported in Fig. 5. We observed, for 5 groups, that choosing a value of 1 − � lower 
than 0.50 (Fig. 5A) leads to very agglomerated spatial groups. In fact, increasing the 
penalty term forces contiguous spatial units to be part of the same group. This may 

Fig. 5  Spatial configuration obtained by SA-PCA for 5 groups with different levels of 1 − � , (A) 
1 − � = 0.45 , (B) 1 − � = 0.05
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result in a poorer optimisation process, and this circumstance may not be preferable 
in a context such as the province of Rome, which presents local pockets that are hard 
to capture by strictly conterminous groups. Conversely, when the contiguity con-
straint is set very low (Fig. 5B), the interpretability of groups decreases, as units of 
the same cluster tend to be scattered. Hence, in this application, our choice consists 
of a slight level of 0.20 for 1 − � , which reveals only partially scattered groups and 
good adaptation to the phenomenon under investigation.

Another relevant choice to be addressed before applying SA-PCA is the num-
ber of groups. Although in composite indicators the choice of groups can often be 
linked to specific research aims (Nardo et al. 2005), certain selections may lead to 
suboptimal solutions. Hence, this choice must be properly considered by researchers 
to obtain more reliable and interpretable configurations.

Nevertheless, the proposed SA-PCA algorithm is studied to trim the objective 
function by a constraint that discourages nonconterminous groups. As mentioned 
before, this feature encourages more conterminous spatial configurations that tend 
to be more robust to outliers in the geographical area under study (Benedetti et al. 
2013). Additionally, robustness to spatial outliers obtained by using constraints 
may help the stability of the grouping procedures (García-Escudero et al. 2010). In 
addition to being less sensitive to outliers, groups obtained by SA-PCA preserve a 
certain amount of proximity between units despite the number of groups allowed, 
which can help interpret underlying spatial features over the study area.

In the application, we first obtain partitions as solutions of the SA algorithm and 
then calculate the KL(K) function for various levels of K . The results for the cri-
terion are summarised in Table 3. By maximising the KL statistic on the residuals 
obtained by the solution to the optimisation problem, we find that a level of K = 5 is 
the most convenient to apply SA-PCA.

Figure 6 presents the map of the clusters of units obtained when using our SA-
PCA algorithm. Group 1 includes the City of Rome and neighbours’ municipalities 
mainly in the centre of the province. A sizeable number of southern municipalities 
are in Group 2. Group 4 is largely composed of areas located in the west of the prov-
ince, while Group 3 consists of two smaller pockets in the east of the province. The 
rest of the eastern municipalities are mostly included in Group 5.

In terms of local characteristics, Group 1 includes densely populated municipali-
ties in the centre of the province, while Group 2 is comprised of coastal municipali-
ties largely linked to the city of Rome (such as Anzio, Nettuno, and Velletri). Group 

Table 3  Criterion values for 
different numbers of groups K 
obtained by SA-PCA

Number of sub-
groups

W
K K

2∕p
W

K
KL(K)

2 117.41 104.29 0.00122
3 95.22 78.27 0.81095
4 81.86 63.74 0.85971
5 75.06 56.71 0.92915
6 69.10 49.80 0.90852
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3 consists of small and scarcely populated municipalities in the mountain area in 
the east (e.g., Arsoli, Subiaco, and Vallinfreda). Last, Group 4 includes mainly rural 
municipalities on the hills at the borders, especially those in the south, known as 
Castelli, and Group 5 includes a variety of larger municipalities often considered to 
be Roman suburbs (e.g., Guidonia Montecelio and Tivoli).

As expected, the five clusters show substantial differences in the underlying 
phenomenon. The compositions of eigenvectors for the first and second compo-
nents are shown in Tables  4 and 5, respectively. From the results, we see that 

Fig. 6  Groups of spatial units obtained by SA-PCA

Table 4  Loadings of the first component for each group obtained with SA-PCA

Variables Group 1 Group 2 Group 3 Group 4 Group 5

PGI 0.2440 0.7270 −0.0291 −0.0618 0.4664
Business 0.5145 0.7856 0.1849 −0.1017 −0.2732
Kindergartens −0.1870 0.0005 −0.1964 −0.2130 −0.0003
Banks −0.0929 0.2332 0.2367 0.1569 −0.6164
Museums −0.0091 0.1565 −0.1366 −0.5747 0.4712
Water 0.6457 −0.0227 0.0209 −0.0880 0.0044
Health −0.4337 −0.2751 0.8975 0.0112 −0.0078
Welfare 0.4084 0.4064 −0.0862 −0.0825 −0.1315
Tourism 0.2581 0.3671 −0.0313 −0.7555 0.1981
Public transport −0.0521 −0.1013 0.1909 0.0071 0.2220
POV of first component 0.7072 0.4030 0.3664 0.3669 0.3035
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considering spatial heterogeneity leads to differences resulting from local insta-
bilities in the loadings. From Table 4, those differences among the five different 
groups can be further appreciated.

In Group 1, business and water are the major drivers together with the pres-
ence of welfare aids. The value of tourism is also consistent with the presence 
of tourists that come yearly across the city of Rome and Fiumicino airport. For 
Group 2, business is important and positively correlated with the phenomenon 
under investigation. Additionally, PGI and welfare are positively connected to the 
phenomenon. For Group 3, health, banks, and public transport represent the most 
relevant loadings, contributing to an increase in the first component scores. For 
Group 4, the level of local service in those municipalities is mainly related to 
banks. In Group 5, the increasing presence of museum and PGI mainly contribute 
to the positive development of local services.

Table  5 indicates the loadings for the second components of the five groups 
generated by SA-PCA. Once again, the evidence emphasises structural heteroge-
neity suggested by diverse values of eigenvectors. For instance, the second com-
ponent of Group 1 indicates the need for facilities to take care of children at an 
early stage (high magnitude of kindergartens).

In Fig. 7, performances for global PCA (dashes), cluster-specific PCA (dots), 
GWPCA (dashes and dots) and SA-PCA (line) for the first five components are 
reported in terms of average proportion of variance accounted, while the plotted 
points indicate unit-by-unit fit for GWPCA. In the application, it also appears that 
SA-PCA helps to specify components according to structural differences in the 
VC matrix. This last feature is justified by a major increase in the proportion of 
variance accounted when compared to that of global PCA. Even when compared 
to that of GWPCA, representativeness increases by approximately five percent in 
terms of the average proportion of variance explained. Finally, our SA-PCA pre-
sents higher performance also when compared with that of cluster-specific PCA, 

Table 5  Loadings of the second component for each group obtained with SA-PCA

Variables Group 1 Group 2 Group 3 Group 4 Group 5

PGI 0.0108 0.7270 −0.1320 0.1548 −0.5041
Business 0.0325 −0.2605 −0.2164 0.1521 0.0702
Kindergartens 0.9357 0.0002 0.3769 −0.1106 0.0002
Banks 0.2890 −0.1854 −0.4049 0.4010 0.1890
Museums −0.0269 −0.0967 −0.3593 0.1387 0.7259
Water 0.1078 0.0147 −0.0465 −0.0489 0.0060
Health 0.0001 −0.8941 0.2626 0.0014 0.0029
Welfare 0.0399 −0.1500 −0.2788 0.4274 0.3241
Tourism 0.1412 0.1585 −0.1936 −0.0722 0.0664
Public transport 0.0771 −0.1525 −0.5606 −0.7552 0.2623
Cumulated POV of 

second component
0.8506 0.5879 0.6175 0.5893 0.5263



1556 P. Postiglione et al.

1 3

calculated by using the k-means algorithm in the first step and standard PCA, for 
each cluster, in the second step.

In Fig. 8, the first component indicators are shown for SA-PCA (a), GWPCA 
(b), and cluster-specific PCA (c) to highlight some differences between the vari-
ous definitions. SA-PCA reports higher levels for the composite indicator mainly 
for municipalities on the coast and in the northern part of the province. GWPCA 
shows higher levels for large municipalities in the immediate surroundings in 
eastern Rome. Moreover, cluster-specific PCA returns higher achievements 
mainly in Rome, at the northeast, and on the southeast side. Those differences 
may be connected to the diverse treatment of spatial issues. In SA-PCA, for 
instance, consideration of discrete heterogeneity slightly shifts the performance 
of Rome compared to when using cluster-specific PCA, where spatial effects are 
not explicitly considered. Conversely, this feature seems to favour seaside towns 
connected to the main city.

Finally, in addition to improving fit performance, the empirical application shows 
that SA-PCA can directly address nonstationarity by identifying endogenous clus-
ters of units. Therefore, the components (i.e., indicators) obtained from SA-PCA 

Fig. 7  Performance (average proportion of variance of the first five components) of global PCA (dashes), 
cluster-specific PCA (dots), GWPCA (dashes and dots), and SA-PCA (line). Grey circles show the by-
unit GWPCA performance of 121 municipalities of Rome

Fig. 8  First component composite indicator for SA-PCA a, GWPCA b, and cluster-specific PCA c 
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are perfectly comparable within groups, as they are directly obtained by loadings 
from the same spatial cluster. This feature may be of help for regional policy-mak-
ers in two ways. On the one hand, instead of relying on unit level indicators as in 
GWPCA, SA-PCA can define a limited number of clusters to model discrete het-
erogeneity, which is in many cases a reasonable assumption (Anselin 1988, 2010). 
Moreover, being easily interpretable, indicators from SA-PCA allow for local poli-
cies to be more accurately set, providing better support multilevel governance.

4  Concluding remarks

Spatial heterogeneity is a relevant issue when standard statistical techniques are 
applied. In this paper, this spatial effect has been investigated deeper to add to the 
previous literature in the field of PCA. To this end, we developed a novel methodol-
ogy to consider heterogeneity in the form of various spatial groups. SA-PCA offers 
a novel approach to tackle unobserved spatial heterogeneity by using a spatially con-
strained algorithm.

As seen above, while GWPCA considers continuous nonstationarity, SA-PCA 
relaxes the hypothesis of spatial homogeneity by providing groups as a solution to 
a combinatorial problem. By identifying spatial clusters of units, SA-PCA allows us 
to individuate loadings and scores for units that share the same structure of the VC 
matrix in the same group.

In this paper, we benchmark this new methodology against other options while 
defining composite indicators. SA-PCA, GWPCA and cluster-specific PCA were 
applied to calculate a composite indicator of deprivation in 121 municipalities in the 
province of Rome. Here, SA-PCA generally had better representativeness than that 
of GWPCA and cluster-specific PCA in terms of the average proportion of variance 
explained. In this sense, SA-PCA offers a plausible alternative in the case of spatial 
heterogeneity. Additionally, SA-PCA allows for a more straightforward interpreta-
tion than does GWPCA because SA-PCA utilizes a limited number of different load-
ings and score sets.

Last, we note that the algorithm shows some limitations when applied to very 
large datasets, as a wider number of observations and variables can add to the com-
putational burden. In future studies, the application to large datasets can be deep-
ened by considering alternative algorithms extended to PCA for the same purpose.

Appendix 1—Modified SA algorithm for spatial heterogeneity in PCA 
(SA‑PCA)

Main steps:

(0) A number of groups K is chosen.
(1) The initial control parameter T0 is specified and each geographical unit i , for 

i = 1, 2, ..., n, is randomly classified as ki,0 , where ki,0 ∈ {1, 2, ..., ,K} is the label 
of the assigned cluster.
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(2) For each partition ∈ {1, 2, ..., ,K} a principal component analysis is computed, 
and the number of components is chosen. Residuals are calculated.

(3) At (c + 1) − th iteration for each geographical unit i = 1, 2, ..., n , a new candi-
date label ki,c+1 ∈ {1, 2,… , k}�{ki,c} is randomly selected. The energy function 
U(… , ki,c+1,…) (i.e., the objective function) is computed and compared with 
the current energy U(… , ki,c,…) function. If U(… , ki,c+1,…)<U(… , ki,c,…) , 
the label ki,c is replaced with ki,c+1 . Otherwise, the label ki,c is replaced by ki,c+1 
with probability p = exp(−[U(… , ki,c+1,…) − U(… , ki,c,…)]∕Tc) . Update the 
control parameter according to the schedule Tc = T0 ⋅ �

c−1.
(4) Consider �c = (k1,c, k2,c, ..., ki,c, ..., kn,c) as the label vector at the end of the c − th 

iteration. The algorithm will stop if �c+1 ≡ �c holds true.
(5) Principal component analysis is calculated for each of the cluster of regions 

obtained.

Appendix 2

(a) Table of eigenvalues, proportion of variance, and cumulative proportion of vari-
ance for first five components for PCA.

PC 1 PC 2 PC 3 PC 4 PC 5

Eigenvalues 1.6757 1.1771 1.0571 1.0463 1.0036
POV 0.2808 0.1386 0.1117 0.1095 0.1007
Cumulated POV 0.2808 0.4194 0.5311 0.6406 0.7413

(b) Maps of scores for third (A), fourth (B), and fifth (C) component for PCA.
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