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Abstract  

A significant number of school buildings in Italy require seismic and energy retrofits based on National laws, which 
contribute to the school environment's characteristics and health and safety in buildings. Moreover, government 
initiatives to promote ambitious national plans for the renovation and construction of new school buildings are gaining 
vast attention. For this purpose, the Ministry of Education, with the local authorities' collaboration, carries out a 
database to register national school buildings and their level of consistency and functionality, which is the 
fundamental knowledge tool for planning interventions in the sector. However, it does not provide a guideline to 
estimate future interventions' costs. This research aims to design a retrofitting cost estimation model for energy and 
seismic improvement and adaptation interventions using Artificial Neural Networks. It can serve as a beneficial tool 
for forecasting expenses based on the interrelated building features, which the public administration can use to 
optimize the management and planning of school buildings' funds. The proposed work focuses on a small sample of 
over 200 school buildings and their seismic and energy retrofitting costs. The ANN model uses the parameters of the 
case studies as the input to train the network to estimate the retrofitting cost of other projects based on the historical 
data. The parameters are categorized into three groups of features: i) building’s characteristics, e.g., construction year 
and the number of floors, ii) energy retrofit parameters, e.g., class heating energy consumption, and iii) seismic retrofit 
parameters, e.g., seismic zone and structural type. Therefore, the goal is to facilitate the financial feasibility 
assessments and optimize the available resources related to the planning of interventions. The proposed model will 
contribute significantly to school buildings' resilience as a single integrated space, which has the characteristics of 
habitability, flexibility, functionality, comfort, and well-being. 

© 2021 The Authors. Published by IEREK press. This is an open access article under the CC BY license 

(https://creativecommons.org/licenses/by/4.0/). 
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1. Introduction 

School structures are defined as construction of buildings intended exclusively for school use, including all the 

teaching activities with direct pupil involvement. Hence, the field of school buildings can be extended from preschool 

to universities. Most school constructions were built before standards and regulations paid more attention to energy 

efficiency and seismic risk mitigation. Therefore, these buildings are often characterized by high levels of energy 

consumption and seismic vulnerability (De Santoli et al. 2014). According to the European Commission, the building 

sector is responsible for nearly 40% and 36% of the total energy consumption and CO2 emissions in EU (EU-Energy 

2018). Therefore, European Union Directives stress the relevance of building retrofit as a strategy to overcome 

building sector issues and reach EU de-carbonization goals of 2050 (Seghezzi and Masera 2017). 

http://www.press.ierek.com/
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In Italy, where the school buildings stock counts over 43,000 public schools that host about 8 million students (Re 

Cecconi, Moretti, and Tagliabue 2019), the Ministry of Education (MIUR), together with local autorithies, is carrying 

out a national database, called “Anagrafe dell’edilizia scolastica”, that record the level of consistency and 

functionality of school buildings (Edilizia scolastica - MIUR. n.d.). The data show that school buildings generally 

have a high structural vulnerability linked to different causes, such as the construction techniques of the time, the 

supply of modest quality materials, and the mediocre execution of the works. Moreover, 75% of the school buildings 

stock dates before any national energy law. Consequently, more than half of these buildings highlight functional, 

usability, and safety issues. Among unsatisfactory performances, thermal comfort and air quality are extremely 

critical since they are closely related to the students’ learning ability (Zhang and Barrett 2010). In these buildings, it 

is necessary to strike a good balance between cost reduction and high levels of comfort to influence student’s 

performances (De Giuli, Da Pos, and De Carli 2012). 

Building retrofit covers a large range of interventions. For instance, energy retrofit is the operational or physical 

change in a building, its energy consuming equipment, or occupants' behavior to reduce energy consumption (Jafari 

and Valentin 2018). In addition to energy inefficiency, fire safety, seismic aspects, indoor comfort, and exterior 

aesthetics are other drivers for building renovation and retrofitting (Ferreira and Almeida 2015). In addition to 

reducing building energy consumption and carbon footprints, retrofitting existing buildings offers significant 

opportunities to improve occupants’ comfort and well-being, reducing global energy consumption and greenhouse 

gas emissions (Xu, Loftness, and Severnini 2021). Therefore, building retrofit is considered one of the main 

approaches to achieve sustainability in the built environment. 

Recently, national governments in Italy have allocated increasingly substantial funding and, in particular, from 2014 

to 2018, €9.5 billion was spent on retrofitting works (Legambiente 2021). Retrofit interventions on the envelope and 

thermal plants can heavily reduce energy consumption and associated running costs, though generating additional 

investment costs (Lohse, Staller, and Riel 2016). Nevertheless, approximately 40% of school buildings in Italy need 

refurbishment interventions, therefore the running cost mark-up gained thanks to energy improvements could 

compensate the overall costs for refurbishment interventions.  

The information embedded in the national database provides the fundamental basic knowledge for planning 

interventions. However, a guideline to estimate future interventions' costs is not provided. Hence, The objective of 

this work is to define a model capable of evaluating the costs of retrofit intervention on school buildings. Recently, 

the adoption of Artificial Intelligence (AI) techniques in the management of built environment is rapidly gaining 

momentum (Darko et al. 2020), thanks also to a greater amount of data available thanks to initiatives such as the 

mentioned “Anagrafe dell’edilizia scolastica”. These techniques allow reaching faster and highly precise predictions 

compared to traditional methodologies. The research sits in the broader context of the digitisation of the built 

environment: the introduced methodology aim at leading strategic decisions on retrofitting interventions on public 

school buildings. 

2. Background 

While various criteria are decisive for achieving cost-effective and sustainable retrofit solutions, the process is mainly 

governed by economic and technical considerations, focusing on single buildings (Caterino et al. 2021). Therefore, 

this study builds on the data collected from previous research and tries to apply AI techniques to estimate retrofitting 

cost of public school buildings concerning databases of previous retrofit projects. The rapid growth of data available 

triggers the use of this new computational techniques, and many applications have been recently studied in the field 

of cities and built environment management. 

2.1. National school buildings stock status 

The Ministry of Education (MIUR) in Italy establishes an open register to collect data about the stock of public 

schools in the territory. In particular, the school heritage comprises 40.160 active buildings, 3.042 non active 

buildings, and 34 not operational buildings due to environmental disasters (e.g., earthquakes, floods, and so on). 
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Between 1950 and 1980, the accelerated process of schooling required a rapid increase in the national stock of school 

buildings; however, the intense production met modest quality standards when not poor. Today, many school 

buildings present inadequate characteristics due to origin defects or premature obsolescence - often aggravated by 

lack of maintenance. School buildings are not evenly distributed since in Lombardy, Campania, and Sicily, there are 

about 33% of all buildings. Overall, approximately 43% of buildings nationwide fall in high-risk seismic zones (1 

and 2). In the Southern Regions, like Sicily, Campania and Calabria, high exposure to seismic events involves more 

than 90% of the buildings (Figure 1). 

                  

Figure 1 Distribution of buildings by territorial macro-area and map of seismic zones in Italy (Ministero delle Infrastrutture 2008) 

More than 50% of school buildings were built before earthquake regulations came into effect (1976) and 43% from 

the post-war period to the mid-1970s (1946-1975). This class of buildings generally presents a high structural 

vulnerability related to the construction techniques of the time, the supply of materials of modest quality, and the 

mediocre execution of the works. Moreover, the data shows that 12.7% of schools are designed or adapted to seismic 

technical construction regulations. New construction – built with the new regulations included in the national 

technical standards for construction published in 2008 (Ministero delle Infrastrutture 2008) - represent only 2.4% of 

the total. The school building registry also confirms that, overall, the school building stock is old and of low quality, 

with significant deficiencies of various kinds, from seismic safety to the acquisition of the certificate of static 

suitability, fitness, and fire prevention as required by law. 

On the side of energy efficiency, the data collected from Legambiente indicate that only 16.3% of buildings have 

been made energy efficiency measures in the last five years. The majority of the interventions concern windows, 

insulation, boilers, and renewable energy systems: the consequences of energy consumption are often imposed as a 

critical factor for school buildings, whose maintenance is binding, expensive, and weighs heavily on the budgets of 

local authorities, which are responsible for providing it. 

2.2. Literature review on Retrofit cost evaluation  

Since retrofitting is vital for buildings, it is crucial to have methodologies for accurately assessing the energy use and 

seismic requirements, predicting retrofit costs associated with each alternative, and selecting the most efficient one. 

The core of such assessment methodologies is the development of energy and seismic retrofit models of buildings, 

which are mainly categorized as white-box, grey-box, and black-box methods (Amasyali and El-Gohary 2018). The 

first two are mainly based on building physics and require a huge amount of detailed data, which makes the application 

process cumbersome. In contrast, black-box models rely on measured and historical data, which allows them to handle 

complicated system dynamics without being interrupted by the problem complexities and aspects. The black-box 

models are usually based on statistical, and machine learning (ML) techniques (Guo et al. 2017) and are trained by 

learning the relationships between input data features and their impact on the final output for future predictions. The 

black-box model makes predictions faster and more precisely than the other two methodologies (Azadeh, Babazadeh, 

and Asadzadeh 2013); therefore, it can replace complex and computationally intensive knowledge-based models 

(Stojiljković, Vučković, and Ignjatović 2021). 

Previous literature on the topic is mainly about seismic and energy simulation and analysis of existing buildings, multi 

attribute decision making for selecting the most efficient and effective retrofit alternative, and predicting building 

retrofit cost. Moreover, Artificial Intelligence constitutes a significant share of the techniques used in previous 
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literature. Figure 2 presents the co-occurrence keyword network of the systematic search conducted in Scopus, 

developed by the Bibliometrix package in R and the Biblioshiny library. 

 

Figure 2 Co-occurrence network of keywords in the building retrofit cost literature 

Other tools applied for seismic and energy retrofitting or renovation research are BIM (Scherer and Katranuschkov 

2018) and Multi-Criteria Decision-Making (Esmaeel Asadi, Salman, and Li 2019). (Caterino et al. 2021) proposed 

an MCDM-BIM integrated framework as a decision support system for choosing the best seismic retrofit strategy, 

considering different alternatives. (Håkansson et al. 2013) developed a Decision Support System (DSS) based on the 

optimal ranking and sequencing of retrofit options with the purpose of emissions reduction in non-domestic buildings. 

(Woo and Menassa 2014) designed the Virtual Retrofit Model (VRM) framework, an affordable computational 

platform using Building Information Modeling (BIM), energy simulation, agent-based modeling, multi-criteria 

decision support system that supports streamlined decision making for building retrofit projects. 

(Carofilis et al. 2020) examined retrofit alternatives for three case study school buildings in Italy by a seismic 

performance assessment using detailed numerical models that consider the main structural deficiencies documented 

for older Italian buildings built before the 1970s. (Sherstobitoff, Taylor, and Shuttleworth 2010) presented several 

cost-effective retrofit strategies for the seismic upgrading of clay masonry school blocks in British Colombia by 

conducting a retrofit construction cost estimate including structural, architectural, mechanical, and electrical work 

with conformance to the provisions of the Technical Guidelines (TG) of the Ministry of Education. (Seghezzi and 

Masera 2017) conducted an interview survey to identify relevant installation and economy parameters and develop a 

multi-criteria approach for choosing the most suitable building retrofit strategy. 

2.3. Artificial Intelligence for Building Retrofit  

Although the previously mentioned techniques are beneficial, they cannot be applied to many projects at once in a 

fast manner. Artificial Intelligence techniques seem to be the perfect solution to this problem due to their ability to 

provide accurate results in uncertain, dynamic, and complex environments and when encountered with huge datasets 

(Yaseen et al. 2020). AI’s application in built environment management is proliferating due to asset-related digital 

information (Wei et al. 2018). However, its application for the building retrofit process is a relatively new direction.  

As noticeable in figure 2, Artificial Neural Networks (ANNs) are the most used AI techniques in building retrofit 

literature. ANNs are one of the most applied and optimum algorithms in the building sector due to their ability to 

predict accurately despite low input variables. ANNs behave like the human brain and consist of layers of neurons 

that can be triggered for learning the relationships between the input variables (the input layer) and the final result 

(the output layer) with the help of activation functions. 

(Deb, Dai, and Schlueter 2021) designed a Recurrent Neural Network (RNN) for cost-optimal retrofit analysis in a 

single-family residence, using the time series data on building variables gathered by a wireless sensor network (WSN). 
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(Thrampoulidis et al. 2021) presented an ANN-based surrogate model for evaluating the necessary building envelope 

and energy system measures for building retrofit in Zurich. (Ascione et al. 2017a) employed artificial neural networks 

(ANNs) and EnergyPlus simulations to assess energy consumption and occupants' thermal comfort for existing and 

renovated building stocks in the presence of energy retrofit measures (ERMs). Another study (Ascione et al. 2017b) 

proposed a multi-stage framework for cost-optimal analysis, applicable to different building types, by multi-objective 

optimization and ANNs, called CASA. 

Other AI techniques were also applied in previous research. (Ali et al. 2018)  proposed an intelligent knowledge-based 

recommendation system using ML algorithms to recommend energy retrofit measures and improve Ireland's 

residential buildings' energy performance. (Geyer, Schlüter, and Cisar 2017) developed an algorithmic clustering 

method, combined with time and cost data, to cluster large building stocks in Switzerland based on their sensitivity 

to different retrofit measures. (Marasco and Kontokosta 2016) analyzed the energy audit data for over 1100 buildings 

in NYC to identify opportunities for Building energy conservation measures (ECM) across building system 

categories, using a user-facing falling rule list (FRL) classifier. (Stojiljković, Vučković, and Ignjatović 2021) analyzed 

surrogate models that directly classify building retrofit measures by Random Forest algorithm according to the global 

cost. Moreover, they quantified the importance of each variable for the classification process to optimize energy 

renovation measures or rapidly identify projects worth financial support. (Seyedzadeh et al. 2020) used a ML-based 

deep energy retrofit decision-making model, using gradient boosted regression trees, for non-domestic buildings to 

predict energy performance and select optimal retrofit packages. (Jafari and Valentin 2018)  introduced the sustainable 

energy retrofit (SER) decision support system to choose the optimum building energy retrofitting strategy while 

maximizing the project’s sustainability triple bottom line (TBL) benefits, namely Economic, environmental, and 

social indicators. (Xu, Loftness, and Severnini 2021)  demonstrated a data-driven approach using data from a portfolio 

of 550 federal buildings in the US and generalizing past retrofits' effect to predict future savings potential when 

planning for retrofit. 

School Buildings were explicitly the topic of few previous research works. (Re Cecconi, Moretti, and Tagliabue 2019) 

aimed to develop a data-driven method based on open data, ML, and Geographic Information Systems (GIS) to 

support Lombardy region energy retrofit policies on school buildings, potentially predicting the post-retrofit energy 

savings. (Ehsan Asadi et al. 2014) presented a multi-objective optimization model using genetic algorithm (GA) and 

ANNs to quantitatively assess technology choices for school buildings retrofitting, focusing on building’s 

characteristics and performance: energy consumption, retrofit cost, and thermal discomfort hours. 

3. Methodology 

The proposed research methodology is shown in Figure 3. As supported by the literature review, four ML Algorithms, 

namely Artificial Neural Networks, Random Forest, XGBoost, and Ridge, were selected for result comparison and 

selection of the most optimum method. 

 

Figure 3. Methodology workflow 
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3.1. Data Collection and Preprocessing 

The data used for this research is extracted from documents presented by the Ministry of Education. In the original 

database, numerous categories were included, most of which were irrelevant or inconsistent with the research purpose 

and scope. The features were grouped under three categories: “Energy Retrofit”, “Seismic Retrofit”, and “General” 

to have a clearer idea about the type of data available. Figure 2 depicts the features of each category.  

Table 1. Feature Categories in the Database 

General Seismic Retrofit Energy Retrofit 

City Type of Work Type of Work 

Gross Volume Type and Place of Intervention Type and Place of Intervention 

Number of Floors Seismic Zone Climatic Zone 

Construction Year Seismic Acceleration Number of Days with favorable 

degree 

Number of Students Soil amplification coefficient S (A, 

B, C, D, E) 

Heated Gross Volume 

Geographic Coordinate Topographic amplification 

coefficient ST 

Utilized heated area 

Gross Area Site Danger Dispersing Surface 

Structure Type S/V report 

Seismic Vulnerability Energy Class (before and after 

intervention) 

Vulnerability Analysis Level Zero Energy Building 

Building Usage Class (III or IV) CO2 Emission 

Topographic Category Non-renewable Energy 

Performance Index (before and 

after intervention) 

Post Intervention Risk Index Renewable Energy Performance 

Index (before and after 

intervention) 

  

3.2. Feature Selection and Ranking 

In order to select the most important features and for feature ranking, semi-structured interviews were conducted with 

experts in data science, construction engineering, and preservation. It is noteworthy that despite being important, 

some features included a lot of unretrievable missing values among the samples. Therefore, those features were 

eliminated. Accordingly, a database with 12 features and 209 projects was used for data analysis and data cleaning. 

During the exploratory data analysis, features' importance and correlation were carried out, as a result of which 

“Building Usage Class” and “Subsoil Category” features were dropped from the feature set containing the same value 

for almost all the samples. Moreover, some features' importance was so limited that they could be easily dropped 

from the dataframe. Figure 3 shows the feature importance before and after the drop of three features: “Number of 

Floors”, “Zero Energy Building”, and “Seismic Zone”.  

In addition to predicting the retrofit cost of school buildings, this research contributes to selecting and ranking the 

most relevant features while predicting the retrofitting costs. As shown in the figures below, the type of work (type 

of retrofit) with six different values, namely Seismic Adjustment, Energy Efficiency, Seismic Adjustment and Energy 

efficiency, Seismic Improvement, Seismic Improvement, and Energy Efficiency, and New Construction, have the 

biggest effect on the final cost; moreover, it is followed by Gross Surface Area, Type of Intervention (parts of the 

building intervented), Construction Year, Climate Zone, Number of Students, and Post Intervention Energy. It is 

noteworthy that the final cost is calculated as Cost per Square Meters to justify the effect of the area and minimize 

the number of features. 
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Figure 3 (a)  Feature Importance with 10 features database Figure 3 (b) Feature Importance with 7 features database 

Since the type of retrofit work has the greatest impact on the final retrofit cost, the database was analyzed based on 

the share of each retrofit work type, which is presented in Figure 4. 

 

Figure 4.  Share of each retrofit work type in the dataset 

 

3.3. Training the ML Models 

In order to reach the best prediction precision, four ML algorithms were selected for result comparison based on the 

literature review. Neural Networks, Ridge, Random Forest, and XGBoost are the algorithms. The database was 

divided into 80% training (20% of validation) and 20% testing. The training process aims to help the machine find 

the relationship between the input features and output data and learn from the previous projects. At the same time, 

the purpose of the test process is to check the precision of the algorithm’s estimates when encountered with new data. 

In the case of Neural Networks, a validation process is also conducted to minimize overfitting of the training data. 

Figure 5 shows the training and validation loss during the training process for the proposed Neural Network on the 

dataset. 
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Figure 5.  Train and Valuation loss during the Neural Network training process 

4. Results 

After the cleaning and training phases, the four different algorithm's results and performance are extracted and 

compared. The performance of each algorithm was measured using the Mean Absolute Error (MAE) metrics (Table 

2). The MAE is the average of absolute errors for a group of predictions and observations. As shown in the table, the 

Neural Network has an acceptable performance. However, since they indicate better precision on big datasets and our 

dataset is relatively small, the MAE difference is not significant.  

In order to make the predictions more precise, the average of predicted values for the test data set was calculated. The 

MAE of the average value was better than the previous algorithms. Therefore, the research framework proposes the 

average predicted value by the four algorithms as the most precise retrofit cost prediction. 

Moreover, Figure 6 shows the correlation between the actual and predicted value of the test dataset Cost/Sq.M. for 

the four algorithms and the average of predictions by the fours algorithms. Also, it is evident in the figure that the 

average of the predictions is closer to the actual value. 

In addition, the errors magnitude distribution was analyzed in the four algorithms. For this purpose, the histogram of 

the difference between the actual and predicted values was depicted in Figure 7. Most of the data have near 0 

prediction error; therefore 0 value is the peak of the histograms. 

Table 2. Comparison between the loss function of the proposed algorithms 

Random Forest 

MAE 

XGBoost MAE Ridge MAE Neural Network 

MAE 

Predictions average 

MAE 

315 343 320 329 311 
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Figure 6 (a)  Correlation between result actual value and prediction 

in the four algorithms 

Figure 6 (b)  Correlation between result actual value and the average 

of predictions of the four algorithms 

 

  

Figure 7 (a) Histogram of the prediction error for Random Forest Figure 7 (b) Histogram of the prediction error for XGBoost 

  

Figure 7 (c) Histogram of the prediction error for Ridge Figure 7 (d) Histogram of the prediction error for Neural Network 
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The same process was repeated for the average of the predicted values, shown in Figure 7. Moreover, the error per 

each actual cost is depicted in Figure 8, showing an inverse correlation between the retrofit cost amount and the 

average prediction error. Meaning the higher the retrofitting cost per square meter is, the better the model's prediction 

is. This could be due to the denser distribution of samples in higher cost values. 

  

Figure 8 (a) Histogram of the prediction error for the average 

prediction value 
Figure 8 (b) Mean prediction error of each test value 

5. Discussion 

The comparison between the obtained results by the four models indicates some important aspects. Neural Networks 

have the advantage of capturing the nonlinearity between the input features and the target data, with the ability to 

understand even complex links. On the other hand, the other three algorithms better capture the correlation between 

the features and the target. Since the dataset is relatively small, the advantage of Neural Networks is not apparent. 

However, in the case of bigger datasets with more features and nonlinearity, Neural Networks will probably 

outperform the other three algorithms.  

The main limitations of the research are the small number of documented data and the existence of unretrievable 

missing data in the data set. Moreover, the input samples are not equally distributed, decreasing prediction precision 

and higher MAE. In order to solve this issue, the research suggests the average of the predictions as the most accurate 

output since it can benefit from the good performance of NNs for capturing the nonlinearity and the performance of 

the other three algorithms for capturing the correlation. The results also support this assertion, indicating a lower 

MAE for the average value.  

Though this research uses the Italian school buildings as the case study, it applies to other building types like industrial 

or residential buildings due to its systematic and comprehensive approach. It is also applicable to other countries and 

datasets.  

Another important contribution of the framework is the analysis of feature importance and impact on the final cost. 

It will enable the decision-makers to focus on the critical features while gathering data and deciding on the building 

retrofit alternative. 

6. Conclusion 

This research proposes a ML based retrofit cost prediction framework for school buildings. ML algorithms can deal 

with complex and abundant data, learn from previous cases, and predict accurately and automatically for future 

projects. In this context, the proposed framework determined the most relevant features in each category (energy 

retrofit, building retrofit, and general attributes) and trained four ML based models with Neural Networks, Random 

Forest, Ridge, and XGBoost algorithms. The cost prediction process was performed much faster and more accurately 

compared to traditional methods. Moreover, using this method, there is the possibility to do a sensitivity analysis of 
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the features to make the predictions more accurate. Therefore, ML based model proves to be an apt replacement for 

traditional cost estimation methods. 

Fostering the cost retrofit prediction, this research contributes to the resilience of school buildings in Italy, which are 

in poor maintenance condition. Consequently, it will result in increased quality of the interior space and seismic 

stability and decreased energy consumption and CO2 emission, which are some of the essential factors in achieving 

sustainability and resilience on building and urban scales.  
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