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Abstract
Objective. Automated artefact detection in the neonatal electroencephalogram (EEG) is crucial for
reliable automated EEG analysis, but limited availability of expert artefact annotations challenges
the development of deep learning models for artefact detection. This paper proposes a
semi-supervised deep learning approach for artefact detection in neonatal EEG that requires few
labelled data by training a multi-task convolutional neural network (CNN). Approach. An
unsupervised and a supervised objective were jointly optimised by combining an autoencoder and
an artefact classifier in one multi-output model that processes multi-channel EEG inputs. The
proposed semi-supervised multi-task training strategy was compared to a classical supervised
strategy and other existing state-of-the-art models. The models were trained and tested separately
on two different datasets, which contained partially annotated multi-channel neonatal EEG.
Models were evaluated using the F1-statistic and the relevance of the method was investigated in
the context of a functional brain age (FBA) prediction model.Main results. The proposed
multi-task and multi-channel CNN methods outperformed state-of-the-art methods, reaching F1
scores of 86.2% and 95.7% on two separate datasets. The proposed semi-supervised multi-task
training strategy was shown to be superior to a classical supervised training strategy when the
amount of labels in the dataset was artificially reduced. Finally, we found that the error of a brain
age prediction model correlated with the amount of automatically detected artefacts in the EEG
segment. Significance. Our results show that the proposed semi-supervised multi-task training
strategy can train CNNs successfully even when the amount of labels in the dataset is limited.
Therefore, this method is a promising semi-supervised technique for developing deep learning
models with scarcely labelled data. Moreover, a correlation between the error of FBA estimates and
the amount of detected artefacts in the corresponding EEG segments indicates the relevance of
artefact detection for robust automated EEG analysis.

1. Introduction

Automated analysis of neonatal electroencephalo-
graphy (EEG) is an active field of research, which
has the potential to support clinical decision making

during continuous brain monitoring in neonates
admitted to the neonatal intensive care unit (NICU).
In recent years, numerous algorithms have been
developed to analyse neonatal EEG in an automated
manner, including algorithms for seizure detection
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[1–4], sleep classification [5–7], stress quantification
[8], and functional brain age (FBA) estimation
[9–11]. By performing such automated analyses at
the bedside in the NICU, the vulnerable neonatal
brain can be monitored more efficiently and object-
ively, which can guide clinical care and predict short-
and long-term (neurodevelopmental) outcomes
[12–14].

One factor that complicates the development
and application of such automated analyses is noisy
artefacts in the EEG. Especially during continuous
brain monitoring as done in the NICU, where EEG
can be monitored for several hours, it is inevitable
that there are segments in which artefacts contam-
inate and dominate the EEG signal, obscuring the
actual brain signal. In neonatal EEG, movements are
an example of a major source of recurring transi-
ent artefacts, but artefacts can also originate from
other external or internal sources, such as eye move-
ments, cardiac interference, faulty electrodes and
electrode impedance [15].During the development of
algorithms for automated EEG analyses, experts typ-
ically visually inspect the EEG to remove artefactual
EEG segments and extract only the clean EEG seg-
ments for further processing. Therefore,most analysis
algorithms require that the input signals are clean and
free from artefacts. However, when applying such an
analysis algorithm to a novel, entire EEG recording,
the accuracy and reliability of this algorithm may be
reduced since it is unlikely that the entire recording
would be artefact-free [16–18]. Manually preselect-
ing clean EEG data for automated analysis is not a
preferred solution to this problem, as this breaks the
automated pipeline. Instead, automated identifica-
tion of artefacts in neonatal EEG, and thereby the
identification of clean, artefact-free EEG is a crucial
step towards a robust and reliable application of fully
automated EEG analyses.

Two main approaches are generally used to deal
with artefacts in EEG: artefact detection and arte-
fact correction [19]. Artefact detection algorithms
identify data segments that contain artefacts. With
such a method, segments with artefacts can be
excluded from further analysis. Alternatively, arte-
fact correction algorithms first identify artefacts and
then additionally filter out these artefacts from the
signal to reconstruct the artefact-free signal. There-
fore, artefact correction methods are useful in situ-
ations where every part of an EEG recording is to be
analysed, whereas artefact detectionmethods are use-
ful when it can be afforded to discard some parts of
the recording. An additional difference is that artefact
correction algorithms typically focus on only one spe-
cific type of artefact with well-known dynamics and
characteristics, whereas artefact detection can more
easily cover several different types of artefacts. Given
that continuously recorded neonatal EEG is generally

long and can contain several types of artefacts, iden-
tification of clean EEG epochs using artefact detec-
tion methods is preferred over artefact correction
methods.

Various methods have been proposed in the liter-
ature for detecting artefacts in neonatal EEG. These
methods typically use a supervised machine learn-
ing approach, where artefacts in the data are labelled
by experts to train the machine learning algorithm.
For example, one common approach is to compute
a specific set of features for an EEG segment and
then classify that segment as artefact or clean using
a feature-based classification model such as a sup-
port vector machine (SVM) [20, 21]. In more recent
developments, the feature extraction step has been
incorporated in the machine learning process with
deep learning models [22]. By incorporating this fea-
ture extraction in the training process, deep learning
models can outperform feature-based models. Fur-
thermore, deep learning models are typically faster at
test time compared to feature-based models because
of efficient parallel vector multiplications.

One common challenge in machine learning in
medical applications is the limited availability of
labelled data to train machine learning models. In
neonatal EEG, artefact annotations are also limited
because they require time and expertise, whereas
many unlabelled neonatal EEG data are available. In
supervised machine learning models, this unlabelled
data is left unused. In contrast, semi-supervised
machine learningmodes can learn from both labelled
and unlabelled data. One of the few examples of
semi-supervised methods for detecting artefacts in
neonatal EEG is the Gaussianmixture model (GMM)
proposed by Kauppila et al [23]. This GMM is a
feature-based semi-supervised method that learns
from unlabelled data by finding clusters in the feature
space.

To our knowledge, deep learning has not yet been
applied for semi-supervised detection of artefacts in
neonatal EEG, despite the versatility and popular-
ity of unsupervised and semi-supervised deep learn-
ing frameworks, such as (variational) autoencoders,
generative adversarial networks (GAN) and pseudo-
labellingmethods [24]. Nonetheless, semi-supervised
deep learning has been used for other EEG applic-
ations. For example, Wen et al proposed a convo-
lutional neural autoencoder for unsupervised fea-
ture extraction in adult EEG [25]. They showed that
the features learnt by the unsupervised autoencoder
could be used to train a supervised classification
algorithm for detecting seizures in adults. A limit-
ation of their method is that the feature learning
and the classification tasks are optimised separately
using unsupervised and supervised training, respect-
ively. Therefore, the available labels for the supervised
task are not exploited for feature learning. Another
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semi-supervised approach that could work for arte-
fact detection is the deep semi-supervised anom-
aly detection (SS-AD) framework proposed by Ruff
et al. Here, labelled and unlabelled data are combined
to train a deep anomaly detection algorithm [26].
Although this last method has not yet been applied to
EEG data, it could be a suitable framework for semi-
supervised artefact detection, assuming that artefacts
are anomalies.

The aim of this paper is to develop a novel
semi-supervised deep learning method able to detect
artefacts in neonatal EEG. To this end, we pro-
pose a multi-task convolutional neural network
(CNN) that jointly optimises an unsupervised and
supervised objective by combining an autoencoder
(unsupervised) and a classifier (supervised) into a
single multi-output network. The remainder of this
paper describes this novel proposed semi-supervised
method in more detail and compares its perform-
ance to several variations of the method and existing
state-of-the-art methods. Finally, the relevance of the
novel automated artefact detection is illustrated for
the application of FBA estimation.

2. Materials andmethods

2.1. Datasets
In this study, two separate neonatal EEG datasets (D1
andD2)were used to test the proposedmethod.Data-
set D1 was obtained from our own research group,
while D2 is an external publicly available dataset that
we used to further validate our method. We did not
merge these two datasets, but instead we trained arte-
fact detection models for both datasets separately to
investigate whether the proposed method works on
datasets other than our own.

2.1.1. D1
Dataset 1 (D1) consists of 329 multi-channel EEG
recordings of 133 preterm neonates with gestational
age (GA) ranging from 23.86 weeks to 33.86 weeks.
Of each neonate, one up to four EEG recordings were
obtained at different times during their stay in the
NICU of the University Hospitals Leuven (Belgium).
This resulted in 329 recordings with post menstrual
ages (PMA) at time of recording ranging from 24.00
to 46.57 weeks with a median (Q1-Q3) PMA of 34.14
(32.00–38.00) weeks. The EEG data were collected
using the Brain RT EEG recording system (Onaf-
hankelijke Software Groep (OSG), Kontich, Belgium)
with a sampling frequency of 250 Hz and eight elec-
trodes (Fp1, Fp2, C3, C4, T3, T4, O1, O2) and Cz
as reference electrode, following the guidelines of the
international 10–20 system. The research was con-
ducted in accordance with the principles embodied
in the Declaration of Helsinki and in accordance with

local statutory requirements. The data were com-
pletely anonymised and no personal data were used.
In total, the amount of single-channel EEG data was
25 098 h (329 recordings, eight channels, average dur-
ation 9.5 h).

Out of the 329 recordings, 21 EEGs from 15 dif-
ferent patients were (partially) annotated, identifying
periods with artefacts and periods with clean EEG
(see figure 1(a) for an example). Annotations were
made separately for each channel. On average, 75%
of the annotated EEG was labelled as clean and 25%
as artefact. Out of the 21 labelled EEG recordings, 11
were annotated by a clinical expert and the remaining
ten recordings by two non-expert authors.

For the development and validation of the
algorithm, the dataset was split in a training, valida-
tion, and test set. No cross-validation was done, but
instead we divided the 21 labelled recordings among
these three sets as follows. The 11 recordings that were
annotated by the expert were included in the test set,
because those annotations are the most precise and
therefore are most reliable for final evaluation. From
the remaining labelled recordings, six were assigned
to the training set and the other four to the validation
set, ensuring that there was a fair split in labeller and
a similar distribution of PMA. All remaining unla-
belled recordings were assigned to either the training
or validation set, with a training/validation ratio of
60/40. When making the split, we ensured that all
recordings of the same patient were assigned to the
same set, to prevent dependence among the training,
validation and test sets. As a result, the total amount
of single-channel EEG data assigned to the training,
validation, and test sets (and the amount that was
labelled) was 14 994 h (42 h), 9300 h (33 h) and 804 h
(64 h), respectively.

2.1.2. D2
Dataset 2 (D2) contains 79 multi-channel EEG
recordings from 79 neonates with GAs ranging
between 35 and 44 weeks and has been used before
for neonatal artefact detection byWebb et al [22, 27].
Artefacts and clean segments were annotated by
experts using an 18-channel bipolar montage (Fp2-
F8, F8-T4, T4-T6, T6-O2, Fp1-F7, F7-T3, T3-T5,
T5-O1, Fp2-F4, F4-C4, C4-P4, P4-O2, Fp1-F3, F3-
C3, C3-P3, P3-O1, Fz-Cz, Cz-Pz). In contrast to
D1, where only a small subset of recordings was
labelled, in this second dataset, each recording was
partially annotated. The types of artefacts that were
identified are: device interference, muscle, move-
ment, electrode, and biological rhythm artefacts. All
types of artefacts were merged into one artefact
class, analogous to D1. More details about this data-
set are described in Webb et al [22]. The dataset
was obtained from https://github.com/LockyWebb/
NeonatalEEGArtefactDetection.
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Figure 1. (a): Illustration of a typical input from D1 to the neural network; (b): the true (target) output; (c): the predicted output.
The data and the annotations in (a) are divided into a grid of 30 s and eight channels, where each second of each channel is
assigned a label based on the annotations in (b). The network receives the full 30 s and all eight channels simultaneously, but also
makes predictions per second per channel, as visualised in (c). This is an example from the test dataset.

Similarly to D1, we split the recordings in data-
set D2 into a training, validation and test set. This
was done by randomly assigning 60% of the record-
ings to the training set, 20% of the recordings to
the validation set and the remaining 20% to the test
set. As a result, the total amount of single-channel
EEG data assigned to the training, validation, and
test sets (and the percentage that was labelled) was
1162 h (171 h), 461 h (46 h) and 391 h (42 h),
respectively.

2.2. Pre-processing
TheEEGwas filtered using a notch filter (50Hz forD1
and 60 Hz for D2) and a 0.27–30 Hz first-order But-
terworth band-pass filter. The latter filter is identical
to the one implemented in the software that was used
by the expert who labelled the EEG for artefacts inD1.
After filtering, the signals were downsampled to a fre-
quency of 128 Hz using linear interpolation to reduce
the size of the data, while still retaining the wave
shape of the signal. A power of 2 was conveniently

chosen for the sampling frequency as the neural net-
work contains downsampling steps that reduce the
time dimension by a factor 2, as explained in the
next section. Subsequently, the EEG recordings were
normalised by subtracting the mean and dividing
by the standard deviation (SD) of the input signals
in the training set. As explained in more detail in
the remainder of this section, we have trained both
single-channel models that are completely channel-
independent and multi-channel models designed for
one specific channel set-up. Considering that also the
normalisation should be channel-independent and
channel-dependent, the computation of the normal-
isation parameters (mean and SD) differed between
the single- and multi-channel models. For the single-
channel models, the normalisation parameters con-
sisted of one channel-independent mean and SD
computed after pooling all channels. For the multi-
channel models, the normalisation parameters con-
sisted of the means and SDs computed for each chan-
nel separately.
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The artefact and clean annotations were used to
provide a label for each second and each channel of
the EEG data. I.e. a 1-second grid was applied to
the EEG data and each second of every EEG chan-
nel was assigned to one of three classes: artefact,
clean, or unlabelled (see figure 1(b)). A length of 1 s
was chosen since this was considered a decent res-
olution to capture most typical artefacts in neonatal
EEG. For each 1-second segment of single-channel
EEG, if more than 50% (i.e. 0.5 s) was annotated
as clean or artefact, it was labelled as such. Addi-
tionally, 1-second segments that contained a short
(<0.5 s) artefact that started and ended within that
same segment were also labelled as artefact. In all
other cases, the segment was assigned to the unla-
belled class. Figure 1 illustrates this segmentation and
labelling.

2.3. Semi-supervised multi-task model
The proposed semi-supervised multi-task (SS-MT)
model consists of a CNN autoencoder that learns to
compress and decompress a 30-second EEG segment
and a CNN classifier that predicts the locations of
artefacts in the EEG segment. Instead of having two
separate networks for the autoencoder and classifier,
we merged them into one multi-output network, as
schematically depicted in figure 2. The network can
be split into three parts: an encoder (blue), a decoder
(red) and a classification part (green). The autoen-
coder consists of the encoder and decoder, and the
classifier consists of the encoder and the classification
layers. As is clear from the arrows in figure 2, for each
input of EEG, two outputs are generated: a recon-
struction and a classification. Whereas the classifica-
tion output is the output of interest during testing and
application of the model, the reconstruction output
makes it possible to incorporate unlabelled EEG data
in the training process of themodel. Therefore, please
note that the reconstruction output of the autoen-
coder is not used to detect artefacts. Instead, the role
of the autoencoder is merely to steer the training of
the encoder. This is achieved by having the autoen-
coder and classifier share the layers of the encoder,
and by training the autoencoder and classifier simul-
taneously, as explained in more detail in the section
Training.

The architecture of the autoencoder (encoder +
decoder) is inspired by the work of Wen et al
[25], which compresses the EEG into a latent rep-
resentation using repeated convolution and pool-
ing layers and decompresses the latent feature vec-
tor using deconvolutional layers. Even though the
basic structure is similar to the one of the method
proposed by Wen et al, our model contains sev-
eral novel adaptations. The first adaptation is that
instead of computing one latent vector character-
ising the entire 30-second input segment, our model

computes one latent feature vector (of length 8) for
each second of the input data to retain some temporal
resolution. This is achieved by implementing seven
downsampling (max pooling) steps in the encoder,
without any flattening layer at the end. Each down-
sampling step halves the resolution, therefore down-
sampling the 128Hz signal seven times by a factor two
yields the desired latent resolution of 1 Hz. There-
fore, a 30-second EEG input segment sampled at
128 Hz with C channels has shape (30*128, C), and
will be decoded into a latent representation with
shape (30, C, 8), i.e. each second and each channel
of the EEG data is encoded by eight latent features.
A symmetrical architecture is used for the decoder,
applying (strided) transposed convolutional layers to
upsample the compressed latent representation back
to the original input size, aiming to reconstruct the
input as close as possible. A second adaptation is
that we changed the 1D convolutional layers in the
encoder and decoder to 2D convolutional layers to
make the network compatible with multi-channel
inputs. Even though we use 2D kernels, the kernel
size in the channel dimension was kept equal to 1,
such that the autoencoder network processes (com-
press and decompress) each channel independently
(i.e. the layers in the encoder and decoder are no spa-
tial filters, but instead represent temporal filters that
processmulti-channel data in parallel). A third adapt-
ation is the inclusion of one convolution layer with a
wider kernel in order to incorporate temporal context
(indicated by 1 in figure 2).

As mentioned before, the architecture of the clas-
sifier starts with the encoder that is shared with the
autoencoder. On top of this encoder, convolutional
layers are added to classify each second of each chan-
nel as artefact or clean. Thus, the output of the clas-
sifier is a tensor with class probabilities with shape
(30, C, 2), corresponding to the number of input
seconds, the number of channels and the two classes
(artefact, clean), respectively. Two versions of the net-
work were used: a single-channel network (CNN SS-
MT) withC= 1, and amulti-channel network (CNN
SS-MT MCh) with C= 8 for D1 and C= 18 for D2.
In the single-channel case (C= 1), the 1 × 1 con-
volutional layers in the classifier can be regarded as
fully-connected layers that act on the latent feature
vector of each channel independently. In the multi-
channel case (C> 1), spatial information is exploited
by means of a valid (1, C) convolution (annotated
by 2 in figure 2). Here, the classification layers can
be interpreted as fully-connected layers acting on the
pooled feature vectors of all channels. A reshape layer
is needed at the end to re-order the neurons to still
obtain one prediction per second per channel. Note
that the model does not return a single label, but
instead returns a mask that predicts for each second
and each channel whether it is artefact or clean, much
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Figure 2. Architecture of the proposed multi-task model (for data sampled at 128 Hz). C is the number of channels. Conv(a),
(b) are 2D convolution layers with kernel size (a), (b) and with ‘same’ padding, except at 2 where padding is ‘valid’. Here, a and b
refer to the time and channel dimensions, respectively. ConvT are 2D transpose convolution layers. The reconstruction is used for
the unsupervised autoencoder loss and the class probabilities for the supervised classification loss. 1This layer captures the
temporal context. 2This is a valid convolution that captures the spatial context. BN: batch normalisation; ReLU: rectified linear
unit activation function.

like image segmentation models that predict a class
for each pixel.

Although the model was trained on input seg-
ments with a fixed length of 30 s, in practice, the input
time dimension is variable, which is possible due to
the convolutional nature of the model. The same
holds for the channel dimension in the single-channel
model. This does not affect the training process but
makes it possible to run the model on data of any
length, and with any number of channels when mak-
ing predictions. Furthermore, batch normalisation
and spatial dropout layers were used after convolu-
tional layers for regularisation. The models were built
with Python using Tensorflow and Keras and the code

has been made publicly available at https://gitlab.
com/timhermans/artefact_detection_public [28, 29].

2.4. Training
As mentioned before, the proposed multi-task model
learns to extract features using an unsupervised
objective and to classify using a supervised objective.
Whereas Wen et al used a two-step approach, where
they first trained the CNN autoencoder for unsu-
pervised feature extraction and then used the latent
features computed by the trained encoder to train a
feature-based machine learning classifier, our model
requires only one single end-to-end training stage by
combining these two objectives in one loss function.
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The loss function of the multi-task model (LMT)
consists of two parts, one for each task, i.e. autoen-
coder (unsupervised) and classification (supervised):

LMT = LAE + ηLC. (1)

Here, LAE is the autoencoder loss, LC is the clas-
sification loss and η is a hyperparameter scaling the
classification loss. For the autoencoder loss, the mean
squared errorwas used between the original signal (x)
and reconstructed signals (x̂):

LAE (x, x̂) =
1

NC

N∑
i=1

C∑
j=1

(
xi,j − x̂i,j

)2
. (2)

Here, xi,j refers to the jth time sample of the
ith channel in the input segment, and C and
N(= 30 ∗ 128) are the number of channels and time
samples in the input segment, respectively. For the
classification loss the categorical cross-entropy was
used:

LC (y, ŷ) =
1

2CT

T∑
i=1

C∑
j=1

2∑
k=1

yi,j,k log
(
ŷi,j,k

)
. (3)

Here, yi,j is a 2-element vector with a one-hot-like

encoding of the true labels for the jth second in the
ith channel, ŷi,j is a 2-element vector with probabil-
ities for the corresponding classes as predicted by the
classifier, k is the class index, andT(= 30) is the num-
ber of seconds in the input segment. Importantly, the
encoding of the true labels in yi,j were done as follows
[1, 0]: for artefact [0, 1], for clean and [0, 0] for unla-
belled. The latter makes it possible to exclude unla-
belled parts from the classification loss (as the terms
in equation (3) are zero for unlabelled data).

Two versions of the proposed semi-supervised
multi-task model were trained: a single-channel
model (CNN SS-MT) and a multi-channel model
(CNN SS-MT mCh). For training these CNN mod-
els, the Adam optimiser was used with a learning
rate of 0.001. The batch size was set to 1500 for the
single-channel model, where one sample consists of
one 30-second segment of 1-channel EEG data. For
the multi-channel model, the batch size was set to
187 and 83 for D1 and D2, respectively, where one
sample consists of one 30-second segment of multi-
channel EEG data. Batches were created by iterating
over the shuffled samples of the pooled labelled and
unlabelled data. Learning was stopped if the valida-
tion loss did not decrease for seven epochs (early stop-
ping). Given that the classification task is easier than
the reconstruction task, only the autoencoder loss is
activated for the initial four epochs (by setting η in
the loss function of equation (1) to zero for the first
four epochs). After the fourth epoch, the classifica-
tion loss was added to the total loss, by specifying a
non-zero η. The procedure for finding a good value
for η was as follows. First, the autoencoder (LAE) and

classifier loss (LC) were computed on a randomly ini-
tialized model and an initial guess for η was determ-
ined at the value that it brings both losses to a sim-
ilar order of magnitude, i.e. η0 = LAE/LC. Second, we
did a random hyperparameter search, by trying val-
ues around η0 and selecting the value that resulted in
the best classification results on the validation data.
Following this procedure, we set η = 4000 for D1 and
η = 50 for D2.

2.5. Reference methods
Besides the proposed semi-supervised multi-task
deep learning method, we applied some reference
methods that we optimised for the described data-
set. As a baseline, we applied two feature-basedmeth-
ods from previously published studies: a supervised
SVM and a semi-supervised GMM [20, 23]. Tomain-
tain comparability, the same pre-processing was used
as described above. Although the GMM paper con-
tains some different features, we used the same fea-
ture set as in the SVM paper for better comparison
of the training methods. A list of the 23 features and
a more detailed description of these methods can be
found in the supplementary materials.

As an alternative deep learning method for semi-
supervised artefact detection, we applied the SS-AD
method as proposed by Ruff et al [26]. This method
consists of two training steps. In the first training
step, an autoencoder is trained on all available data
(labelled and unlabelled). Then, all latent feature vec-
tors of the clean data were averaged to define the
centre of a hypersphere (c) in the latent dimension. In
the second training step, the encoder from the trained
autoencoder was taken and trained with the deep
SS-AD loss as proposed in their paper [26]. Briefly,
the objective of this loss function is to map clean
and unlabelled samples as closely as possible to the
defined hypersphere centre c, while mapping labelled
artefacts far away from the hypersphere centre. As in
the classification loss, this loss is computed per second
and per channel. We use the same architecture for the
autoencoder as in figure 2 with two modifications to
prevent the hypersphere collapse as explained by Ruff
et al, i.e. all bias terms (in the convolution layers) were
removed and the sigmoid activation at the end of the
encoder was replaced by a linear activation.

As a final reference method, we trained our pro-
posed CNN classifier in a fully supervised fashion.
Here, the model consists only of the encoder and the
classification layers, and the model is trained on the
labelled data only using the classifier loss function
in equation (3). Like for the semi-supervised multi-
task classifier, this supervised classification model
was trained in a single-channel (CNN S) and multi-
channel fashion (CNN S mCh).

2.6. Evaluationmetrics
The models were evaluated based on the confusion
matrix computed on the labelled portion of the data.
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Each second of single-channel EEG that was labelled
was counted as one observation in the confusion
matrix. This is the same for the single-channel and
the multi-channel models, as the model makes pre-
dictions per second and per channel in both cases.
The artefact class was considered the positive class,
obtaining counts for true positives (TP), true neg-
atives (TN), false positives (FP) and false negatives
(FN). The models were compared based on the F1
score, which is the harmonic mean of sensitivity and
precision and is identical to the Dice-coefficient from
a segmentation point of view, which quantifies the
percentage of overlap between the true and predicted
artefact labels. Furthermore, we computed the accur-
acy (percentage of correct predictions), miss rate
(percentage of artefacts missed) and false discovery
rate (percentage of predicted artefacts that are actu-
ally clean):

F1=
2TP

2TP+ FP+ FN
× 100% (4)

Accuracy=
TP + TN

TP+TN+ FP+ FN
×100% (5)

Miss rate=
FN

TP+ FN
×100%. (6)

2.7. Experiments
We first compare our proposed model to the refer-
ence methods. For each method, ten models were
trained with different random initializations and, for
each method, the model with the highest F1 score on
the validation data was selected as the final model.
For these selectedmodels, the evaluationmetrics were
computed on the test dataset and reported. This was
done separately for the two datasets D1 and D2.

After training had finished, we computed the
runtime of eachmodel whenmaking predictions on a
new recording. To compute this runtime, we applied
all models to 1 h of EEG data on the same laptop and
repeated this ten times and took themean of these ten
runs.

To investigate the effect of the amount of labelled
data on the training of the different methods, we
reduced the total amount of labelled seconds in the
training and validation set by 50%, 75% or 87.5%.
This was achieved by excluding the corresponding
portion of annotations at the end of each recording in
the training and validation set. All models were then
trained from scratch on the new dataset with fewer
labels. Importantly, the labels in the test set were not
reduced to ensure a fair comparison since reducing
the test data would not affect the model itself, but
instead would provide us with noisier estimates of
its performance. Again ten models were trained per
method with different random initialisations and the
best version was selected based on the maximum F1
score on the validation data. As before, this analysis
was done for both datasets separately.

Finally, the relationship between the amount of
detected artefacts in an EEG segment and the error
made by a FBA estimation model was investigated to
show the relevance of the proposed automated arte-
fact detection method. To this end, a deep shared
multi-scale inception network model was applied to
the EEG recordings to estimate the FBA [30, 31].
This FBA model provides one estimate of FBA for
every 30 s of multi-channel EEG data. Besides estim-
ating the FBA for each segment, we applied the novel
single- andmulti-channel CNN SS-MTmodels to the
EEG and computed the percentage of detected arte-
facts for each 30-second segment (artefact contam-
ination). To test if there was a relationship between
the level of artefact contamination and the FBA error,
we assigned each 30-second EEG segment to one of
10 levels of artefact contamination: 0%–10%, 10%–
20%, etc. Then, for each level of artefact contamina-
tion, the median FBA of the segments with that level
of artefact contamination was computed. Finally, the
error of these median FBAs was computed as the
absolute difference between the median FBA and the
PMA of the neonate at the time of the recording. This
analysis was performed only for the 329 recordings
in dataset D1, as the data from D2 was incompatible
with the input requirements of the FBA model (dif-
ferent recording protocol).

3. Results

The test scores of the different approaches are presen-
ted in table 1. It shows the accuracy, miss rate, false
discovery rate and F1 scores for each of the two data-
sets, computed on the recordings in the correspond-
ing test data. Confusion matrices for the multi-task
models are provided in the supplementary materials.

We first describe the results obtained with D1.
Comparing the supervised single-channel models,
the results show that the proposed deep learning
model (CNN S) performs similarly to the feature-
based baseline (SVM) with F1 scores of 74.9%
and 76.2%, respectively. Looking at semi-supervised
methods, the feature-based GMM performs worse
than its fully supervised counterpart SVM, with an
F1 score of 67.6%. Likewise, the semi-supervised
anomaly detection algorithm (CNN SS-AD) per-
forms significantly worse than its supervised counter-
part (CNN S), with an F1 score dropping to 62.5%.
In contrast, the proposed semi-supervised multi-task
learning model (CNN SS-MT) has a similar per-
formance as the supervised CNN and the supervised
SVM (F1 is 74.7%).When going to themulti-channel
implementation of our proposed network, we see a
significant increase in performance towards F1 scores
of 83.8% for the supervised model (CNN S mCh)
and an even higher F1 score of 86.2% for the semi-
supervised multi-task model (CNN SS-MT mCh).

The results obtained with D2 show that all CNN
models (supervised and semi-supervised) perform
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Table 1. Performance metrics for the trained models per dataset (D1 and D2). Metrics are computed on the corresponding test set and
the best scores are indicated in bold. SVM: support vector machine (supervised, feature-based), GMM: Gaussian Mixture Model
(semi-supervised, feature-based), CNN: convolutional neural network, S: supervised model, SS-AD: semi-supervised anomaly
detection, SS-MT: semi-supervised multi-task model, mCh: multi-channel.

Accuracy (%) Miss rate (%) False discovery rate (%) F1 (%)

Model D1 D2 D1 D2 D1 D2 D1 D2

CNN SS-MT mCh 96.6 97.3 11.7 3.4 15.8 5.1 86.2 95.7
CNN S mCh 95.8 96.3 9.8 7.3 21.7 4.6 83.8 94.0
CNN SS-MT 93.5 97.2 19.9 6.7 30.0 2.1 74.7 95.5
CNN SS-AD 88.4 97.2 19.8 5.7 48.8 3.3 62.5 95.5
CNN S 94.0 96.7 19.6 8.4 27.5 2.1 76.2 94.7
GMM 91.6 93.3 26.6 13.9 37.3 8.1 67.6 88.9
SVM 93.4 94.7 17.8 5.3 31.1 11.1 74.9 91.7

Figure 3. Example of the artefact detection models for a recording from the test set. (a): true annotations; (b): output of
single-channel semi-supervised multi-task CNN model; (c): output of multi-channel semi-supervised multi-task CNN model.
Black: unlabelled; red: artefact; green: clean.

similarly with F1 scores ranging between 94.0%–
95.7%, with the semi-supervised models having the
highest F1 scores. All CNN models outperform the
feature-based GMM and SVM, which have F1 scores
of 88.9% and 91.7%, respectively. Similarly to D1,

the supervised feature-based method (SVM) out-
performs the semi-supervised feature-based method
(GMM). In contrast to D1, for D2 there is no signi-
ficant improvement in performance when comparing
themulti-channel to the single-channel CNNmodels.
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Table 2. Test times of the models for processing 1 h of 8-channel
EEG (from D1). The mean and standard deviation of 10
repetitions are reported.

Model Run time (s)

CNN SS-MT mCh 2.9± 0.1
CNN S mCh 2.9± 0.2
CNN SS-MT 2.8± 0.2
CNN SS-AD 2.4± 0.2
CNN S 2.9± 0.2
GMM 29.3± 1.9
SVM 102.9± 3.2

Figure 3 shows the output of the single- and
multi-channel approaches on one exemplary EEG
epoch from the test set that is partly labelled. In
figure 3(a), the EEG data is shown and the labelled
artefacts and clean parts are coloured in red and
green, respectively. Figures 3(b) and (c) show the
same EEGdata, where the colours indicate the predic-
tions by the single-channel andmulti-channel model,
respectively. Especially for the multi-channel model,
there is a good agreement between the model predic-
tions and the true labels.

Table 2 compares the runtimes of the models dur-
ing test time. More specifically, it shows the time it
takes to identify the artefacts in 1 h of 8-channel EEG.
As expected, the CNN models are faster compared
to the feature-based model (SVM and GMM). The
runtime of the GMM is mainly occupied by the com-
putation of the features. The SVM requires the same
amount of time for feature extraction, but addition-
ally requires a substantial amount of time to predict
the output class from the extracted features.

Figure 4 shows the effect of the amount of labelled
training data on the performance of the different
models. Note that the F1 scores at 100% of labels used
are the same as those in table 1. Figure 4(a) shows
the results obtained with D1. When excluding more
and more labels, especially the fully supervised deep
learning models (CNN S and CNN S mCh) drop in
performance to an F1 below 30% when only 12.5%
of the labels are used. In contrast, the feature-based
and the semi-supervised deep learning methods are
much less affected by a reduced amount of labelled
data and yield models with F1 scores around 70%,
even if only 12.5% of the available labels were used.
For D2, the effect on reducing the number of labels
is smaller since this dataset contains more labels to
start with (figure 4(b)). Nevertheless, with 12.5% of
the labels used, the supervised multi-channel CNN
(CNN S mCh) drops significantly in performance,
while the F1 of the semi-supervised multi-channel
CNN (CNN SS-MT mCh) remains near 90%.

The last analysis investigates the relationship
between the error of an FBA model and the level of
artefact contamination (as defined by the percent-
age of artefacts in an EEG segment according to the
automated artefact detection model). Figure 5 clearly

shows that, for both the single- and multi-channel
CNN SS-MT models and despite their difference
in classification performance, the error of the FBA
estimation increases with the increasing level of arte-
fact contamination in the EEG data.

4. Discussion

A novel deep multi-task artefact detection model was
proposed that classifies each second of a neonatal
EEG signal as either clean or artefact by using a
CNN. By jointly training an autoencoder and a clas-
sifier that share the encoder, we could leverage the
large amount of unlabelled neonatal EEG data that is
typically available besides a limited labelled dataset.
Our results show that the proposed CNNmodels can
outperform state-of-the-art feature-based methods.
Moreover, the multi-task CNN models outperform
the supervised CNN models when limited labelled
data is used for training.

The main novelty of our approach lies in the
training of the network, that combines an unsuper-
vised objective with a supervised objective. Wen et al
have proposed to train an EEG autoencoder for unsu-
pervised feature learning and showed that the fea-
tures extracted by such a trained autoencoder can
be used as input for a classification model [25]. In
that approach, the unsupervised feature learning and
the supervised classification tasks are disjoint and
therefore the feature extraction is solely learnt from
unlabelled data. In contrast, we proposed a model
that joins the feature learning and classification tasks
together, requiring only one training process. In this
way, deep feature extraction is learnt from both
unlabelled and labelled data simultaneously, which
enables themodel to learn better features for the given
supervised task in a semi-supervised way.With such a
training strategy, the unsupervised task of the model
(autoencoder) helps steer the training process of the
supervised task (classification). Moreover, the unsu-
pervised loss can be regarded as a sort of regular-
isation of the model that can prevent overfitting. In
the future, the proposed multi-task approach could
also be extended with other or additional unsuper-
vised or supervised tasks. For neonatal EEG, there is
namely a need for variousmodels that perform differ-
ent tasks, such as sleep classification, seizure detection
and FBA prediction. For each of these tasks, the avail-
ability of labelled data is limited, which could impede
the development of a deep learning algorithm. A
multi-task approach as presented in this paper, when
configured properly, makes it possible to pool all
the labelled datasets together and train one multi-
output deep learning model that jointly learns to do
the different tasks. In such a set-up, the shared part
of the multi-output model learns from the larger
pooled dataset, potentially improving accuracy and
generalisability.
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Figure 4. Performance of the models (F1 score) when less labelled data is used. (a): results for dataset D1; (b): results for dataset
D2. CNN: convolutional neural network, mCh: multi-channel, S: supervised model, SS-MT: semi-supervised multi-task model,
SS-AD: semi-supervised anomaly detection, GMM: Gaussian Mixture Model (semi-supervised, feature-based), SVM: support
vector machine (supervised, feature-based).

Figure 5. Relationship between artefact contamination of segments (as detected by the proposed artefact detection models) and
the error of a functional brain age (FBA) prediction model. (a): artefact contamination computed using the single- channel model
(CNN SS-MT); (b): artefact contamination computed using the multi-channel model (CNN SS-MT mCh). The left-most point
in each graph represents the error that the FBA model makes on EEG segments with very low amounts of detected artefacts
(0%–10%). The right-most point in each graph is the error that the FBA model makes on EEG segments with very high amounts
of detected artefacts (90%–100%). The points indicate the median and the error bars indicate the 25 and 75 percentiles among the
recordings. The histogram in the background shows the proportional distribution of the artefact contamination levels among all
30-second segments.

Besides the multi-task training, another novelty
of the proposed artefact detection method lies in the
architecture of the neural network. Whereas classifi-
ers commonly map a single input (e.g. an EEG seg-
ment) to a single prediction (e.g. clean/artefact), the
proposed classifier outputs one prediction for each

second of EEG. Due to the convolutional nature of
the model, the input EEG can have any length and
the output resolution is not dependent on the input
length. Furthermore, by using convolutional kernels
that span several neighbouring time samples, tem-
poral context (of about 15 s) is incorporated in our
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model (see the layer indicated by 1 in figure 2). Mak-
ing predictions on a per second basis instead of a
per input basis is a major difference with another
recently published supervised deep neural network
proposed by Webb et al, who developed a residual
CNN that predicts a single label for a 4-second EEG
input [22]. To incorporate temporal context, Webb
et al smoothed the outputs of consecutive EEG seg-
ments using amoving average. In contrast, in our pro-
posed model, the temporal resolution of the predic-
tions is higher (1 every second vs. 1 every 4 s) and
the temporal context is incorporated into the neural
network.

We analysed our methods on two different data-
sets (D1 and D2) by training and testing the meth-
ods on each dataset separately. For D1, the single-
channel semi-supervised model (CNN SS-MT) was
on par with a recently published baseline model (a
supervised feature-based SVM), which we tailored
and retrained to our dataset and problem state-
ment. The results obtained with D2 show that all
CNN models outperformed the feature-based mod-
els. This indicates that deep learning models can out-
perform feature-based methods, depending on the
dataset used. Besides this, the deep learning model
has several other advantages. One practical advant-
age of the CNN over the SVM is its computational
speed. On a laptop (without a dedicated graphics pro-
cessing unit (GPU)), processing 1 h of 8-channel EEG
data took only 2.8 ± 0.2 s using the CNN SS-MT
method, compared to 102.9 ± 3.2 s using the SVM
method. Another advantage of deep learning mod-
els is that there is no need for feature-engineering, as
the feature extraction is incorporated in the training
and is thus completely data-driven. Moreover, deep
learning is an active field of research in which many
developments continue to be made, including semi-
supervised training procedures such as reinforcement
learning, pseudo-labelling and generative adversarial
networks.

The versatility of the proposed network allowed
for a straightforward extension to a multi-channel
model, which outperformed all single-channel mod-
els when using D1. Please note that for this multi-
channel approach, although the information across
the channels is shared in the classification layers,
predictions are still made for each channel separ-
ately. This makes it possible for the model to ana-
lyse all channels in a multi-channel EEG segment
at once and identify the channels that contain arte-
facts. The multi-channel approach performs better
than the single-channel approach (see table 1). Due
to the exchange of channel information in the first
layer of the classifier (annotated by 2 in figure 2),
we allow the model to learn cross-channel informa-
tion. Such cross-channel information provides spa-
tial context that is useful information for the task of
artefact detection. Artefacts often occur on all chan-
nels simultaneously (e.g. due to body movements),

which possibly is the main reason for the improved
accuracy of the multi-channel model. The downside
of the multi-channel approach is that, once trained
on a specific channel montage, it can only be applied
to EEG data with that same montage. Therefore,
further developments are needed if a multi-channel
model is desired that works for any montage. Non-
etheless, within one NICU, the routine EEG acquisi-
tion typically follows a fixed EEG protocol andmont-
age, which reduces the necessity of a versatile multi-
channel model.

Besides comparing our CNNmethods to state-of-
the-art methods, we compared our semi-supervised
multi-task approach to a fully supervised CNN
approach. The proposed semi-supervised CNN had
similar performance scores as the fully supervised
implementation of our CNN. We hypothesised that
the absence of a significant improvement of the semi-
supervised over the supervised method can be attrib-
uted to the large amount of labelled data that was
available.More concretely, in D1, there were 150 529 s
of labelled data in the training set, which might be
sufficient to make the addition of unlabelled data
redundant. This hypothesis was confirmed when we
excluded a part of the training labels and observed
a significant performance decrease in the supervised
CNNmodel, whereas the same reduction in the train-
ing labels affected the semi-supervised CNN to a
much lesser extent (see figure 4(a)). This shows that
the semi-supervised multi-task approach is especially
useful when the amount of labelled data is limited.
With this semi-supervised approach, themodel learns
to extract meaningful deep latent features representa-
tions using the unsupervised autoencoder and learns
how to classify these deep latent features using the
labelled data. Reducing the amount of labelled data
had a smaller effect on D2 compared to D1 due to the
larger total amount of labelled data in D2. Still, the
performance of the supervised multi-channel CNN
decreasedwhen reducing labels inD2, while the semi-
supervised multi-channel CNN retained a similar
performance level.

We further compared our novel semi-supervised
multi-task approach (CNN SS-MT) to another semi-
supervised deep learning approach, namely, deep
semi-supervised anomaly detection (CNN SS-AD).
For D1, the CNN SS-AD was less accurate than all
other methods (table 1). A possible explanation for
the reduced accuracy of the SS-AD method is that
SS-AD was proposed for anomaly detection, with the
assumption that anomalies are rare and that any unla-
belled data is predominantly clean.However, the large
amount of unlabelled data in D1 may have contained
toomany artefacts for this assumption to hold. If arte-
facts occur too often in the unlabelled data, the SS-AD
will learn to recognise them as clean (i.e. not anomal-
ous). In contrast, the proposed CNN SS-MT method
does not make any assumptions on the unlabelled
data to learn from it: it merely learns to compress and
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decompress the data. This assumption-less character-
istic of the multi-task approach could explain why
it is a more effective deep semi-supervised method
for artefact detection than the SS-AD approach. Nev-
ertheless, the results from dataset D2 indicate that
the SS-AD approach can be as effective as our CNN
SS-MT approach if the data is well-labelled. The
more labels are available, the more similar this SS-
AD method becomes to supervised classifiers, as the
unsupervised part of this method is only determined
by the unlabelled data. In contrast, with our multi-
task approach, the unsupervised part is determined
by the entire (unlabelled+ labelled) dataset.

To develop amethod for D1 with higher accuracy,
we hypothesise that the bottleneck is not the model
design, but the labels. In the results section, only the
metrics computed on the test dataset are shown, but
we noticed a large gap between the test and valida-
tion scores for all models, as shown in table S5 in the
supplementary materials. This reveals that the model
performs very well on both the training and valida-
tion data without overfitting, while performing signi-
ficantly worse on the test data. Additional analysis of
the recordings and their labels showed that the model
works especially well for detecting high-amplitude
artefacts, and less well for low amplitude artefacts.We
included this analysis in the supplementary materi-
als (figure S1). We know that the training and val-
idation sets—given that this data was labelled by
non-experts—contained mainly labels for artefacts
that are easier to recognise, such as high-amplitude
variations. Conversely, the test set—labelled by an
expert—included not only high-amplitude artefacts
but also less obvious types of artefacts that the model
thus has not seen during the training phase. There-
fore, the labellers, and thereby the types of artefacts
that are labelled, have a major influence on what the
model learns and on the reported accuracy and this
should be taken into consideration when interpret-
ing the results. To support this hypothesis, we applied
ourmethod to a dataset with a larger number of labels
from expert annotators (dataset D2). As expected, the
CNN models reached higher F1 scores (near 95%)
on the test set. Furthermore, the large gap between
validation and test scores that we observed in D1
was absent in D2 (see table S6 in the supplementary
materials).

Artefact detection itself is not an objective on
its own. Instead, it can provide a gateway towards
more robust and reliable applications of other auto-
mated EEG analyses. One example of such an applica-
tion where artefact detection can improve the robust-
ness of subsequent analyses, is FBA estimation [10,
11]. This FBA algorithm analyses the maturation
of the brain based on the patterns observed in the
neonatal EEG. In this paper, an existing model for
the estimation of the FBA was used to predict the
PMA of the neonate based on a 30-second segment of

eight-channel EEG. As a proof of concept, we showed
the FBA error for varying levels of artefact contamin-
ation in figure 5. Artefact contamination levels com-
puted with either the proposed single- or multi-
channel artefact detection models were related to the
error of the FBA estimation. EEG segments in which
more artefacts were detected were related to larger
FBA errors. This illustrates that the proposed arte-
fact detection method could be used to select clean
data epochs, which can improve the accuracy of sub-
sequent automated EEG analysis. Additionally, the
histogram in the background of figure 5 shows that
segments with a high artefact contamination level are
not that rare. This stresses the importance of imple-
menting automated methods for the identification of
such low-quality EEG segments that affect the reliab-
ility of automated analyses.

It is important to consider the limitations of this
research. First, it is worth considering that it is inevit-
able that there are uncertainties in the ground truth
labels, given that labelling EEG data is subjective
and experience-based, without clear guidelines [15].
Therefore, classification scores should be interpreted
with care as they do not only depend on the accuracy
of the model, but also on the accuracy of the ground
truth labels. Future studies on the inter-rater agree-
ment could provide insight regarding the uncertain-
ties in the ground truth labels and provide a bench-
mark for these models.

A second limitation is that the models presented
in this paper are trained and tested only on data com-
ing from the same centre. Amodel trained and optim-
ized on data from one centre may not perform as well
on data from other centres that for example use dif-
ferent recording machines or protocols. One solution
would be to train one model on multi-centre data
to provide a one-model-fits-all solution. However, in
practice it is often not easy to share sensitive personal
data between centres. Alternatively, dedicated centre-
specific models could be developed, as we did for D1
and D2. With tools such as transfer learning, a pre-
trained model could be tailored to a specific centre.
Moreover, the fact that the proposedmulti-task train-
ing approach does not require as much labelled train-
ing data as a fully supervised end-to-end approach
makes the proposed methodmore feasible for centre-
specific model development.

Finally, the small sample size has been a limit-
ing factor. Even though we showed that our pro-
posed approach can deal with limited amounts of
labelled data in the training phase, a well-labelled
dataset is required for elaborate testing and valida-
tion of the model. Future research with a larger and
independent dataset is needed to address these lim-
itations. More specifically, such research could focus
on testing the generalisability of these models on data
fromdifferent centres. Additionally, the sensitivity for
detecting specific types of artefacts can be analysed
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using awell-labelled dataset to get a better insight into
the strengths and shortcomings of the models.

With a reliable method for automated artefact
detection, further research should focus on how to
deal with the detected artefacts in application-specific
cases. As a first step towards this, we showed that for
brain age estimation, artefact detection could be used
to select the cleanest data segments in a recording,
which is associated with lower errors. However, for
other applications such as sleep staging, a different
approach might be needed to incorporate the results
from artefact detection.

5. Conclusion

In conclusion, this paper proposes a semi-supervised
deep CNN that can simultaneously learn from
labelled and unlabelled data to classify EEG data as
clean or artefact. The proposed CNN model out-
performs the state-of-the-art feature-based models.
Additionally, the proposed semi-supervised multi-
task training strategy proved to be more powerful
than a fully supervised strategy when a low amount
of labelled data is available. Therefore, this semi-
supervised training strategy can be a solution for
developing deep learningmodels for signals for which
ground truth labels are scarce. Using FBA estimation
as an example, we showed that the automated detec-
tion of artefacts can improve robustness and reliabil-
ity in automated analysis of neonatal EEG.
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