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Abstract: Chronic inflammation is a recognized risk factor for various cancers, including prostate
cancer (PCa). We aim to explore the potential protective effects of aged black garlic extract (ABGE)
against inflammation-induced prostate damage and its impact on prostate cancer cell lines. We
used an ex vivo model of inflammation induced by Escherichia coli lipopolysaccharide (LPS) on
C57BL/6 male mouse prostate specimens to investigate the anti-inflammatory properties of ABGE.
The gene expression levels of pro-inflammatory biomarkers (COX-2, NF-κB, and TNF-α, IL-6) were
measured. Additionally, we evaluated ABGE’s therapeutic effects on the prostate cancer cell lines
through in vitro functional assays, including colony formation, tumorsphere formation, migration
assays, and phosphorylation arrays to assess the signaling pathways (MAPK, AKT, JAK/STAT, and
TGF-β). ABGE demonstrated significant anti-inflammatory and antioxidant effects in preclinical
models, partly attributed to its polyphenolic content, notably catechin and gallic acid. In the ex vivo
model, ABGE reduced the gene expression levels of COX-2, NF-κB, TNF-α, and IL-6. The in vitro
studies showed that ABGE inhibited cell proliferation, colony and tumorsphere formation, and cell
migration in the prostate cancer cells, suggesting its potential as a therapeutic agent. ABGE exhibits
promising anti-inflammatory and anti-cancer properties, supporting further investigation into ABGE
as a potential agent for managing inflammation and prostate cancer.

Keywords: ABGE; prostate; inflammation; cancer

1. Introduction

Prostatitis is a prostate gland inflammation, which encompasses a range of disorders,
such as acute and chronic bacterial prostatitis. These conditions can be caused by bacterial
infections, immune responses, or non-infectious factors such as trauma or stress [1].

In particular, acute prostatic inflammation in mice induced an epithelial transforma-
tion, named proliferative inflammatory atrophy, which could promote prostatic intraep-
ithelial neoplasia [1].
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In this context, chronic inflammation is often linked with the process of carcinogenesis
and is recognized as both a hallmark and a potential risk factor for various cancers [2].
Specifically, for prostate cancer (PCa), chronic inflammation is suggested as a bridge
between environmental factors and tumor development [3–5].

Numerous studies have explored the relationship between prostate gland abnormali-
ties and the inflammatory process, showing a strong prevalence of mild chronic inflamma-
tion in PCa [6].

Chronic inflammation can create a microenvironment conducive to carcinogenesis by
producing pro-inflammatory cytokines, reactive oxygen species, and DNA damage [7].

In line with this, NLRP3 inflammasome is critically involved in PCa aggressiveness [8].
Altogether, the presented evidence indicates the proficient pro-oncogenic role of

certain inflammatory processes in PCa [9,10].
Various biomarkers, such as tumor necrosis factor (TNF)-α, nuclear factor (NF)-kB,

interleukin (IL)-6, and cyclooxygenase (COX)-2, play a critical role in inflammatory re-
sponses. In particular, Baud and their collaborators (2001) reported that TNF-α is a potent
pro-inflammatory cytokine whose involvement in inflammation, cell proliferation, differen-
tiation, and apoptosis is well known. Increased serum levels of pro-inflammatory markers
such as TNF-α are related to accelerated progression and a poor prognosis in PCa [11,12].

Furthermore, NF-κB is essential for regulating both the innate and adaptive immune
responses, particularly in inflammation. Besides its role in the survival and activation of
immune cells, NF-κB stimulates the release of pro-inflammatory genes, including cytokines
and chemokines, and regulates inflammasome activity. Moreover, the dysregulation of
NF-κB contributes to various inflammatory diseases, including rheumatic diseases and
asthma [13,14]. Interestingly, a wide body of evidence suggested that NF-κB activation,
as well as various signals linked to inflammation, are well known to be involved in the
modulation of PCa malignancy [15]. In particular, NF-κB activation exerts modulatory
effects on the expression of the cytokines and factors involved in cancer development and
progression, including IL-6 [15]. Moreover, the activation of IL-6 signaling was found to
induce growth, proliferative activity, and the migration of PCa cells [16].

COX-2 is also critically involved in carcinogenesis in various tissues, including breasts
and lungs, as well as the prostate [17].

Various studies suggested the potential activity of a number of herbal extracts com-
monly used in traditional medicine as well as natural compounds exhibiting an innovative
action mode as a possible remedy for PCa [18,19].

In this context, aged black garlic (ABG) has garnered attention for its bioactive com-
pound profile and biological activities [20].

ABG is produced by fermenting fresh garlic at controlled high humidity (80–90%)
and temperature (60–90 ◦C) conditions over several weeks. As previously reported [20],
the temperature and humidity conditions of the thermal treatment chosen during ABG
production are strongly involved in the quality of ABG.

This process alters garlic’s organoleptic properties, making it sweeter and less pun-
gent, and increases the concentration of bioactive compounds, such as S-allylcysteine,
polyphenols, and flavonoids [21]. These compounds were found to be able to exert various
beneficial effects, including the suppression of cell proliferative activity, as well as the
stimulation of apoptosis and the modulation of the cell cycle, all of which are relevant in
cancer prevention and treatment [22,23].

Interestingly, in the previous studies of ours, a water extract of ABG (ABGE) showed
anti-inflammatory and antioxidant effects in preclinical models [24,25]. In particular, the
protective effects induced by ABGE were suggested to be partly related to the polyphenolic
content in the same extract, notably catechin and gallic acid [24,25]. We previously per-
formed the quantification of polyphenolic content in the extract using high-performance
liquid chromatography coupled with a photo diode array detector (HPLC-DAD) analytical
method. In particular, various compounds were identified in ABGE, with gallic acid and
catechin being the more representative phytochemicals [26].
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This research aims to explore the potential benefits of ABGE on inflammation and
prostate cancer. Building on these findings, we sought to explore the potential protective
effects of ABGE against inflammation-induced prostate damage using an ex vivo experi-
mental model, as well as its impact on prostate cancer cell lines through in vitro studies.
We investigated the anti-inflammatory properties of ABGE using a well-established ex
vivo model of inflammation composed of mouse prostate specimens exposed to Escherichia
coli lipopolysaccharide (LPS) [26,27]. In this setting, we examined the gene expression
levels of the key pro-inflammatory biomarkers, including COX-2, NF-κB, TNF-α, and IL-6.
Furthermore, we assessed the potential therapeutic effects of ABGE on the prostate cancer
cell lines using in vitro experimental models through functional parameters (colony forma-
tion, tumorsphere formation, and a migration assay) and molecular studies to evaluate the
potential involvement of different signaling pathways, such as mitogen-activated protein
kinase (MAPK), protein kinase B (AKT), Janus kinases/the signal transducer and activator
of transcription proteins (JAK/STAT), and transforming growth factor (TGF-β).

2. Materials and Methods
2.1. Extraction and Sample Preparation of ABGE

Dried ABG cloves were provided by il Grappolo S.r.l. (Soliera, Modena, Italy). The
preparation of ABGE followed the method described in the previous studies [24,28,29].

A detailed protocol is included in the Supplementary Materials.

2.2. Ex Vivo Studies

Adult C57BL/6 male mice (3 months old, weight 20–25 g, n = 25) were housed and
maintained as described in the Supplementary Materials Section. The housing conditions
and experimentation procedures were strictly in agreement with the European Community
ethical regulations (EU Directive no. 26/2014) for the care of animals for scientific research.
In agreement with the recognized principles of “Replacement, Refinement and Reduction
in Animals in Research”, prostate specimens were obtained as residual materials from
the vehicle-treated mice randomized in our previous experiments, approved by the local
ethical committee (‘G. d’Annunzio’ University, Chieti, Italy) and the Italian Health Ministry
(Project no. 885/2018-PR).

Mouse sacrifice was performed by CO2 inhalation (100% CO2 at a flow rate of 20%
of the chamber volume per min). After collection, the isolated prostate specimens were
maintained in a humidified incubator with 5% CO2 at 37 ◦C for 4 h, as previously de-
scribed [26,30] and reported in the Supplementary Materials Section.

Total RNA was extracted from the prostate specimens using TRI reagent (Sigma-
Aldrich, St. Louis, MO, USA) following the manufacturer’s protocol. The gene expression
of COX-2, NF-kB, TNF-α, and iNOS was quantified by real-time PCR with TaqMan probe-
based chemistry, as previously described [27,31,32]. The detailed protocol can be found in
the Supplementary Materials Section.

2.3. Cell Culture

Cell lines from control prostate (PNT-2), androgen-dependent PCa (LNCaP), and
androgen-independent PCa (PC-3) (American Type Culture Collection, Manassas, VA,
USA) were maintained in a humidified incubator with 5% CO2 at 37 ◦C following the man-
ufacturer’s guidelines as previously outlined [33,34] (Supplementary Materials Section).

2.4. Cell Proliferation

Cell proliferation was evaluated using resazurin reagent (Canvax Biotech, Cordoba,
Spain) [33]. Cell proliferation was measured at the start and after 24, 48, and 72 h of
treatment (Supplementary Materials Section).
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2.5. Clonogenic Assay

A clonogenic assay was performed on the LNCaP and PC-3 PCa cells treated with 1000
µg/mL of ABGE and incubated for 10 days. The results were expressed as a percentage of
the number of colonies relative to the control [34] (Supplementary Materials Section).

2.6. Tumorsphere Formation

The tumorsphere formation assay was conducted as previously described on LNCaP
and PC-3 [35,36]. A minimum of three experiments with two replicates for each condition
were performed. The results are expressed as a percentage of tumorsphere area relative to
the control [35] (Supplementary Materials Section).

2.7. Cell Migration Assay

Cell migration was assessed using a wound healing assay as previously detailed [33,35,36].
The results are presented as the percentage of the migration rate relative to the control. A
minimum of three experiments with three replicates for each condition were performed.
This experiment was conducted using PC-3 cell lines, but not LNCaP cells due to their
lower migration capacity (Supplementary Materials Section).

2.8. Phosphorylation Array

Protein extracts from the LNCaP cells were collected in lysis buffer from 6-well plates
after 24 h of treatment with 1000 µg/mL ABGE. The determination of protein content
was conducted using a Pierce BCA Protein assay (ThermoFisher Scientific, Madrid, Spain)
and adjusted with assay buffer. The data were normalized following the manufacturer’s
instructions. In brief, the membranes designed for the semi-quantitative detection of 55
phosphorylated human proteins, which are part of the MAPK, AKT, JAK/STAT, and TGF-β
signaling pathways, were incubated with blocking buffer for 30 min at 25 ◦C. The array
spots’ densitometric analysis was performed using ImageJ software (version number 1.54j),
with positive control spots used for normalization. The results are expressed as the log2
Fold Change in each protein signal relative to the control signal, with a log2 Fold Change
of 0.2 set as the threshold [37] (Supplementary Materials Section).

2.9. Statistical Analysis

To calculate sample size, we performed power analysis by using G*Power 3.1.9.4
software (effect size = 0.6, α = 0.05, power = 0.85) [38]. As for the ex vivo evaluations, the
experimental procedures were performed by a researcher blinded to the treatment. All
experiments were conducted at least three times independently (n ≥ 3). The results from ex
vivo and in vitro studies are expressed as means ± SEM. Statistical differences between the
two groups were evaluated using either an unpaired parametric t-test or a nonparametric
Mann–Whitney U test, depending on normality as determined by a Kolmogorov–Smirnov
test. For comparisons involving more than two groups, a One-Way ANOVA was employed.
Statistical significance was set at p < 0.05. All statistical analyses were performed using
GraphPad Prism 9 (GraphPad Software, La Jolla, CA, USA).

3. Results and Discussion

In the present study, we aimed to study the potential effects of ABGE on proliferation,
colony formation, tumor spheroid formation, cell migration, and the phosphorylation array
in three prostate cell lines: PNT-2, LNCaP, and PC-3.

3.1. Ex Vivo Studies

Considering the critical role of chronic inflammation in PCa, we first investigated the
potential beneficial activities exerted by ABGE (10–1000 µg/mL) as a validated experimental
model of inflammation [24,39]. We studied the effects of ABGE on the gene expression
of pro-inflammatory mediators, including COX-2, NF-kB, TNF-α, and IL-6, on isolated
LPS-stimulated prostate specimens by RT-PCR. In this context, we found that ABGE
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(10–1000 µg/mL) was able to inhibit gene expression of all the markers investigated, with
1000 µg/mL being the most effective dose (Figure 1a–d).
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Figure 1. Effects of aged black garlic water extract (ABGE) (10–1000 µg/mL) on LPS-induced
cyclooxygenase (COX)-2 (a), nuclear factor kappa (NF-κ) B (b), tumor necrosis factor (TNF)-α (c), and
interleukin (IL)-6 (d) gene expression (RQ, relative quantification) in mouse prostate specimens. Data
shown are means ± SEM of two independent experiments with triplicate determinations. ANOVA,
* p < 0.05, ** p < 0.005; and *** p < 0.001 vs. LPS.

Various pro-inflammatory markers were shown to be implicated in prostatic inflamma-
tion. In this context, different phytochemicals, such as catechins, were found to modulate
a number of inflammation targets, including TNF-α, COX-2, and interleukins. In the
previous studies, we demonstrated that ABGE induced protective activities on colon and
heart tissues treated ex vivo with LPS, which have been hypothesized to be related, at
least partially, to its polyphenolic composition, with particular regards to gallic acid and
catechin [24,25]. Accordingly, BenSaad et al. (2017) found that gallic acid suppressed the
LPS-induced production of prostaglandin E2 and IL-6 in RAW264.7 cells [40].

Furthermore, we previously found that ABGE (1 g kg−1) exerted protective effects in
rats in vivo [25] in a dose which could be translated to 1 g day in humans.

3.2. Cell Proliferation in Basal Conditions

Cell proliferation was measured after 24, 48, and 72 h of the treatment with ABGE
(10, 100, 500, and 1000 µg/mL) in basal conditions. The non-tumor prostate cell line PNT-2
was used as the control cell line. In the control prostate line PNT-2, ABGE (10–1000 µg/mL)
did not affect cell proliferation more compared to that of the control group at any concentra-
tion at the different times. In agreement, we previously reported that ABGE did not modify
the viability of cardiomyoblast (H9c2) cells or the human fibroblast HFF-1 cell line [24,25]
(Figure 2a).
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Figure 2. Effects of aged black garlic water extract (ABGE) on cell proliferation of control prostate
(PNT-2) (a), androgen-dependent (LNCaP) (b), and androgen-independent (PC-3) (c) prostate cancer
(PCa) cells. Cell proliferation and growth were evaluated by resazurin reagent after incubation for 24,
48, and 72 h of PNT-2, LNCaP, and PC-3 cell lines with ABGE at different concentrations (10, 100,
500, and 1000 µg/mL) or vehicle. Data shown are means ± SEM of 3 independent experiments with
3 replicates of each condition. ANOVA, * p < 0.05, *** p = 0.001, **** p < 0.0001 vs. vehicle.

The LNCaP cell line is derived from lymph node metastasis specimens of individuals
with prostate cancer [41].
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It retains the characteristics of prostate cancer tumor cytology as well as its early
differentiation function, which represents the early androgen-dependent notable features
of prostate cancer.

On the other hand, ABGE (10–1000 µg/mL) was able to significantly suppress LNCaP
cell proliferation. Interestingly, the inhibitory effect on cell proliferation was dose-dependent,
with a greater reduction at higher concentrations and longer exposure times (Figure 2b).
Figure 2b shows inhibitory effects in cell proliferation after just 24 h, starting at a concen-
tration of 100 µg/mL. The inhibition induced by the extract is also confirmed following
48 and 72 h of treatment at 500 and 1000 µg/mL concentrations.

The PC-3 cell line was isolated from human prostate cancer bone metastases with a
low differentiation degree [42] and represents an androgen-independent prostate cancer
cell with moderate metastatic potential in the absence of endogenous androgen receptors.

Similarly, the PC-3 cell line showed a significant reduction in cell proliferation follow-
ing the treatment with ABGE (10–1000 µg/mL) compared to that of the control, with a
greater decrease at higher concentrations (Figure 2c), thus confirming its antiproliferative
activity also against androgen-independent cancer cells. After 48 h, we showed a significant
decrease in cell proliferation starting from 100 µg/mL.

The mechanism underlying the inhibition of cell proliferation induced by ABGE is
not yet clear. Dong and their collaborators (2014) demonstrated that an alcohol extract of
ABG inhibited the growth of HT129 colon cancer cells probably by the inhibition of the
PI3K/Akt pathway [22].

Additionally, Wang and their collaborators (2012) have demonstrated that aged black
garlic water extract can inhibit the growth of gastric cancer cells in both in vitro and
in vivo [23].

Moreover, an aged black garlic water extract showed dose-dependent apoptosis in
human gastric cancer cell lines [23]. Notably, the extract in the prostate did not induce
apoptosis in the LNCaP cells (Figure S1, Supplementary Materials).

Meanwhile, in vivo study highlighted the anti-cancer properties of the extract, includ-
ing the inhibition of tumor growth in mice with tumors. The researchers proposed that
the anti-cancer effects of the aged black garlic extract might be due to its antioxidant and
immunomodulatory characteristics [23].

Multiple studies have indicated that black garlic possesses anti-tumor properties
by inhibiting cell proliferation in both colon and gastric cancers. Jikihara et al. (2014)
have performed an experiment using aged garlic extract on F344 rats and DLD-1 human
colon cancer cells. The findings revealed antiproliferative effects in both adenoma and
adenocarcinoma lesions [43].

3.3. Colony Formation

The analysis of the colony-forming ability of the LNCaP and PC-3 cell lines was
performed after the treatment with ABGE (1000 µg/mL) or the vehicle. The highest
concentration was chosen because it proved to be the most effective, while remaining
biocompatible. In the LNCaP cell line (Figure 3a), the treatment with 1000 µg/mL of
ABGE significantly reduced number of colonies formed compared to that of the control,
suggesting that ABGE is effective in decreasing the long-term proliferative capacity of
androgen-dependent cancer cells. Similarly, in the PC-3 cell line, the treatment with ABGE
(1000 µg/mL) (Figure 3b) led to more inhibitory effects in colony formation compared to
those of the control, further supporting the potential activity of the extract as an anti-tumor
agent. These effects might be due to the presence of polyphenolic compounds in ABGE. In
agreement, Jang et al. (2020) demonstrated that gallic acid can inhibit colony formation in
various cancer cell lines [40].
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Figure 3. Effects of aged black garlic water extract (ABGE) on colony formation of LNCaP (a) and
PC-3 (b) cell lines in response to ABGE at 1000 µg/mL or vehicle. Data shown are means ± SEM of
3 independent experiments with 3 replicates of each condition. ANOVA, **** p < 0.0001 vs. vehicle.

3.4. Tumor Spheroid Formation

Tumor spheroid formation was assessed by measuring the number of spheroids
after the treatment with ABGE (1000 µg/mL) or the vehicle in the LNCaP and PC-3 cell
lines. In the LNCaP cells (Figure 4a), the treatment with ABGE (1000 µg/mL) did not
significantly affect the number of spheroids, which remained unchanged compared to that
of the vehicle. However, our present findings also showed that in the PC-3 cells (Figure 4b),
ABGE (1000 µg/mL) significantly reduced the number of spheroids compared to that of
the control, suggesting that ABGE impedes the proliferation of cancer cells.
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Figure 4. Effects of aged black garlic water extract (ABGE) on tumor spheroid formation of LNCaP
(a,a.1) and PC-3 (b,b.1) cell line with ABGE at 1000 µg/mL or vehicle. Data shown are means ± SEM
of 3 independent experiments with 3 replicates of each condition. ANOVA, * p < 0.05 vs. vehicle.

3.5. Migration Assay

The cell migration assay was conducted only on the PC-3 cell line because the mor-
phology of LNCaP cells does not allow for accurate migration assessment. The treatment
with 1000 µg/mL of ABGE more significantly reduced the cell migration rate compared to
that of the control after 24 h of incubation. The reduction in cell migration in PC-3 (Figure 5)
suggests that ABGE may also limit the capacity of cancer cells to spread. In agreement,
recently, ABG (dissolved in 0.9% normal saline) extract was found able to impede cell
migration in breast cancer cells [44].
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3.6. Cell Proliferation after LPS Pre-Treatment

Considering the previously found effects of ABGE into a pro-inflammatory cell con-
text [18], we then decided to evaluate its potential interaction with LPS. We studied the
effects of ABGE (10–1000 µg/mL) on LPS-treated cell proliferation in the PC-3 line (Fig-
ure 6), which was chosen for its higher aggressiveness compared to that of the LNCaP
cell line, as supported by previous studies [45]. In this context, Xu and their collaborators
(2021) showed that LPS combined with ATP significantly increased the proliferation and
migration of PC-3 cells, reducing apoptosis. This effect was related to the stimulation of the
NLRP3/caspase-1 inflammasome, hypothesizing that inflammation plays a crucial role in
prostate cancer progression [8]. Interestingly, our data indicate that the LPS pre-treatment
may sensitize the PCa cells to ABGE (Figure 6).
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Figure 6. Effects of aged black garlic water extract (ABGE) in combination to LPS on cell proliferation
of androgen-independent PC-3 cells. Cell proliferation was evaluated by resazurin reagent after
incubation for 24, 48, and 72 h of PC-3 cell line with ABGE at 1000 µg/mL or vehicle. Data shown are
means ± SEM of 3 independent experiments with 3 replicates of each condition. ANOVA, * p < 0.05,
** p < 0.005 vs. vehicle. ANOVA, # p < 0.05, ## p < 0.005 vs. ABGE.

Gallic acid and catechin, which are the main components of ABGE, as previously
shown [24,25], are well known to suppress, proliferate, and stimulate the apoptosis of PCa
cells [39,40].

Moreover, a previous study showed that gallic acid decreased the viability of PCa
cell lines, but not normal cells’ viability [46]. In agreement, we could suggest the potential
involvement of polyphenolic compounds, with particular regards to gallic acid and catechin,
due to the beneficial effects induced by ABGE on PCa proliferation.

3.7. Phosphorylation Array

A wide body of evidence shows that the MAPK, AKT, JAK/STAT, and TGF-β path-
ways play a key role in cell proliferation, survival, apoptosis, and growth [23,39–41]. In
our study, we analyzed the phosphorylation of the key proteins that participate in these
signaling pathways in response to the treatment with ABGE (1000 µg/mL) or the vehicle
using a phosphorylation array.

Specifically, the MAPK signaling pathway showed significant modulation in response
to the treatment with ABGE (Figure 7). Proteins such as ERK1/2 and JNK showed reduced
phosphorylation, suggesting that ABGE (1000 µg/mL) could inhibit these signaling path-
ways. In this context, the MAPK signaling pathway is critically related to cell proliferation
and survival [47]. Furthermore, the reduced phosphorylation of ERK1/2 (T202/Y204) and
JNK (T183/Y185) suggests reduced cell proliferation and the potential inhibition of the
apoptotic response [48].

p53 is involved in regulation of cell growth, DNA repair, survival, cycle, autophagy,
senescence, and apoptosis [49,50].

After the injection of knockdown of ribosomal S6 protein kinases (RSK) 1 and RSK2
in mouse femurs, there was a reduction in osteolytic lesions in the PC3 cells compared to
those in the control cells [51].

In our present study, we found that ABGE increased the quantity of LPS-treated p53,
while decreased the RSK2 phosphorylation levels (Figure 7), which could be related to the
anti-cancer properties of the extract.

The role of AKT signaling pathway in cell survival and growth is also well known [23].
ABGE (1000 µg/mL) showed variable effects on the phosphorylation of both the AKT and
downstream proteins (Figure 8).
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that for the control condition (threshold: log2 Fold Change = 0.2).

The reduced phosphorylation of mTOR suggests decreased protein synthesis and cell
growth [52]. mTOR activation has been shown to induce the phosphorylation of many
substrates, such as eukaryotic translation initiation factor 4E (eIF4E)-binding proteins
(4E-BP1), and mTOR kinase inhibitors have been reported to block p4E-BP1 [53].

Our findings show that ABGE reduced the LPS-treated mTOR and 4E-BP1 phosphory-
lation levels. In agreement, considering that high levels of 4E-BP1 have been measured in
prostate cancer cells, we can speculate that mTOR and 4E-BP1 could be involved, at least in
part, in the beneficial effects induced by ABGE [54].

Moreover, ABGE also lowers the LPS-treated levels of glycogen synthase kinase (GSK)-
3, phosphatase, tensin-homolog in chromosome 10 (PTEN), and serine/threonine kinase
Raf-1 (RAF-1), which are involved in cancer development and progression [55–57].

On the other hand, ABGE increased the LPS-treated levels of p27 and AMP-activated
protein kinase (AMPK), which possess a well-known suppressor role in carcinogene-
sis [58,59].

The JAK/STAT signaling pathway plays a key role in numerous essential biological
processes, such as differentiation, cell proliferation, immune regulation, and apoptosis [48].

The inactivation of Src induced a reduction in the migration and growth in PCa cell
lines [60,61].

In addition, the reduced phosphorylation of STAT1, STAT2, STAT3, and STAT5
(Figure 9) indicates a potential decrease in proliferative signaling and cancer develop-
ment [62–65].
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Moreover, the decreased phosphorylation of JAK1 and JAK2 suggests decreased signal
transduction promoting prostate cancer cell proliferation and survival [66,67].

In agreement, TYK2 signaling promotes the invasiveness of prostate cancer cells [68].
Accordingly, the involvement of SHP2 in several cancer-related processes has been

reported [69].
Actually, our findings, showing that ABGE decreased the LPS-treated Src, STAT1,

STAT2, STAT3, STAT5, JAK1, JAK 2, TYK2, and SHP2 phosphorylation levels, could suggest
the potential protective role of the extract in PC-3 cells.

Regarding the TGF-β pathway (Figure 10) involved in cell growth regulation and tu-
mor progression [49], we showed that ABGE (1000 µg/mL) decreased the phosphorylation
of SMAD1, suggesting reduced TGF-β signaling, which may be associated with reduced
cell invasiveness [70].

Nutrients 2024, 16, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 10. The TGF-β pathway in the phosphoprotein array in response to 24 h treatment of 1000 

µg/mL ABGE. The log2 Fold Change in the phosphorylation protein level in comparison with that 

for the control condition (threshold: log2 Fold Change = 0.2). 

4. Conclusions 

In conclusion, our results showed the potential anti-inflammatory and anti-prolifer-

ative effects of ABGE on prostate cancer. In this context, ABGE reduced the gene expres-

sion of the different biomarkers involved in inflammatory response, such as COX-2, TNF-

α, IL-6, and NF-kB, also modulating relevant signaling pathways, including AKT, MAPK, 

TGF-β, and JAK/STAT. Furthermore, we performed different in vitro assays, where ABGE 

had beneficial effects on both the prostate cancer lines. Therefore, our results suggest that 

ABGE might be potentially used as a diet supplement for health promotion and a source 

of bio-organic compounds with antitumor properties in PCa. 

A limitation of our study is that we have not evaluated specific targeting, as well as 

the signaling pathways modulating the potential anti-inflammatory and anti-cancer ef-

fects of the extract. However, further studies are needed in the future to accurately evalu-

ate the in vivo activity of ABGE in reducing inflammation and cancer, as well as its poten-

tial negative effects on the body. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1. Figure S1: Apoptosis induction in response to ABGE (1000 µg/mL) in 

LNCaP cells. Annexin V positive cells were considered as apoptotic. Annexin positivity was deter-

mined by flow cytometry (LSRFortessa SORP) with FITC Annexin V Apoptosis Detection Kit I (BD 

Pharmingen, San Jose, CA, USA; #556547) at 10 µg/mL in PBS. References [24,27–29,31–38] are cited 

in the supplementary materials. 

Author Contributions: Conceptualization, M.L.L., L.R., R.M.L. and S.L.; methodology, M.L.L., 

A.J.M.-H., L.R., R.M.L., L.B. and S.L.; software, G.O., C.F. and L.M.; validation, G.O., C.F. and L.M.; 

formal analysis, M.L.L., A.J.M.-H., D.G., A.A., G.O., C.F., L.M., S.C.D.S., N.N. and A.C.; investigation, 

M.L.L., A.J.M.-H., D.G., A.A., G.O., C.F., L.M., S.C.D.S., N.N. and A.C.; resources, M.L.L., A.J.M.-H., 

L.R., R.M.L., L.B. and S.L.; data curation, M.L.L., A.J.M.-H., L.R., R.M.L. and S.L.; writing—original 

draft preparation, M.L.L., L.R., L.B. and S.L.; writing—review and editing, M.L.L., A.J.M.-H., L.R., 

R.M.L. and S.L.; visualization, M.L.L., A.J.M.-H., L.R., R.M.L. and S.L.; supervision, L.R., R.M.L. and 

S.L.; project administration, L.R., R.M.L., L.B. and S.L.; funding acquisition, L.R., A.J.M.-H., R.M.L., 

L.B. and S.L. All authors have read and agreed to the published version of the manuscript.  

Funding: This research was funded by il Grappolo S.r.l. 2021 (Soliera, Modena, Italy) (Grant 2021) 

(Principal Investigators: Luigi Brunetti, Sheila Leone, and Lucia Recinella), by MEDnoTE S.r.l. 2024 

(Grant 2024) (Principal Investigator: Sheila Leone, Coordinators: Luigi Brunetti, Lucia Recinella and 

Maria Loreta Libero), and by the Spanish Ministry of Science, Innovation, and Universities (Re-

search-Grant: PID2022-1381850B-I00; Predoctoral contracts: FPU18/02485). 

Institutional Review Board Statement: The housing conditions and experimentation procedures 

were strictly in agreement with the European Community ethical regulations (EU Directive no. 

26/2014) on the care of animals for scientific research. In agreement with the recognized principles 

Figure 10. The TGF-β pathway in the phosphoprotein array in response to 24 h treatment of
1000 µg/mL ABGE. The log2 Fold Change in the phosphorylation protein level in comparison
with that for the control condition (threshold: log2 Fold Change = 0.2).

The previous studies reported a correlation between SMAD2 and SMAD4, which are
involved in the inhibition of cell growth [71].

ATF2 has been found as a tumor promoter in various human cancers, such as prostate
cancer [72].

Furthermore, c-Jun or c-Fos overexpression has been directly related with PCa cell line
invasiveness, and the phosphorylated c-Jun levels are high in PCa [73].

In our study, we showed that ABGE decreased the quantity of LPS-treated SMAD1,
while it increased the SMAD2, SMAD4, AFT2, c-Jun, and c-Fos phosphorylation levels,
further confirming the potential protective role of the extract.
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In the literature, there are not many studies about the effects of ABGE on the prostate;
thus, its mechanisms are not particularly well known.

4. Conclusions

In conclusion, our results showed the potential anti-inflammatory and anti-proliferative
effects of ABGE on prostate cancer. In this context, ABGE reduced the gene expression
of the different biomarkers involved in inflammatory response, such as COX-2, TNF-α,
IL-6, and NF-kB, also modulating relevant signaling pathways, including AKT, MAPK,
TGF-β, and JAK/STAT. Furthermore, we performed different in vitro assays, where ABGE
had beneficial effects on both the prostate cancer lines. Therefore, our results suggest that
ABGE might be potentially used as a diet supplement for health promotion and a source of
bio-organic compounds with antitumor properties in PCa.

A limitation of our study is that we have not evaluated specific targeting, as well as
the signaling pathways modulating the potential anti-inflammatory and anti-cancer effects
of the extract. However, further studies are needed in the future to accurately evaluate
the in vivo activity of ABGE in reducing inflammation and cancer, as well as its potential
negative effects on the body.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu16173025/s1. Figure S1: Apoptosis induction in response
to ABGE (1000 µg/mL) in LNCaP cells. Annexin V positive cells were considered as apoptotic.
Annexin positivity was determined by flow cytometry (LSRFortessa SORP) with FITC Annexin
V Apoptosis Detection Kit I (BD Pharmingen, San Jose, CA, USA; #556547) at 10 µg/mL in PBS.
References [24,27–29,31–38] are cited in the supplementary materials.
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