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Abstract: Undiagnosed and untreated oral precancerous lesions often progress into malignancies.
Photodynamic therapy (PDT) might be a minimally invasive alternative to conventional treatments.
5-aminolevulinic acid (5-ALA) is one of the most commonly used photosensitizers in PDT, and it is
effective on many cancer types. However, its hydrophilic characteristic limits cell membrane crossing.
In the present study, the effect of a newly formulated gel containing 5% 5-ALA in combination with
red light (ALAD-PDT) on a premalignant oral mucosa cell line was investigated. The dysplastic oral
keratinocyte (DOK) cells were incubated with ALAD at different concentrations (0.1, 0.5, 1, and 2 mM)
at two different times, 45 min or 4 h, and then irradiated for 7 min with a 630 nm LED (25 J/cm2).
MTT assay, flow cytometry, wound healing assay, and quantitative PCR (qPCR) were performed.
ALAD-PDT exerted inhibitory effects on the proliferation and migration of DOK cells by inducing
ROS and necrosis. mRNA analysis showed modulation of apoptosis-related genes’ expression
(TP53, Bcl-2, survivin, caspase-3, and caspase-9). Furthermore, there was no difference between the
shorter and longer incubation times. In conclusion, the inhibitory effect of the ALAD-PDT protocol
observed in this study suggests that ALAD-PDT could be a promising novel treatment for oral
precancerous lesions.

Keywords: 5-ALA; LED; photodynamic therapy; dysplastic oral keratinocytes (DOK); ROS; necrosis

1. Introduction

Oral cancer is the sixth most common cancer, with a high worldwide incidence [1].
Oral precancerous lesions involve the epithelium of the mouth and may be at risk in
developing oral cancer, which are associated with a high mortality rate [2]. Therefore,
early detection and early treatment of precancerous lesions are fundamental for increasing
patient survival and, consequently, their quality of life. Photodynamic therapy (PDT) may
be a valid alternative to conventional treatment methods such as surgery, radiotherapy, and
chemotherapy [3]. Compared to these cancer treatment options, PDT has the advantage of
being minimally invasive; it does not induce drug resistance or have systemic side effects
like chemotherapy [4]. PDT uses a light-sensitive compound, a photosensitizer, which
selectively accumulates inside cells such as bacteria or cancer cells [5,6]. The photochemical
reaction occurs when the photosensitizer is excited by visible light at specific wavelengths
and reacts with molecular oxygen. This photodynamic reaction leads to singlet oxygen and
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free radical production, which damages the target cells [5]. One of the most commonly used
drugs in PDT clinical practice is 5-aminolevulinic acid (5-ALA), a component of the heme
biosynthesis chain, acting as a precursor of the endogenous photosensitizer protoporphyrin
IX (PpIX) [7]. Although 5-ALA is effective in many cancer types, its hydrophilic character-
istic limits its ability to cross the cell membrane [8]. This limiting property has driven the
formulation of novel chemicals to better convey the active ingredient to cells. ALADENT, a
gel containing 5% of 5-ALA, is a lipophilic compound owing to its formulation based on
a poloxamer mixture [9]. Hence, ALADENT can enhance the intracellular accumulation
of the photosensitizer, protoporphyrin IX (PpIX), into target cells because its formulation
is more lipophilic than 5-ALA itself. ALADENT, combined with a red light at 630 nm
(ALAD-PDT), has shown efficacy against oral microorganisms in in vitro and in vivo stud-
ies [10–13]. Notably, the ALAD-PDT protocol has also demonstrated antibacterial effects
against oral biofilm [11,14,15]. ALAD-PDT was originally designed as a strategy for oral
microorganism infection control in the context of periodontal disease. Its efficacy in treating
oral precancerous lesions is unexplored. Considering that an inhibitory effect of 5-ALA
on the viability of premalignant cells was reported [16–18], the aim of this study was to
examine the effect of ALAD-PDT on the proliferation and migration of the premalignant
oral mucosa cell line DOK, along with potential mechanisms involved in it.

2. Results and Discussion
2.1. ALAD-PDT Treatment Induced Cell Death in DOK

The cytotoxic activity of ALAD-PDT on oral precancerous DOK cells was assessed
at 24 h and 72 h after the treatment. Given that it was previously demonstrated that the
survival of oral cancer cells could be inhibited by 5-ALA in a dose-dependent manner, in
this study, ALAD was applied at different concentrations (0.1, 0.5, 1, and 2 mM/mL) with
and without irradiation (Figure 1). One of the strengths of the ALAD-PDT protocol is the
relatively short time necessary for the entire procedure. Namely, it takes 45–60 min for gel
application and 7 min for irradiation with a LED device. However, previous studies have
shown the antitumoral effects of 5-ALA incubated for 4 h because of the slow permeability
of the 5-aminolevulinic acid into the target cells [16–18]. In particular, ALADENT is a
sol–gel, liquid at room temperature (sol) and semi-solid at body temperature (gel). It
was formulated to improve muco-adhesion properties and to speed up the penetration
of 5-ALA across the cellular membrane [9]. The class of carriers, particularly convenient
for topical applications, that can confer higher permeability to the acid (5-ALA) refer
to a triblock copolymer made of polyethylene oxide (PEO) and polypropylene oxide
(PPO) known as poloxamers. Collaud et al. showed how a thermosetting formulation
based on this poloxamers mixture was more suitable than creams in releasing 5-ALA
ester derivates [19]. This poloxamers mixture showed an excellent compatibility with
other chemicals and high solubilization capacity for different drugs [19,20]. The effect
of the ALADENT protocol at different concentrations on normal cells, such as human
fibroblasts and human osteoblasts, was already demonstrated in our previous studies [21,
21]. Therefore, we compared the sensitivity of DOK cells incubated with ALAD for 45 min
and DOK cells incubated with ALAD for 4 h (Figure 2). At day 1, compared to untreated
cells, ALAD without irradiation did not cause changes in cell viability, whereas irradiation
alone induced a certain cytotoxic effect, and the viability of DOK cells was reduced to
84.69 ± 3.77%. However, the optimum inhibition of cell viability was observed when cells
were subjected to the whole (ALAD-PDT) treatment (Figures 1A–E and 2A). A reduction
in cell viability was observed in a dose-dependent manner. The following percentages of
viable cells were recorded: 29.09 ± 3.61%, 29.55 ± 3.06%, 27.14 ± 3.19%, and 24.08 ± 2.91%
after a 45 min incubation of DOK with the gel at concentrations of 0.1 mM, 0.5 mM, 1 mM,
and 2 mM of ALAD, respectively, and exposure to light (Figures 1D and 2A). The viability
of cells further decreased for all concentrations (0.1 mM, 0.5 mM, 1 mM, and 2 mM) when
the incubation time was prolonged (4 h), being 26.19 ± 2.73%, 28.03 ± 3.32%, 22.24 ± 2.67%,
and 21.85 ± 2.64%, respectively (Figures 1E and 2A). No statistically significant differences



Gels 2023, 9, 604 3 of 14

in viability reduction could be observed between cells incubated for 45 min and for 4 h
(Figure 2A). Further inhibition of cell viability was observed at 3 days post-treatment
(Figure 2B). Applying LED alone resulted in 70.84 ± 3.22% of viable cells, while the greatest
inhibition efficiencies were achieved by combining ALAD gel with LED (Figure 1A). At all
doses (0.1, 0.5, 1, and 2 mM), the viability of DOK cells decreased below 20% after ALAD-
PDT, regardless of the incubation time. The values for viable cells treated for 45 min were
14.93 ± 2.03%, 17.68 ± 2.93%, 13.81 ± 2.41%, and 12.95 ± 2.45%, while the viability of cells
after 4 h of incubation was 14.41 ± 2.51%, 14.81 ± 2.54%, 14.97 ± 2.69%, and 12.04 ± 2.44%,
respectively (Figure 2B). Thus, the viability assay results showed that ALAD does not
exhibit cytotoxic effects on DOK cells without light. Other studies using 5-ALA have
also reported this finding in oral precancerous, oral squamous carcinoma, breast cancer,
and hepatocellular carcinoma cells [9,16,19]. On the other hand, light alone inhibited the
viability of cells; the reduction in viable cells after 7 min of irradiation was approximately
30% at 3 days post-treatment (Figure 2B). This is in line with an in vitro study that described
the anti-proliferation properties of LED at 630 nm on human synoviocytes irradiated for
15 min [20]. Recently, another study described the inhibitory activities of a 660 nm LED
in various breast cancer-origin cell lines irradiated for 30 min [21]. The present study
showed that ALAD-PDT had a remarkable dose- and time-dependent inhibitory effect on
the proliferation of DOK cells, with the optimum effect achieved with the highest dose of
ALAD-PDT (2 mM). Similar anti-proliferative activity of 5-ALA on oral precancerous cell
lines has already been reported. However, because of its poor membrane permeability, the
incubation time of cells with 5-ALA in the previous studies was 4 h or more [16–18,22,23].
ALAD gel was formulated precisely to increase the penetrability of 5-ALA into tissues and
cells. The results of DOK cells incubated for 45 min with ALAD and the results of DOK
cells incubated for a longer time (4 h) were compared (Figure 2A,B). As hypothesized, no
statistically significant differences could be revealed between the two incubation times,
even though cells incubated with ALAD for 4 h showed a greater decrease in viability.
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days the photodynamic protocol (ALAD-PDT). (A) Cells irradiated with LED alone compared to 

untreated cells; (B) cells incubated for 45 min with different concentrations (mM) of ALADENT; (C) 

Figure 1. Analysis of cell viability in DOK cells, measured with the MTT assay after 1 day and
3 days the photodynamic protocol (ALAD-PDT). (A) Cells irradiated with LED alone compared to
untreated cells; (B) cells incubated for 45 min with different concentrations (mM) of ALADENT;
(C) cells incubated for 4 h with different concentrations (mM) of ALADENT; (D) cells incubated for
45 min with different concentrations (mM) of ALADENT and then irradiated with LED for 7 min;
(E) cells incubated for 4 h with different concentrations (mM) of ALADENT and then irradiated with
LED for 7 min. Data are presented as mean ± SD; n = 6. ** p < 0.01, # p < 0.0001.
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Figure 2. Analysis of cell viability in DOK cells expressed in percentage. The 45 min groups were
individually compared with 4 h groups. Data are presented as mean ± SD; n = 6. ns = 45 min group
(light blue bars vs. 4 h group (red bars) indicates non-significative result. (A) 1d and (B) 3d.

2.2. ALAD-PDT Treatment Inhibited Migration Capacity of DOK

A wound healing assay was performed to verify whether the photodynamic treatment
could decrease the metastatic potential of the tested precancerous cell lines, as shown in
Figure 3. None of the doses of ALAD exhibited any inhibitory effect on the migration rate
of DOK cells, and during the experiment, the cell-free area progressively diminished. In
the cells treated with ALAD without light, wound closure began after 24 h, and complete
closure occurred after 48 h of cultivation, as was observed in the control cells. LED alone
was able to partially inhibit the closure of the wound (Figure 3A). Previous studies have
shown the opposite effects of irradiation with LED or laser on promoting or inhibiting cel-
lular migration, depending on the experimental settings, i.e., dosimetric parameters such as
wavelength, energy, and irradiation frequency [24,25]. Based on the dose–response relation-
ship between phototreatment and cancer cells, Schalch et al. found that oral squamous cell
carcinoma irradiated with a 660 nm laser (40 mW; 4 J/cm2) demonstrated greater wound
closure capacity than cells irradiated with a 780 nm laser (70 mW; 4 J/cm2) [24,26]. On the
contrary, Henriques et al. observed a greater invasion potential of oral squamous cell carci-
noma cells irradiated with a 660 nm laser using two energy densities (0.5 and 1.0 J/cm2)
compared to the control group [27]. In our study, DOK cells’ migration rate was noticeably
decreased after ALAD-PDT. ALAD-PDT significantly enhanced the width of the wound by
enhancing the cell-free area (Figure 4). At 48 h post-treatment, the scratches appeared larger
than the initial wounds (Figure 3B,C). Beyond the wound area, a reduction in attached cells
was observed after 48 h of treatment with the highest dose of ALAD (2 mM), incubated
for 4 h (Figure 3C). As illustrated in the graphs, the quantification of wound area (µm2)
in time confirmed the ALAD-PDT protocol’s inhibitory effect (Figure 4A–C). The rate of
cells moving towards the scratched area revealed that untreated cells and cells treated with
ALAD alone migrated faster to close the gap of a scratch than LED-treated cells (Figure 4D).
On the contrary, ALAD-PDT significantly reduced cell migration of DOK cells compared
with untreated cells (Figure 4E,F). The greatest reduction in cell migration was observed in
DOK cells incubated for 4 h with all doses of ALADENT plus light (Figure 4F).
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2.3. ALAD-PDT Treatment Induced ROS Production in DOK 

Based on the mechanism of PDT, the death of cells is due to oxidative damage, i.e., 

the increment of ROS production [5]. Flow cytometry experiments with DCFH2-DA fluo-

rescein were used to measure cellular ROS formation and investigate whether differences 

Figure 3. Images from wound healing assays using phase contrast microscopy at different time points
(0 h, 24 h, and 48 h). Scale bar = 100 µm. Representative images of scratched and recovering wounded
areas (marked by blue lines) on confluence monolayers of DOK cells were analyzed using the ImageJ
software. (A) Untreated cells and any treatments alone. (B) The migration rate of cells treated with
ALAD-PDT for 45 min. (C) Cell migration rate after the whole treatment for 4 h.
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Figure 4. The wound healing assay revealed differences in the migration rates of DOK cells.
(A–C) wound area µm2 at different time points (0 h, 24 h, and 48 h). (D–F) Summary graph showing
migration rates of DOK cells in the presence of different treatments. Data are presented as mean ± SD;
n = 3. ** p < 0.01 vs. untreated; # p < 0.0001 vs. untreated.

2.3. ALAD-PDT Treatment Induced ROS Production in DOK

Based on the mechanism of PDT, the death of cells is due to oxidative damage, i.e.,
the increment of ROS production [5]. Flow cytometry experiments with DCFH2-DA fluo-
rescein were used to measure cellular ROS formation and investigate whether differences
in intracellular ROS levels appeared in DOK cells treated with ALAD-PDT at different
concentrations and incubation times. Although ROS predominantly include superoxide
anion (O2

−), hydrogen peroxide (H2O2), and hydroxyl radical (OH) [28], H2O2 represents
the most stable, being able to cross the cell membrane through passive and diffusion mech-
anisms, and it plays a crucial role in ROS-dependent signaling [29]. Thus, in this study,
H2O2-treated cells were considered positive controls, and only the percentage of H2O2
as reference ROS was reported in the flow cytometry analysis. As shown in Figure 5, the
analysis revealed that ALAD-PDT generated ROS in a photosensitizer dose-dependent
manner. It should be mentioned that the same trend was observed for both incubation
times. In cells incubated with ALAD for 45 min, the generated ROS levels were lower than
those generated in H2O2-treated cells. Similarly, the percentage of ROS produced in cells
incubated with ALAD for 4 h was lower than in H2O2-treated cells, except for 2 mM+LED.
This result perfectly reflects the trend of viability results, indicating that the amount of
ROS generated can impact the effects of PDT. The cellular ROS formation under LED light
was measured because LED light also provoked cytotoxic effects on DOK cells. Interest-
ingly, the obtained ROS values were lower than in H2O2-treated cells but higher than in
0.1 mM+LED-treated cells. This could be due to cellular ROS formation by LED light, not
only from the mitochondria but also via NADPH oxidase-dependent mechanisms [26].
Considering that oxidative stress is lethal when the activity of the oxidants prevails over
the antioxidants, it could be interesting to investigate in a future study the antioxidant
agents in DOK cells.
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Figure 5. Changes in intracellular ROS after the ALAD-PDT protocol. The detection of ROS levels
in DOK cells exposed to different doses of ALAD-PDT and LED alone was determined by flow
cytometry. The percentage of H2O2 in each group was reported. Untreated cells were considered
negative controls, and H2O2-treated cells were considered positive controls.

2.4. ALAD-PDT Treatment Mainly Induced Necrosis in DOK

It is well known that PDT can lead to apoptosis, necrosis, and autophagy [30]. Double
staining with Annexin V/PI was performed 24 h after treatment to assess the influence of
ALAD-PDT on the death of DOK cells. Compared to the control group, a necrosis-inducing
effect was observed in cells treated with 2 mM-ALAD combined with LED. As shown
in Figure 6, the proportions of necrotic DOK cells were 84.66% and 76.67% after 45 min
and 4 h, respectively. A small proportion of apoptotic cells (10.56%) was observed after
4 h of incubation with ALAD-PDT. LED irradiation alone induced a small number of
necrotic cells compared to the control group. The results suggest that necrosis is the main
type of cell death induced by ALAD-PDT. Even though necrosis is less observed than
apoptosis in PDT studies, it was reported that the cell type, the subcellular localization
of the photosensitizer, the type and site of generated ROS, and the light dose applied to
activate the photosensitizer are factors and parameters determining which will be the
fate of the cell, necrosis or apoptosis, following PDT [30–32]. A recent study reported
that 5-ALA-based photodynamic therapy can induce necrosis and apoptosis in pathologic
proliferative skin cells [33]. Another study demonstrated singlet oxygen production after
5-ALA-PDT-induced RIP3-dependent necrotic pathway activation [34].

Gels 2023, 9, x FOR PEER REVIEW 8 of 15 
 

 

 

Figure 6. Annexin V-PI dual-staining assay evaluated apoptosis/necrosis in DOK cells induced by 

different treatments. The plots were divided into four regions, and the percentage of apoptotic/ne-

crotic was reported. 

2.5. ALAD-PDT Treatment Induced Changes in Apoptosis-Related Genes 

To further investigate the mechanism behind the ALAD-PDT-induced cell death, the 

expression of apoptosis-related genes such as TP53, caspase-3, caspase-9, Bcl-2, and Sur-

vivin was studied, and the results were reported in the Figure 7. TP53, Bcl-2, and Survivin 

were significantly upregulated in ALAD-PDT-treated DOK cells, with the highest values 

in cells incubated for 45 min (Figure 7A–C). No significant modulation in the expression 

of caspase-3 could be observed in ALAD-PDT-treated cells compared to control (Figure 

7D). In contrast, the expression of caspase-9 showed an opposite trend depending on the 

incubation time. Indeed, the level of caspase-9 mRNA was downregulated in ALAD-PDT-

treated cells incubated for 45 min but upregulated in ALAD-PDT-treated cells incubated 

for 4 h (Figure 7E). Each of these genes’ role in promoting apoptotic pathways is well 

documented [35]. However, recent studies suggest necrosis shares signaling pathways 

and genes with programmed cell death, apoptosis [36,37]. The tumor suppressor protein 

p53 is a stress-responsive transcription factor involved in biological functions such as cell 

cycle arrest, apoptosis, senescence, metabolic dynamics, and autophagy. Still, studies also 

revealed a role for p53 in the regulation of necrotic cell death by altering mitochondrial 

permeability [38,39], and it is known that the necrosis mechanism implies the formation 

of the mitochondrial permeability transition pore (MPTP) [40]. In a murine model, it was 

demonstrated that oxidative stress stimulates the translocation of p53 to the mitochondria 

to promote MPTP and, consequently, necrosis via the cyclophilin-D-p53 interaction [39]. 

This result was supported by different in vitro studies demonstrating CypD-p53 complex 

formation in MPTP-induced necrosis in neuronal, osteoblastic, and pancreatic cells [41–

43]. There is evidence that overexpression of the anti-apoptotic Bcl-2 gene is a form of 

resistance to chemotherapeutic drugs in various cancer types [44]. However, a dual pat-

tern of Bcl-2 overexpression was observed in PDT-treated cancer cells. For instance, a pro-

tective role against PDT-induced apoptosis [45] and an increased death rate in Bcl2-over-

expressing head and neck cancer cells were reported [46,47]. Survivin also acts as an anti-

apoptotic gene and, like Bcl-2, is a form of cancer cell resistance to chemotherapeutic 

drugs. Its suppressive ability is achieved via inhibition of caspase activity [48]. Studies 

showed that knockdown of the Survivin gene is sufficient to improve photokilling effi-

ciency [49,50]. Caspases play an important role in the proteolysis-mediated activation of 

apoptotic proteins. The cleavage of nuclear proteins represents the events that character-

ize apoptosis; caspase-9 is considered the initiator, and caspase-3 is the effector [47]. Stud-

ies investigating PDT as an anticancer strategy reported both apoptosis and necrosis after 

PDT treatment via modulation of p53, Bcl-2, and caspase genes [31,46,51,52]. Meng P. et 

al. showed the ability of photodynamic treatment to inhibit oral squamous cell carcinoma 

viability by upregulating p53 [53]. In a recent study, necrosis was the main form of cell 

death in Foscan-photosensitized HT29 cells that overexpressed Bcl-2. In contrast, apopto-

sis was the main type of cell death in cells with upregulated caspase-3 [52]. Kessel D. 

Figure 6. Annexin V-PI dual-staining assay evaluated apoptosis/necrosis in DOK cells induced by dif-
ferent treatments. The plots were divided into four regions, and the percentage of apoptotic/necrotic
was reported.

2.5. ALAD-PDT Treatment Induced Changes in Apoptosis-Related Genes

To further investigate the mechanism behind the ALAD-PDT-induced cell death,
the expression of apoptosis-related genes such as TP53, caspase-3, caspase-9, Bcl-2, and
Survivin was studied, and the results were reported in the Figure 7. TP53, Bcl-2, and
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Survivin were significantly upregulated in ALAD-PDT-treated DOK cells, with the highest
values in cells incubated for 45 min (Figure 7A–C). No significant modulation in the
expression of caspase-3 could be observed in ALAD-PDT-treated cells compared to control
(Figure 7D). In contrast, the expression of caspase-9 showed an opposite trend depending
on the incubation time. Indeed, the level of caspase-9 mRNA was downregulated in
ALAD-PDT-treated cells incubated for 45 min but upregulated in ALAD-PDT-treated cells
incubated for 4 h (Figure 7E). Each of these genes’ role in promoting apoptotic pathways is
well documented [35]. However, recent studies suggest necrosis shares signaling pathways
and genes with programmed cell death, apoptosis [36,37]. The tumor suppressor protein
p53 is a stress-responsive transcription factor involved in biological functions such as cell
cycle arrest, apoptosis, senescence, metabolic dynamics, and autophagy. Still, studies also
revealed a role for p53 in the regulation of necrotic cell death by altering mitochondrial
permeability [38,39], and it is known that the necrosis mechanism implies the formation
of the mitochondrial permeability transition pore (MPTP) [40]. In a murine model, it was
demonstrated that oxidative stress stimulates the translocation of p53 to the mitochondria
to promote MPTP and, consequently, necrosis via the cyclophilin-D-p53 interaction [39].
This result was supported by different in vitro studies demonstrating CypD-p53 complex
formation in MPTP-induced necrosis in neuronal, osteoblastic, and pancreatic cells [41–43].
There is evidence that overexpression of the anti-apoptotic Bcl-2 gene is a form of resistance
to chemotherapeutic drugs in various cancer types [44]. However, a dual pattern of Bcl-2
overexpression was observed in PDT-treated cancer cells. For instance, a protective role
against PDT-induced apoptosis [45] and an increased death rate in Bcl2-overexpressing head
and neck cancer cells were reported [46,47]. Survivin also acts as an anti-apoptotic gene
and, like Bcl-2, is a form of cancer cell resistance to chemotherapeutic drugs. Its suppressive
ability is achieved via inhibition of caspase activity [48]. Studies showed that knockdown of
the Survivin gene is sufficient to improve photokilling efficiency [49,50]. Caspases play an
important role in the proteolysis-mediated activation of apoptotic proteins. The cleavage of
nuclear proteins represents the events that characterize apoptosis; caspase-9 is considered
the initiator, and caspase-3 is the effector [47]. Studies investigating PDT as an anticancer
strategy reported both apoptosis and necrosis after PDT treatment via modulation of p53,
Bcl-2, and caspase genes [31,46,51,52]. Meng P. et al. showed the ability of photodynamic
treatment to inhibit oral squamous cell carcinoma viability by upregulating p53 [53]. In
a recent study, necrosis was the main form of cell death in Foscan-photosensitized HT29
cells that overexpressed Bcl-2. In contrast, apoptosis was the main type of cell death in
cells with upregulated caspase-3 [52]. Kessel D. reported the inhibition of procaspase-9 and
procaspase-3 and the overexpression of Bcl-2 in porphyrin-induced necrotic cells. Kessel
D. indicated the inactivation of procaspase-9 and procaspase-3 as the signal shifting in
favor of necrosis [36]. This could explain the apoptotic cell population detected only in
ALAD-PDT-treated cells incubated for 4 h, where caspase-9 was upregulated compared to
ALAD-PDT-treated cells incubated for 45 min.

Altogether, the present study indicates that the photodynamic protocol ALAD-PDT
can substantially decrease cell viability and cell migration of dysplastic oral keratinocytes
via ROS production. Interestingly, necrosis appeared to be the dominant cell death after
ALAD-PDT. The type and site of ROS generated in PDT-exposed cancer cells seem to
be the decisive factors in promoting necrosis or apoptosis [36,37,54]. Gene expression
analysis suggested that anti-apoptotic molecules generally suppress apoptotic pathways in
ALAD-PDT-treated cells. This could be seen as a form of triggered resistance in DOK cells,
but the ALAD-PDT protocol robustly photokilled cells via ROS- mediated necrosis.
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as mean ± SD; n = 3. * p < 0.05 vs. untreated; ** p < 0.01 vs. untreated; *** p < 0.001 vs. untreated;
ns—non significant.

3. Conclusions

In conclusion, the data showed the synergistic effect of combined ALADENT and
LED in inhibiting cell proliferation and migration. This points to the ALAD-PDT protocol
as a potential alternative treatment for oral precancerous lesions. The treatment can be
repeated many times in the same area without systemic toxicity. However, only several
aspects of the procedure were elucidated. Therefore, further studies are required to identify
the molecular mediators involved in the cell death mechanisms in ALAD-PDT-exposed
cancer cells.

4. Materials and Methods
4.1. Cell Culture

Dysplastic oral keratinocytes (DOK) (European Collection of Authenticated Cell Cul-
tures, 94122104) were cultured in complete medium Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% fetal bovine serum, 100 U/mL streptomycin-penicillin
solution (all from Thermo Fisher Scientific, Waltham, MA, USA). Cell culture medium was
supplemented with 0.5 µg/mL hydrocortisone (Thermo Fisher Scientific, Waltham, MA,
USA) as previously reported [55]. It was reported in different studies that hydrocortisone,
as a supplement in cell culture media, can enhance the proliferation of various cell lines
including keratinocytes, epithelial, endothelial, lung embryonic fibroblasts, and (HEL)
cells. It was demonstrated that hydrocortisone can also promote the initial attachment
of cells on the substratum surface of cells [56,57]. A recent study evaluated the effect of
hydrocortisone in 2D and 3D cell culture of human laryngeal carcinoma cells (HEp-2). In
this study, the exposure of hydrocortisone promoted the spreading of cells on substrate and
increased cell proliferation, but the effect occurred within 24 h, indicating that the influence
of supplement is for a short period just for the initial phase of cell culture [58]. Another
recent in vitro study demonstrated that the addition of hydrocortisone in human laryngeal
carcinoma (HEp-2) cell culture is able to influence chemotherapeutic treatment but cannot
influence photodynamic treatment [59]. Cells were grown in a humidified atmosphere
under standard conditions (37 ◦C and 5% CO2).

4.2. Aladent Treatment Protocol

DOK cells were incubated for 45 min (45 min) or for 4 h (4 h) with different concentra-
tions (mM/mL) of the gel containing 5% of 5-aminolevilinic acid (ALAD), commercialized
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as ALADENT by ALPHA Strumenti s.r.l. (Melzo, MI, Italy) and then irradiated for 7 min
(7 min) with an LED device TL-01 (ALPHA Strumenti s.r.l., Melzo, MI, Italy). Different
concentrations (0.1, 0.5, 1.0, 2.0 mM/mL) of ALADENT gel were obtained by diluting the
gel in serum-free DMEM medium. The LED device emits a red light at 630 nm with a
power density of 380 mW/cm2, with a light energy density of 25 J/cm2 [10]. The diameter
of the light spot was 1 cm in diameter, and it was used at a working distance of 0.5 cm. All
irradiation procedures have been performed in the dark condition under a laminar flow
hood. Protective glasses and gloves were worn for exposure to red light.

4.3. MTT Assay

Cells (5 × 103 per well) were seeded in 96 wells/plate and grown for 24 h. Cells
were then incubated with different concentrations of ALAD gel (0.1 mM/mL, 0.5 mM/mL,
1.0 mM/mL, and 2.0 mM/mL) in serum-free medium and then irradiated as described in
the ALADENT treatment protocol. In addition, groups of cells treated only with different
concentrations of ALAD alone (not subjected to light irradiation) were included. Untreated
cells were considered the positive control group; cells treated with light alone for 7 min were
assigned to the LED group. After 24 h and 72 h treatment, the medium was removed, and
100 µL of 5 mg/mL MTT solution (Sigma-Aldrich, Taufkirchen, Germany) was added and
incubated for 4 h. After removing the supernatant, the formazan crystals were dissolved in
100 µL of dimethyl sulfoxide (Sigma-Aldrich) by shaking for 15 min at 37 ◦C. Utilizing a
microplate reader (RT-2100c, Rayto, Shenzhen, China), optical density (OD) was measured
at 540 nm. The cell viability (%) was calculated using the formula of Equation (1) as
previously reported [60]:

ODsample/ODblank × 100 (1)

4.4. Wound Healing Assay

Cells were seeded in a 24-well plate at a concentration of 1 × 105 cells/well and left
until they reached 80% confluence. A scratch was conducted with a 200 µL sterile pipette
tip. Detached cells were washed away with PBS (1×). Cells were then treated as protocol.
At each time point (0 h, 24 h, 48 h), the plate was placed under a phase-contrast microscope
to observe the migration rate. The selected regions of interest were observed using an
inverted microscope on a 10× objective (Primovert Zeiss, Berlin, Germany). To analyze
the images using the Wound Healing Size Tool, an ImageJ software 1.48 version (NIH,
Bethesda, MD, USA) plugin was used. It allows the quantification of wound area (µm2)
in images obtained from a wound healing assay. The rate of cell migration (RM) was
calculated according to Equation 2 as previously described [61]:

RM = (W0 − Wt)/t (2)

where W0 is the average of the initial wound width, Wt is the average of the final wound
width both in µm, and t is the time span of the assay in hours.

4.5. Reactive Oxygen Species (ROS) Detection

DOK cells were divided into the LED irradiation alone group, ALAD at each
concentration (0.1 mM/mL, 0.5 mM/mL, 1.0 mM/mL, and 2.0 mM/mL) incubated for
45 min or 4 h combined with LED irradiation. For this experiment, untreated cells were
considered negative control, and cells stimulated with H2O2 to a final concentration of
100 µM were considered positive control. Cells (1 × 105) were treated and then stained in
the dark with 20 µM 2,7-Dichlorofluorescin diacetate (DCF-DA) (Sigma-Aldrich, St. Louis,
MO, USA) for 30 min at 37 ◦C. The level of intracellular ROS was determined by flow
cytometry (BD Biosciences, Franklin Lakes, NJ, USA). The mean fluorescence intensity
was determined using BD FACS/MELODY software https://www.bdbiosciences.com/
en-eu/products/instruments/flow-cytometers/research-cell-sorters/bd-facsmelody
accessed on 17 April 2023.

https://www.bdbiosciences.com/en-eu/products/instruments/flow-cytometers/research-cell-sorters/bd-facsmelody
https://www.bdbiosciences.com/en-eu/products/instruments/flow-cytometers/research-cell-sorters/bd-facsmelody
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4.6. Annexin V/PI Staining

Dok cells were divided into the LED irradiation alone group, ALAD-PDT incubated
for 45 min or 4 h, and the control group. Given that the highest concentration of ALAD
resulted in the optimum concentration from the MTT assay, 2 mM/mL was chosen to
perform Annexin V/PI staining. DOK were cultured into 24-well plates (1 × 105 per
well). After treatment, Annexin staining for detecting apoptosis was performed with an
Annexin V–FITC Kit (Invitrogen, Thermo Fisher Scientific) according to the manufacturer’s
instructions. Propidium iodide (PI) was used to detect necrotic or late apoptotic cells.
Staining was analyzed by flow cytometry (BD Biosciences), and the results were presented
in a two-dimensional dot plot of PI versus Annexin V–FITC. The plots were divided into
four regions corresponding to: (a) viable cells, negative for both probes (PI/FITC −/−; Q3);
(b) apoptotic cells, PI-negative and Annexin-positive (PI/FITC −/+; Q1); (c) late apoptotic
cells, PI- and Annexin-positive (PI/FITC +/+; Q2); (d) necrotic cells, PI-positive and
Annexin-negative (PI/FITC +/−; Q4).

4.7. RNA Isolation and Reverse Transcription

Total RNA was extracted from cells using the TRIzol reagent (Invitrogen, Thermo
Fisher Scientific). The total RNA concentration was measured using a microvolume spec-
trophotometer (BioSpec–nano Microvolume UV–Vis Spectrophotometer; Shimadzu Sci-
entific Instruments, Columbia, MD, USA). An oligo d(T) primer and TRANSCRIPTME
Reverse Transcriptase (Blirt, S.A., Gdańsk–Poland) were used to synthesize cDNA from
4 µg of total RNA [62].

4.8. Gene Expression Analysis of Apoptotic Markers

Dok cells were divided into the LED alone group, the ALAD-PDT group incubated
for 45 min or 4 h, and the control group. Additionally, for Annexin V/PI analysis, the
highest concentration of ALAD (2 mM) was chosen to perform gene expression analysis.
Real-time quantitative polymerase chain reaction (qPCR) was performed using the first
strand cDNA, 0.2 µM forward and reverse primers, and a SensiFAST SYBR Hi–ROX Kit
(Bioline, London, UK). The expression of the following markers was analyzed: p53, caspase-
3, caspase-9 (pro-apoptotic), Bcl-2, and Survivin (anti-apoptotic). The housekeeping gene,
glyceraldehyde-3-phosphate dehydrogenase—GAPDH, was used as a reference. Relative
gene expression values were calculated using the 2−∆Ct method [63]. The sequences of all
primers used in this study are given in Table 1.

Table 1. List of primers used in gene expression analysis.

Primer Name Sequence (F) * Sequence (R) *

TP53 ATGTTTTGCCAACTGGCCAAG TGAGCAGCGCTCATGGTG

Bcl-2 ATGTGTGTGGAGAGCGTCAACC TGAGCAGAGTCTTCAGAGACAGCC

Caspase-3 TGTTTGTGTGCTTCTGAGCC CACGCCATGTCATCATCAAC

Caspase-9 CATTTCATGGTGGAGGTGAAG GGGAACTGCAGGTGGCTG

Survivin TCTGGCGTAAGATGATGG GAAATAAGTGGGTCTGAAGTG

GAPDH ATGGGGAAGGTGAAGGTCG GGGGTCATTGATGGCAACAATA
* Primer sequences are indicated as forward (F) and reverse (R).

4.9. Statistical Analysis

GraphPad Prism ver. 8.0 (GraphPad Software, Inc., La Jolla, CA, USA) was used for
all statistical analyses. Quantitative data were presented as the mean ± SD from three
independent experiments. Comparisons among the groups were assessed using one-way
analysis of variance (ANOVA) with post hoc Tukey’s test for multiple comparisons. Two-
tailed p < 0.05 was considered statistically significant. Data from flow cytometry analysis
were reported as percentages (%).
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5. Patents

Aladent gel is protected by a patent (PCT/IB2018/060368, 12.19.2018).
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