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Abstract

Pseudo-Random Numbers Generators (PRNGs) are algorithms produced to generate long sequences of statistically uncorrelated
numbers, i.e. Pseudo-Random Numbers (PRNs). These numbers are widely employed in mid-level cryptography and in software
applications. Test suites are used to evaluate PRNGs quality by checking statistical properties of the generated sequences.

Machine learning techniques are often used to break these generators, i.e. approximating a certain generator or a certain sequence
using a neural network. But what about using machine learning to generate PRNs generators?

This paper proposes a Reinforcement Learning (RL) approach to the task of generating PRNGs from scratch by learning a policy
to solve an N-dimensional navigation problem. In this context, N is the length of the period of the sequence to generate and the
policy is iteratively improved using the average score of an appropriate test suite run over that period.

Aim of this work is to demonstrate the feasibility of the proposed approach, to compare it with classical methods, and to lay the
foundation of a research path which combines RL and PRNGs.
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1. Introduction

Pseudo-Random Numbers (PRNs) sequence generation is a task of renown importance in cryptography and more
in general in computer science. A Pseudo-Random Number Generator (PRNG) is a (usually, deterministic) algorithm
which tries to emulate the statistical properties of a sequence of True-Random Numbers (TRNs). PRNGs are used
in applications related to gambling, statistical sampling, computer simulation and in other areas where producing an
unpredictable result is desirable. While TRN sequences are overall more unpredictable and as such better keys for
cryptography systems, they are usually expensive to generate. Indeed, a True Random Number Generator (TRNG)
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relies on natural phenomena like atmospheric or thermal noise, radioactive decay or cosmic background radiation.
Measurement of these is known to be expensive. A wide variety of methods have been employed up to now to define
PRNGs. To measure their quality some kind of statistical test suite is run over the result, i.e. the generated sequence
usually analyzed in its binary format. In this paper the National Institute for Standard and Technologies (NIST)
statistical test suite for random and pseudo-random number generators [2] is used to validate the PRNG.

Machine Learning (ML) is a field of artificial intelligence studying algorithms and statistical models to be used
by computer systems to perform tasks without explicit instructions. Nowadays, widely used statistical models are a
class of function approximators called Neural Networks (NNs). In particular, Deep Neural Networks (DNNs), that is,
NNs with several hidden layers, are successfully employed in many fields like image recognition, natural language
processing, games, etc. For the above reasons, ML has been used in the field of PRNGs to approximate generators
using target sequences of pseudo-random or true-random bits. This technique is very useful when the goal is predicting
the output of an existing generator, e.g. to break the key of a cryptography system.

There have been limited attempts at generating PRNGs using NNs by exploiting their structure and internal dynam-
ics. For example, the authors of [3] use Recurrent Neural Networks (RNNs) dynamics to generate PRNs. In [4], the
authors use the dynamics of a feed forward NN with random orthogonal weight matrices to generate PRNs. Neuronal
plasticity is used in [1] instead. In [5] a Generative Adversarial Network (GAN) approach to the task is presented,
exploiting an input source of randomness (like an existing PRNG or a TRNG).

This paper proposes a novel approach to the task of generating PRNGs from scratch. The proposed approach works
without data nor external inputs and without employing any structural dynamics. Indeed, it works just by using Deep
Reinforcement Learning (DRL), that is, RL and a DNN as function approximator. Our approach generates a sequence
of PRNs with variable period by directly optimizing its score computed by the NIST test suite. We show both the
advantages of our approach and future research paths required to overcome its current limits.

2. Methodology

When a PRNG generates a sequence of bits, it manipulates a starting state, called seed, according to a certain
algorithm that generates following states. It can then be thought as a sequence of decisions made from a starting
state following a certain strategy. In this setting, a good PRNG corresponds to a good strategy in a decision-making
process. The state could be represented by the sequence itself up to that point. The strategy could instead be the action
of changing some parts of the sequence.

2.1. Reinforcement Learning

For a comprehensive, motivational and thorough introduction to RL, we strongly suggest reading sections from 1.1
to 1.6 in [10]. In the context of ML, RL is learning what to do in order to accumulate as much reward as possible in
a Markov Decision Process (MDP) (S, A, R, p), where the Markov property is only a restriction on the states S. All
RL algorithms used in this paper use function approximation via a DNN.

2.2. N-Dimensional Navigation

From the considerations described at the beginning of this section, the problem of generating PRNs seems suitable
for RL. There is however one caveat: the naive approach that comes to mind, that is, using as state the last generated
number, is inherently not Markovian: whatever reward we use to measure the randomness of the sequence, it must
depends on the whole sequence that was generated before. Using as state the whole sequence, and increasing the
length of the sequence by appending a new number is calling for the curse of dimensionality!

The goal of this decision task is to perturb the sequence without changing its length, and this can be obtained by
adding or subtracting a certain fixed value at some position in the sequence. Actions will then be given by “add or
subtract, position” pairs, and will be described more in detail in next subsections concerning each specific formula-
tion.Finally, we model the task as finite-horizon episodic, by fixing a termination time 7. Thus, the state S is the
output sequence of the PRNG, i.e. the sequence of N PRNs. A fixed length output however violates one requirement
of PRNGs, that is, a PRNG has to be able to generate a (possibly) infinite amount of numbers. To solve this problem,
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we can think of the generated sequence as the period of the PRNG. By concatenating multiple output of the same
PRNG it is possible to obtain a (possibly) infinite amount of numbers. Please note that a feature of this RL approach
is the fact that this period is also variable, as we will show in the next section. The starting state of this task should
be given by a number, known as the seed. According to our definition of state, we set all N numbers of the sequence
corresponding to the starting state equal to the seed value, e.g. 0.

This in general an N-dimensional navigation task. When actions are chosen by a policy maximizing a total reward
associated to “randomness” in some sense, this navigation will end up in a PRNs sequence. A simple yet informative
reward function could be the average of the scores given by the NIST tests computed over the binary representation
of the sequence at certain time steps. The NIST test suite and its tests are described more in detail in section 2.4.

2.3. Binary Formulation

Binary Formulation (BF) is based directly on the binary representation of the sequences as analyzed by the NIST
test suite. Assume each integer value is represented by m-bits. Given a sequence of integer numbers of length N, the
state is B-dimensional and defined as

S =1[b1,bs,....bp]

where by, b,, ..., bp are binary values and B = m = N. Its cardinality is 2B = 2mN The action set is defined as

B
A=, 00

n=1

where 1, is the action of setting the n bit to 1 and 0, is the action of setting the n bit to 0. The null action, that is,
do nothing, is not required since to keep current position in the space the agent can just set a certain bit to its current
value. The action set is discrete and its size is 2 - B, i.e. 2 - m - N. While binary representation can produce terminal
states uncorrelated to seed states, probably because of the reduced sparseness of the good states, the size of the action
set is large even for short decimal sequences.

2.4. NIST Test Suite

The NIST statistical test suite for random and pseudo-random number generators is the most popular application
to test the randomness of sequences of bits. In this paper, it is used to compute the average value of all eligible tests in
the battery run on the generated PRNs sequences. If a test is failed its value is set to zero. Some tests are not eligible
on certain sequences because of their length, and in this case they are not considered for the average. This value is
then used as a reward function for the MDP we are defining. Experimentally we saw performance to be better when
reward is assigned only at the end of the episode, even if that means incurring in the credit assignment problem. Please
notice that, since test statistic values are probabilities according to statistical hypothesis definition, rewards belong to
[0, 1].

3. Experiments

Our experiments consists on multiple sets of training processes with different hyperparameters. We divide the
experiments according to the formulation and reward function used, and by the RL algorithm employed. The combi-
nation of the first two gives the RL environment, while the latter is the RL agent. The environment employed in the
shown experiments uses BF for states and actions, and assigns a reward R, = 0 at every time step t # 7. At termination
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time T the reward is the average value of the NIST test suite over the state S 7:

R = avgner(S,)  ifr=T
t - .
0 otherwise

We experimented with three model-free RL algorithms: two on-policy policy gradient algorithms (Vanilla Policy
Gradient and Proximal Policy Optimization) and one off-policy (deep Q-learning in its Dueling Deep Q-Network [12]
flavor, proved to be better than the original DQN algorithm from [6], with Prioritized Experience Replay as in [7]).
From our experiments only policy gradient algorithms succeeded in solving the task without great instability.

3.1. Framework

The framework used for the RL algorithms is USienaRL'. This framework allows for environment, agent
and interface definition using a preset of customizable models. The NIST test battery is run with an-
other framework, called NistRng®. Finally, the code for this article can be found at this GitHub repository:
https:/lgithub.com/InsaneMonster/pasqualini2019prngrl.

3.2. Experimental setup

The policy optimization algorithms we used are Vanilla Policy Gradient (VPG) [11] and Proximal Policy Optimiza-
tion (PPO) [9], both with Generalized Advantage Estimation (GAE) [8]. The VPG model used in our experiments is
composed by six dense layers with 4096 neurons each initialized with Xavier initialization, the learning rate of the
policy stream is set to 3e — 4 and the learning rate of the value stream is set to 1le — 4. Discount factor is y = 0.99 and
A =0.95. At each update, 80 value steps are performed. The model is updated 10 times each volley. The PPO model
is likewise composed by six dense layers with 4096 neurons each initialized with Xavier initialization. The learning
rate of the policy stream is set to 3e — 4 and the learning rate of the value stream is set to le — 4. Discount factor is
v =0.99 and 1 = 0.97. At each update, 80 policy and value steps are performed. The model is updated 10 times each
volley. The clip ratio is set to 0.2 and the target KL divergence is 0.01.

3.3. Results

In this subsection we present experimental results in the form of plots. We set the environment to B = 80 and then
B = 200, respectively environments with sequences of 80 and 200 bits. Since the reward is assigned only at the end,
our performance evaluation criteria is the average total reward over the volley, i.e. the average reward per episode over
the training volley. A training volley is set of training episodes, or trajectories.

We can see in figure 1 that for sequences of 80 bits both VPG and PPO converge with consistent results. We also
note that our model average score is greater than the reference average score over 1000 sequences of equal fixed
length B = 80 generated by the NumPy uniform PRNG. We believe this to be a very interesting result. Apparently,
for sequences of length 200 VPG is able to converge, as seen in 2a, but not in all experiments. PPO, while having
better training trends overall as shown in figure 2b, proves to be even too cautious in improving its policy and tends
to converge to worse final results or to converge in more steps. In table 1 some generated sequences are shown in
decimal representation. All the generated sequences are results of one trained PRNG with one seed state. Since these
fixed length sequence can be considered the period of the generator, the trained PRNG has variable period..

' Available on PyPi and also on GitHub: https://github.com/InsaneMonster/USienaRL.
2 Available on PyPi and also on GitHub: https://github.com/InsaneMonster/NistRng.
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Fig. 1. Average total reward during training of VPG (a) and PPO (b) on BF, reward only at the end environment with B = 80. Volleys are composed
by 1000 episodes each. The fixed length of each trajectory is 7 = 100 steps. Reference average value over 1000 sequences of same binary length

B = 80 generated by NumPy uniform PRNG is of 0.33.

0.25

0.20

o

e

%
L

Average total reward
o
=
o
’

0.05 A

0.00 -

50 100 150 200 250 300 350
Training volley

oA

Average total reward

0.16

0.14

o

[

N
|

e

e

o
|

0.08

0.06

20 30 40 50
Training volley

oA
=
o

Fig. 2. Average total reward during training of VPG (a) and PPO (b) on BF, reward only at the end environment with B = 200. Volleys are composed
by 1000 episodes each. The fixed length of each trajectory is 7 = 100 steps. Reference average value over 1000 sequences of same binary length

B = 200 generated by NumPy uniform PRNG is of 0.35.

Table 1. Sequences in decimal representation of one trained PRNG with seed = 0 and B = 80, alongside their average score.

Sequence Average Score
-10 -112 68 -39 -123 35 66 -28 62 0.24
22 -113 34 -111 44 42 114 -63 -41 0.57
-48 -111 20 -102 10 -18 11 80 62 0.16

4. Conclusions

In this paper we propose a way to automatically generate PRNGs, a task of interest and a currently open field of
research. Our approach uses RL to build a PRNG from scratch. To the best of our knowledge, this is a novel approach
and results are promising. Our approach also presents the following interesting features:
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o It requires no input data, so that the generated PRNG is always a novel algorithm.

e Each time a training process is run the resulting PRNGs are likely to be different from each other. This is an
inherent property of RL as a whole.

o For a single starting state, multiple solutions can be obtained after one training process since RL policies can
be stochastic. In short, we obtain a non-deterministic PRNG given a single seed. This is a novel property which
is not present in current state-of-the-art PRNGs.

o Given that NNs are black-box approximators, the policy of the RL agent is black-box. Since the PRNG is the
algorithm given by that policy, it is also black-box. This grants the nice property of having no human insights
in the inner functioning of the PRNG.

Finally, results prove that this approach is feasible, and the task can be learned by RL techniques. We hope this paper
will inspire future research which combines PRNGs and RL.

4.1. Future work

The current main limitation of our approach is the dimensionality N of the state, i.e. the period of the PRNG.
Our experiments show that, at least on average hardware, is very complex to successfully train an agent on longer
sequences, thus obtaining a PRNG with longer period. This will be the main focus of our research to come. Beside
that, we aim to do the following:

e Improve the quality of the output sequence, i.e. each period, especially for longer sequences. This means to
increase the average value obtained by the NIST test battery over the fixed size sequences.

o Increase the amount of supported seeds. We aim at reducing the variance introduced by additional seeds during
learning. We believe that processing somehow the vector representation (for example with convolutional filters)
could be a promising path to follow.

e Devise a better strategy to concatenate the output sequences. Ideally, this could also be learned, for example
with hierarchical RL.

e Move towards a formulation in which the size of the action space does not grow (too much) with the length N
of the sequence, without losing (too much) the ability to reach points in the lattice with a high value.
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