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Abstract: The discovery of a multi-target scaffold in medicinal chemistry is an important goal for the
development of new drugs with different biological effects. Azobenzene is one of the frameworks
in medicinal chemistry used for its simple synthetic methods and for the possibility to obtain a
great variety of derivatives by simple chemical modifications or substitutions. Phenyldiazenyl-
containing compounds show a wide spectrum of pharmacological activities, such as antimicrobial,
anti-inflammatory, anti-neurodegenerative, anti-cancer, and anti-enzymatic. The aim of this review
is to highlight the importance of azobenzene as a scaffold in medicinal chemistry, with particular
attention to the chemical modifications and structure–activity relationships (SARs). This review
emphasizes the main therapeutic applications of phenyldiazenyl derivatives, with a particular focus
on structural modification and its influence on activity, with the aim of inspiring medicinal chemists
to obtain new, increasingly powerful azobenzenes useful in therapy.

Keywords: azobenzene; azo-compounds; multi-target; phenyldiazenyl; phenylazo moiety

1. Introduction

Azo derivatives are a class of molecules containing at least one R-N=N-R′ functional
group in which R and R′ could be an alkyl or aryl group, giving two distinct classes of azo
compounds. Aliphatic azo compounds are mostly colorless and less stable than arylazo
compounds. Some alkyl azo compounds act as radical initiators after cleavage of the C-N
bond by irradiation or at high temperatures. Aromatic azo compounds are more common
and highly stable due to the presence of aryl groups on both sides of the -N=N- group
that extend the delocalized system [1]. A greater conjugation of the π system allows for
major absorption capacity in the visible range (400–700 nm) and induces a more intense
color of azo compounds. The nature and position of the substituents on the aromatic rings
determine the color of phenylazo compounds. In this class, the azo moiety (-N=N-) is
conjugated with two identical or different mono- or polycyclic aromatic rings. They have
no natural origin and were synthetized by Bismarck in the 1860s [2] and then used as dyes
in the textile industry.

Different synthetic strategies can be applied to obtain azo compounds, including the
oxidation of aromatic amines, the reduction of aromatic compounds with nitroso groups,
the coupling reaction of arylamines with nitroso compounds, the oxidation of hydrazines,
the reduction of azoxybenzene derivatives, and the azo-coupling of diazonium salts, as
reported by Hamon et al. [3].

Azo derivatives can exist in two different configurations, the trans or “E” form and
the cis or “Z” form. To pass from the more stable trans form to the cis form, azobenzene
requires energy of around 50 kJ/mol. After exposure to external stimuli such as light or
heat, a simple molecule such as azobenzene can be induced to the cis–trans interchange. The
conformation of compounds changes without bond breaking. For example, upon exposure
to light of a certain wavelength (350 nm), the trans form photoisomerizes to the cis form
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and, upon thermal and/or phytochemical treatment, switches back the cis configuration
into the trans one (Figure 1).

Molecules 2024, 29, x FOR PEER REVIEW 2 of 36 
 

 

exposure to light of a certain wavelength (350 nm), the trans form photoisomerizes to the 

cis form and, upon thermal and/or phytochemical treatment, switches back the cis config-

uration into the trans one (Figure 1). 

N
N

N
Nh

trans cis  

Figure 1. Photoisomerization of azobenzene. 

The properties of the two isoforms are influenced by the different positions and types 

of substituents, which also determine different pharmacological properties. With 1H-NMR 

spectroscopy, it is possible to establish the geometry of the aromatic rings because differ-

ent fields can be distinguished for cis and trans signals. Considering the importance of azo 

derivatives in medicinal chemistry and the modification of their activities depending on 

the substitution of azobenzene moiety [4], this review summarizes the main biological 

activities of compounds containing phenylazo moiety reported over the last few years 

(Figure 2). Moreover, several modifications of the azobenzene scaffold are described in 

order to define the structural requirements for optimal biological profiles. 

 

Figure 2. Main pharmacological activities of azobenzene derivatives. 

2. Synthesis 

Phenydiazenyl compounds can be prepared by different synthetic strategies [3]. The 

simplest is the formation of diazonium salt by diazotization and subsequent coupling 

with a phenolic component (Scheme 1) [1]. The starting aromatic amine is dissolved in 

water with concentrated HCl; this solution is cooled in ice because diazonium salts are 

usually unstable at room temperature. An aqueous cold solution of sodium nitrite is 

added under stirring. After a range of time that can be from 2 min up to one hour, this 

solution is added to an aqueous sodium hydroxide solution of a generic phenolic 

Carbonic Anhydrase Inhibitors 

 

Anticancer 

Antidiabetic Anti-inflammatory 

 

PPAR ligands 

 

COX-2 Inhibitors 

 

Antiviral  

Anticolitic 

 

Antimicrobial 

 

Anti MAO-B 

Neuroprotective 

Tyrosinase Inhibitors  

 

Anti Ulcerative Colitis 

 

Figure 1. Photoisomerization of azobenzene.

The properties of the two isoforms are influenced by the different positions and types
of substituents, which also determine different pharmacological properties. With 1H-NMR
spectroscopy, it is possible to establish the geometry of the aromatic rings because different
fields can be distinguished for cis and trans signals. Considering the importance of azo
derivatives in medicinal chemistry and the modification of their activities depending on
the substitution of azobenzene moiety [4], this review summarizes the main biological
activities of compounds containing phenylazo moiety reported over the last few years
(Figure 2). Moreover, several modifications of the azobenzene scaffold are described in
order to define the structural requirements for optimal biological profiles.
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Figure 2. Main pharmacological activities of azobenzene derivatives.

2. Synthesis

Phenydiazenyl compounds can be prepared by different synthetic strategies [3]. The
simplest is the formation of diazonium salt by diazotization and subsequent coupling with
a phenolic component (Scheme 1) [1]. The starting aromatic amine is dissolved in water
with concentrated HCl; this solution is cooled in ice because diazonium salts are usually
unstable at room temperature. An aqueous cold solution of sodium nitrite is added under
stirring. After a range of time that can be from 2 min up to one hour, this solution is added
to an aqueous sodium hydroxide solution of a generic phenolic compound and stirred at
0–5 ◦C. The formation of a solid-colored azo compound is usually observed after 4 h, which
is then filtered and dried in vacuum.
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3. Biological Activities

Compounds containing an azo linker have been shown to have numerous properties
in, for example, antiseptic, antimicrobial, antidiabetic, antineoplastic, transmissible spongi-
form encephalopathic, antiulcerative, antioxidant, analgesic, anti-inflammatory, antiviral,
antitubercular, and antitumor activities. They are also involved in biological reactions
such as the inhibition of DNA, RNA and protein synthesis, carcinogenesis, and nitrogen
fixation [5]. In view of the diverse pharmacological activities of azobenzene derivatives,
the main ones are reported below.

3.1. Anticolitic Properties

A prodrug is a pharmacologically inactive entity that is converted into its active form
by a chemical or enzymatic method. The active drug and the nontoxic portion are released
by internal or external stimuli at a targeted site within the body. Due to the cleavable
character of the azo bond, azo compounds can act as drug carriers, as shown in the review
by Mutlu et al. [6].

Azo prodrugs are involved in the treatment of colon diseases for the release of specific
amines. Kim et al. studied the application of azo compounds as prodrugs in inflammatory
bowel disease (IBD) [7]. This disease is a chronic inflammation of the gut, usually referred
to as ulcerative colitis (UC) or Crohn’s disease (CD). To improve the therapeutic activity of
5-aminosalicylic acid (5-ASA) against colitis, researchers designed a colon-specific mutual
5-ASA prodrug. Based on the beneficial effects of local anesthetics on colitis, procainamide
(PA), pharmacologically classified as an antiarrhythmic and a local anesthetic [8], was linked
to 5-aminosalicylic acid via an azo bond to produce PA-conjugated 5-ASA (5-ASA-azoPA,
1) (Figure 3). Compound 1 released 5-ASA and PA in the large intestine after microbial
azo-reduction to amines [9], presumably cooperating to ameliorate inflammation.
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PA was selected because it is less lipophilic than other local anesthetics and has the
potential to interfere with the activity of NFκB, an anticolitic drug target. The authors
demonstrated that the therapeutic effects of 1 likely resulted from an additive anticolitic
effect of 5-ASA and PA. The in vitro and in vivo data suggested that 1 could deliver 5-ASA
and PA to the large intestine. As the conversion of the prodrug to 5-ASA and PA did not
take place in the autoclaved cecal contents where microbial enzymes were inactivated,
Kim et al. believed that the activation of the prodrug occurred by the microbial enzymes
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azoreductases. Oral gavage of 1 did not make PA detectable in the blood, while a substantial
amount was detected after PA administration, suggesting that colonic delivery of PA can
limit its systemic absorption. The combined intracolonic treatment with 5-ASA and PA
achieved better anticolitic effects than treatment with 5-ASA alone. These data suggested
that PA contributed to the anticolitic effects of 1. Kim et al. showed that the combined
treatment of 5-ASA-azo and PA reduced the levels of NFkB produced in the inflamed
colon. However, from the data obtained, the significant therapeutic superiority of 1 to
sulfasalazine, used as a reference compound, was not observed, especially in improving
inflammatory indices such as CDS (colonic damage score), MPO (myeloperoxidase), and
inflammatory mediators. Although it is not as active as sulfasalazine, it could have several
advantages as it contains the local anesthetic procainamide. The reduction of abdominal
pain and the improvement of the large intestinal functions by down-regulating overactive
sympathetic nerves could be due to the conjugation with procainamide. Moreover, the
side effects of sulfasalazine deriving from the sulfapyridine carrier, would thus be greatly
reduced. After this study, Kim et al. discovered the potential colon-specific mutual prodrug
activity of 1 against colitis, and this prodrug could act by cooperative NFκB inhibition [7].

3.2. Antidiabetic Properties

M. Roy et al. synthesized triorganotin(IV) complexes of azo-carboxylic acids derived
from amino benzoic acids and resorcinol. They were obtained by the reaction of 2/4-(2,4-
dihydroxy-phenylazo)-benzoic acids with appropriate triorganotin(IV) chlorides in the
presence of triethylamine (Scheme 2) [10]. From all synthesized phenylazo derivatives,
the structure of compound 2 was established by X-ray crystal structure analysis, which
revealed that this compound exhibited a 48-membered macrocyclic–tetrameric structure
with trigonal bipyramidal geometry around the tin atoms, in which the three methyl
groups occupied the equatorial positions, while the apical positions were occupied by the
oxygen atom of the carboxylate group of one ligand and the phenoxide oxygen atom of
another ligand.
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Anti-diabetic activities of all synthetic complexes were studied using α-glucosidase
enzymes and the results showed that some of them had significant results through the
inhibition of more than 50% of α-glucosidase activity [10]. For example, complex 2 showed
an IC50 value of 11.19 µg/mL compared to standard compound acarbose with an IC50 value
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of 12.15 µg/mL. Since the compounds exhibited more effective anti-diabetic activity than
the standard compound, this promising result will also open a new avenue for researchers
to investigate organotin(IV) azocarboxylates for their anti-diabetic activities.

3.3. Anti-Inflammatory Activities

Inflammation is the body’s defense mechanism to protect against infection, burns,
toxic chemicals, allergens, or other noxious stimuli. Sharma et al. reported a novel strat-
egy to synthesize some 3-chloro-1-(4a,10b-diazaphenanthrene-2-yl)-4-phenyl azetidin-2-
one derivatives (3a–j, Scheme 3) and explored their anti-inflammatory potential using
rat carrageenan-induced paw edema tests [11]. The consequences of this mechanism
can be manifold and they can induce, maintain, or aggravate many diseases. Using
the reaction between N-{4-[phenyldiazenyl]phenyl}-N-[phenyl methylene]amine and 4-
[phenyldiazenyl]aniline, new derivatives of 3-chloro-1-(4a,10b-diazaphenanthrene-2-yl)-4-
phenylazetidin-2-one were synthesized (Scheme 3). The resulting 3-chloro-4-phenyl-1-{4-
[phenyldiazenyl] phenyl}azetidin-2-one intermediate(III) in benzene was used to obtain the
desired derivatives (3a–j) by irradiation in a Pyrex vessel with 350 nm UV light in a photo-
chemical reactor. Structures of the new compounds were verified based on spectral and
elemental methods of analyses. Compounds 3a–j were tested for their anti-inflammatory
effects using indomethacin as a reference compound. Compounds 3e, 3f, and 3h exhibited
almost comparable results to those of indomethacin 5 h after injecting them. Indeed, the
percentages of the inhibitory effects of these three compounds upon carrageenan-induced
paw edema in rats given indomethacin after 5 h were 90.80% for compound 3e, 90.50% for
3f, for 91.50% 3h, and 92.25% for indomethacin [11].
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3.4. Antimicrobial and Antimycotic Activities

Nowadays, bacterial and mycotic infections are the most important health problems.
New antimicrobial agents that fight against these infections are necessary. Yadlapalli et al.
synthesized a series of aminothiazole-ligated azo derivatives containing benzamide moiety
(4a–j) as novel antibacterial and antifungal agents (Figure 4) [12].
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3.4. Antimicrobial and Antimycotic Activities 

Nowadays, bacterial and mycotic infections are the most important health problems. 

New antimicrobial agents that fight against these infections are necessary. Yadlapalli et al. 

synthesized a series of aminothiazole-ligated azo derivatives containing benzamide moi-

ety (4a–j) as novel antibacterial and antifungal agents (Figure 4) [12]. 
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The azoderivatives 4a–j were tested to explore the antimicrobial activity by evaluating
the Minimal Inhibitory Concentration (MIC) against Escherichia coli, Enterobacter cloacae,
Bacillus licheniformis, and Mycobacterium tuberculosis (MTB) H37Rv as well as antifungal
activity against three test phytopathogenic fungi.

The MIC values of the synthesized compounds were generally within the range of
7.8 × 10−3–2.5 × 10−1 mg/mL against all tested microorganisms. In particular, compound
4b (R = 4-OMe) showed excellent activity (7.8 × 10−3 mg/mL) and compounds 4a, 4i, and
4j exhibited good activity (6.25 × 10−2 mg/mL) against Escherichia coli. Compounds 4i and
4j also showed very good activity against the Gram-positive bacteria Bacillus licheniformis
(6.25 × 10−2 mg/mL and 3.125 × 10−2 mg/mL, respectively). Out of all azo compounds,
4j (R = 4-NO2) was found to exhibit significant activity against all three tested bacteria and
showed activity of 1.25 × 10−1 mg/mL against Enterobacter cloacae. Compounds 4, 4d, 4g,
and 4h were also found to be highly potent antifungal agents. In particular, compounds 4,
4d, 4g, and 4h showed 131, 180, 111, and 171 percent inhibition, respectively, better than
the reference standard nystatin (100%), against A. alternata. Compounds 4 and 4d showed
106 and 173 percent inhibition, respectively, better than nystatin (100%), against C. lunata.
Compounds 4d, 4g, and 4h (R = 2-Cl, 4-Br, and 2-NO2, respectively) showed 117, 207, and
149 percent inhibition, respectively, better than the standard, against F. oxysporum [12].

Roy et al. synthesized some phenylazo diorganotin(IV) complexes (5a–c) according to
Scheme 4 [13].

These diorganotin(IV) complexes were evaluated for their antibacterial and antifungal
activity. In particular, dibutyltin(IV) complex 5b exhibited a lower MIC value at 4.2 µg/mL
than the standard antibiotic gentamycin, which showed an MIC at 5 µg/mL against the
bacteria Staphylococcus aureus, Bacillus subtilis, and Bacillus cereus. This complex also showed
lower MIC values (8.5 µg/mL) than the standard compound nystatin, which exhibited an
MIC at 10 µg/mL against Candida albicans and could be further studied to improve these
antimicrobial therapeutic properties.
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The potential antibacterial properties of azobenzene derivatives were also studied by
Sreedevi et al., who synthesized azobenzene molecules containing thiazole and imidazole
moieties (6a–j) and screened them for antimicrobial properties (Figure 5) against Escherichia
coli, Pseudomonas aeruginosa, Klebsiella pneumonia, and Staphylococcus aureus [14].
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Table 1 reports the antibacterial and antifungal activities of the most active tested
compounds. Among these compounds, the p-tolyl derivative (6b) showed more antibac-
terial activity than that of the standard ciprofloxacin. p-Hydroxyphenyl (6d) and N-p-
anisylsydnonyl (6j) showed considerable antibacterial activity. Antifungal activity studies
carried out by the cup–plate method against Candida albicans, Aspergillus flavus, Aspergillus
fumigates, Trichophyton rubrum, and p-tolyl (6b) showed higher activity than that of the stan-
dard ciclopiroxolamine, while p-hydroxyphenyl (6d) and N-p-anisylsydnonyl (6j) showed
considerable antifungal activity.
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Table 1. Details of antimicrobial studies of most active tested compounds 6b,d,e,f,i,j.

Compounds

Antibacterial Activity
(Diameter of Zone Inhabitation in mm)

Antifungal Activity
(Diameter of Zone Inhabitation in mm)

E. coli P. aeruginosa K. pneumonia S. aureus C. albicans A. flavus A. fumigatus T. rubrum

6b 23 25 25 26 22 26 24 22

6d 14 17 19 16 15 16 20 18

6e -- -- -- -- 10 -- -- --

6f -- 14 -- -- -- 12 -- 09

6i -- 14 -- -- -- 14 -- --

6j 12 16 15 14 13 08 11 11
ciprofloxacin

(Std) 20 22 22 20 -- -- -- --

ciclopiroxolamine
(Std) -- -- -- -- 20 22 22 20

‘--’ indicates that the compound was inactive.

Some aryldiazenyl derivatives were synthesized by Fadda et al. with the aim of
investigating their antibacterial activity against Gram-positive bacteria, Gram-negative
bacteria, and antifungal activity (Figure 6) [15]. All synthesized compounds were evaluated
for their in vitro antibacterial activity against Bacillus subtilis and Bacillus thuringiensis as
Gram-positive bacteria and Escherichia coli and Pseudomonas aeruginosa as Gram-negative
bacteria. They were also evaluated for their in vitro antifungal potential against the Fusar-
ium oxysporum and Botrytis fabae fungal strains. In particular, against Gram-positive bacteria,
compounds 7a, 7b, 7d, and 7e exhibited broad-spectrum antibacterial profiles. Compounds
with electron-withdrawing groups such as p-NO2 (7e) and Cl (7b) recorded higher activity.
In this view, these compounds showed higher activity in the order of 7e > 7b > 7a > 7d.
Also, compounds 7e and 7b were equipotent to chloramphenicol and ampicillin in inhibit-
ing the growth of B. subtilis (MIC 3.125 mg/mL), while their activity was 50% lower than
that of chloramphenicol against B. thuringiensis. Among all compounds, (E)-2-(cyano((4-
nitrophenyl)diazenyl)methyl)benzonitrile (7e) (Figure 6) exhibited significant activity to-
ward both Gram-positive and Gram-negative bacteria and exhibited the most potent in vitro
antifungal activity, with an MICs of 6.25 µg/mL against Botrytis fabae.
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Antimicrobial resistance and the rapid rate of microbial evolution have led researchers
to develop novel antibiotics. For example, El-Gohary et al. synthesized different azoben-
zene derivatives (Figure 7) that were screened for in vitro antimicrobial activity against two
species of Gram-positive bacteria, Staphylococcus aureus and Bacillus cereus, and one species
of Gram-negative bacteria, Escherichia coli [16]. Antifungal assays against Candida albicans,
Aspergillus fumigatus, and Aspergillus flavus were also performed. The phenyldiazenyl
moiety increased the activity against Staphylococcus aureus and, in particular, the thiadi-
azolopyrimidine nucleus possessing the methyl substituent at the para position of the
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6-phenyldiazenyl moiety (8c) increased the antifungal activity against Candida albicans.
Moreover, compound 8c was also screened for cytotoxic activity against brine shrimp
larvae (nauplii) and showed good cytotoxic activity in comparison with 5-flurouracil, with
a lethal concentration (LC50) value of 392.46 µg/mL.
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Other important results were obtained by Sahu et al., who synthesized a series of
1-[3-methyl-2-(aryldiazenyl)-2H-aziren-2-yl]ethanones compounds that exhibited good
antimicrobial activity (Figure 8) [17]. All compounds were tested against Bacillus sub-
tilis, Escherichia coli, Pseudomonas diminuta, and Staphylococcus aureus using chlorampheni-
col as a reference drug and exhibited remarkable in vitro activity within an MIC range
of 2–57 µg/mL. The antimicrobial activity followed the pattern B. subtilis > S. aureus >
P. diminuta > E. coli.
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Figure 8. Chemical structures of compound 1-[3-methyl-2-(aryldiazenyl)-2H-aziren-2-yl]ethanone
derivatives 9a–o.

In particular, the compound with the bromo substituent, 9j, was found to be the most
potent among this series, with 4.441, 4.429, 4.457, and 4.425 -log MIC against B. subtilis,
S. aureus, P. diminuta, and E. coli, respectively. The in vitro antimicrobial profile of 1-[3-
methyl-2-(aryldiazenyl)-2H-aziren-2-yl]ethenone (9a–o) increased when substituents such
as –Br, –OCH3, –Cl, and –COOH were present at the aromatic ring of azirine analogs.
Moreover, it is further evident that meta –Br, –OCH3 and ortho –Cl, and –COOH analogs
exhibit high biological potential.

In search of novel antibacterial compounds, Kaur et al. synthesized some aryldiazenyl
azole derivatives (Figure 9) [18].
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Figure 9. Chemical structures of (E)-2-(3,5-dimethyl-4-(aryldiazenyl)-1H-pyrazol-1-yl)-4-arylthiazole
compounds 10a–p.

To evaluate the antimicrobial potential, compounds 10a–p were screened for their
in vitro antibacterial and antifungal activity using ciprofloxacin and amphotericin-B as
positive controls for bacteria and yeasts, respectively. From this study, it was found
that all compounds (except 10c and 10e) were found to be active against the yeast strain
of C. albicans (inhibition zone (IZ) in the diameter range = 12–50 mm). Among them,
compound 10l showed a very big inhibitory zone of diameter 50 mm, while 10g–k displayed
zones of 21–25 mm in reference to amphotericin-B (IZ = 16.6 mm). Three compounds, 10a,
10b, and 10d, were found to be active against E. coli (IZ = 12 mm), and none of the
compounds possessed activity against B. subtilis, S. aureus, P. aeruginosa, or S. cerevisiae.
Also, MICs were measured in µg/100 µL, and it was found that 10l exhibited two times
the inhibitory potential (MIC = 6.25) against C. albicans in comparison with the standard
drug (MIC = 12.5), while compound 10k (MIC = 12.5) was found to be equipotent. On the
other hand, compounds 10g–j exhibited two-fold lesser inhibitory action, with an MIC = 25
against C. albicans compared to the reference drug. Compounds with aryl groups at position
4 of the thiazole nucleus in the presence of R = H to position 4 of the pyrazole ring emerged
as potent antifungal agents that possessed very high inhibitory action selectively against
Candida albicans, a yeast strain. Compound 10l was the most active agent, even more so than
the reference antifungal drug. Compound 10k bearing R = H and Ar = p-methylphenyl
exhibited an inhibitory potency similar to the standard drug against Candida albicans.
Therefore, compounds 10l and 10k could serve as new antifungal agents.

The same authors published another work in which the synthesis of a similar series of
aryldiazenyl pyrazol derivatives 11a–u (Figure 10) with antibacterial and antifungal activity
was described [19]. In antibacterial screening (on the basis of MIC values), it was found
that compounds 11b and 11m exhibited high inhibitory potential against P. aeruginosa, with
an MIC = 25, which was about 50% that of ciprofloxacin (MIC = 12.5). The antifungal evalu-
ation (on the basis of MIC values) revealed that compounds 11g, 11o, and 11p exhibited
two-fold lesser inhibitory potential selectively against C. albicans (MIC = 25). However,
compound 11t displayed two-fold lesser action against S. cerevisiae and four-fold lesser
inhibitory potential against C. albicans (MIC = 50). On the other hand, 11a–c, 11e, 11i–n,
11r, and 11u exhibited moderate inhibitory profiles against two fungal strains, with s = 50,
about 25% of amphotericin B. Compounds 11d, 11h, 11q, and 11s exhibited four-fold lesser
inhibition against C. albicans (MIC = 50) only. Among the series, compounds 11b, 11i,
11k–m, and 11t were found to be good antibacterial agents; however, the four compounds
11g, 11o, 11p, and 11t emerged as an excellent class of antifungal agents.
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Figure 10. Chemical structures of (E)-1-aryl-2-(3,5-dimethyl-4-(aryldiazenyl)-1H-pyrazol-1-yl)ethanones
compounds 11a–u.

Recently, Aggarwal et al. reported a phenylazo derivative as a new heterocyclic ligand
that acts as a selective Hg2+ ion chemosensor and antimicrobial agent (Figure 11) [20].
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Figure 11. Chemical structure of 2,7-diamino-6-phenyl-3-phenylazopyrazolo [1,5-a]pyrimidine
(12) compound.

This compound was tested on seven different clinical bacterial strains, namely, Pseu-
domonas aeruginosa, Escherichia coli, Salmonella typhi, Staphylococcus aureus, Listeria monocyto-
genes, Bacillus cereus, Shigella flexneri, and Candida albicans, as a fungal strain and displayed
high antibacterial activity with the inhibition of all experimental microbial strains used at
3.125 µg/mL MIC.

The increase in antibiotic resistance is one of the most significant public health concerns.
For this reason, there is increasing interest in the synthesis of new antibiotic compounds.
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Recently, compound 4,4′-dihydroxy-azobenzene 13g (Figure 12) was tested in vitro as an
antimicrobial agent against Staphylococcus aureus and Staphylococcus pseudintermedius by
Pérez-Aranda et al. [21]. This molecule is a derivative of other azo compounds (13a–f)
active as antimicrobials reported in Figure 12 [22,23].
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Figure 12. Chemical structures of 4,4′-dihydroxy-azobenzenes 13a–g.

The values of the MICs of compound 13g against Staphylococcus aureus and Staphy-
lococcus pseudintermedius were 64 and 32 µg/L, respectively, and comparable to its azo
parent antimicrobial compounds described in the literature [22]. Moreover, the minimal
bactericidal concentrations (MCBs) were 256 and 64 µg/L, respectively. Furthermore, 13g
was also tested against Escherichia coli and Pseudomonas aeruginosa, but it did not show good
results. These data are in accordance with those of azo compounds 13a–f, indicating that
these substances can effectively inhibit the growth of Gram-positive bacteria, but they are
not useful for Gram-negative bacteria.

In another study, Tahir et al. synthesized diaryl azo-phenol derivatives 14a–i (Figure 13)
because of the synthetic feasibility of azo derivatives and the multiple therapeutic properties
of phenolic compounds fused with azo moiety [24].
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All these azo compounds were tested as antimicrobials against pathogenic bacterial
strains Escherichia coli (Gram-negative), Staphylococcus aureus (Gram-positive), Staphylococ-
cus aureus (drug-resistant strain), Pseudomonas aeruginosa (Gram-negative), Pseudomonas
aeruginosa (drug-resistant strain), and Proteus vulgaris (Gram-negative). Compounds 14a,
14b, and 14e displayed promising antibacterial potential, with an average MIC value of
125 µg/200 mL, and were found to be dose-dependent compared to the standard drugs,
i.e., ampicillin and moxifloxacin (MIC 62.5 µg/200 mL). These series were also evaluated
against alpha-glucosidase (anti-diabetic), and the IC50 of 14a was found to be most effective
(15.70 ± 1.3 µ/mL) compared to the reference drug acarbose (21.59 ± 1.5 µ/mL); this
compound can be considered a potential multi-target compound.



Molecules 2024, 29, 5872 13 of 35

Recently, Al-Gaber et al. synthesized the new heterocyclic azo dye ligand 15 by a
combination of 4-amino antipyrine and 4-aminophenol (Figure 14) [25]. Moreover, the
coordination of this phenylazo compound was investigated with metal ions such as Cr(III),
Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), and the antimicrobial properties
of the azo dye ligand and its metal chelates were also assessed using ketoconazole and
amikacin as the standard antifungal and antibacterial agents, respectively. Most complexes
were more potent than the free ligand against fungi and bacteria. For example, the Fe(III)
metal chelate was the most effective against Aspergillus fumigatus and Escherichia coli. The
azo dye ligands and Mn(II), Co(II), Ni(II), and Zn(II) metal chelates showed the highest
antibacterial potential against S. aureus and the Zn(II), Ni(II), and Cr(III) complexes showed
the highest antifungal activity against Candida albicans. Besides that, the Co(II) and Cr(III)
complexes showed the most promising antibacterial activity against Salmonella sp bacteria
and were higher than the antifungal standard. In contrast, the Cu(II) metal chelate showed
the highest antibacterial activity against the Bacillus subtilis bacteria. This study highlighted
that the antimicrobial action of azo dye compounds may be significantly enhanced by the
presence of an azo group with chelating properties.
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Prontosil red (Figure 15) was the first antibacterial azo dye to be discovered in 1932
from Bayer’s laboratory [26].
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The importance of the sulfonamide group is crucial; several studies demonstrated
that this moiety is responsible for the therapeutic effect of the compound [27,28]. This
led researchers to synthesize and test novel azo compounds containing the sulfa group,
obtaining sulfonamides and sulfamates with the aim of evaluating the antimicrobial and
antiviral activities. These two moieties are in a diverse family of highly pharmacologically
active compounds that contain the signature sulfamoyl structural motif.

For example, Moanta et al. synthesized 4-(phenyldiazenyl)phenyl benzene sulfonate
16 (Figure 16), which was screened for its antimicrobial activity against two Gram-positive
bacteria (Staphylococcus aureus and Streptococcus pyogenes), three Gram-negative bacte-
ria (Pseudomonas aeruginosa, Proteus vulgaris, and Escherichia coli), and two fungi species
(Candida albicans and Aspergillus niger) [29]. The maximum relative percentage of inhibition
was exhibited against Candida albicans (85.20%), followed by Staphylococcus aureus (83.99%),
Aspergillus niger (66.94%), Escherichia coli (42.94%), Pseudomonas aeruginosa (38%), Proteus
vulgaris (17.07%), and Streptococcus pyogenes (13.30%), respectively.
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3.5. Anticancer Activities

Several in vitro and in vivo studies have confirmed that azo compounds could poten-
tially act as anticancer agents. Recently, Giampietro et al. reported the synthesis, biological
evaluation, and docking studies of a series of phenyldiazenyl sulfonamide compounds as
aromatase inhibitors (AIs) (Figure 17) [30]. In these molecules, the classical bioisosterism in
the stilbenoid nucleus, which also showed aromatase inhibition [31], was used to replace
the C=C bond present in the bridge between the two phenyl rings of stilbene with the
isosteric N=N bond, obtaining azostilbene derivatives.

Three compounds, 17a, 17f, and 18f, showed a percentage of enzymatic inhibition
better than letrozole, used as a reference compound, and IC50 values in the micromolar
range (7.9, 1.6, and 5.7 µM, respectively). These three compounds were also evaluated
in vitro on MCF-7 breast cancer cells by MTT and cytotoxicity assays. The best results were
obtained for compound 17f and confirmed by the analysis of cell cycles and apoptosis. A
significant dose-dependent increase in the percentage of cells found in the apoptotic stage
was assessed in the presence of 17f; moreover, 17f showed an anti-proliferative effect on
MCF-7 cells, being blocked in the G1/S phase checkpoint.

Furthermore, 17f was also not effective on HFF-1, showing an increase in the selectivity
index from 24 h to 72 h. Computational studies were carried out and gave a sound explana-
tion at the molecular level of the experimental data. Compound 17f can be considered an
interesting lead for the development of a new class of non-steroidal aromatase inhibitors.

In research on new anticancer compounds, Bustos et al. synthesized a series of twelve
phenyldiazenyl pyrazoles (19a–l) and tested these compounds against cancer cell lines over
a wide library of cell lines, including leukemia, colon, and brain cancer, showing that the
compounds have anticancer activity (Figure 18) [32].
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Figure 18. Chemical structures of compounds 19a–l.

All compounds showed a certain degree of growth inhibition against different cell
lines. Furthermore, all compounds also showed some degree of lethality against different
cell lines, without a correlation between the activity and the substituent. However, it is
important to note that highly selective growth inhibition activity was observed against the
lung cancer cell line, kidney cancer cell line, and leukemia cell line.

With the aim of identifying new anti-breast-cancer compounds, Gomha et al. synthe-
sized a series of thiazole-benzofuran phenyldiazenyl compounds 20a–g (Figure 19) [33].
These molecules were evaluated for their anticancer activity against the human breast
carcinoma (MCF-7) cell lines compared with the doxorubicin drug (Table 2).
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The descending order of activity of these compounds was as follows: 20f > 20b >
20e > 20a > 20c > 20d > 20g. In particular, it was possible to conclude that the anticancer
activity depended on the structural skeleton and electronic environment of the molecules.
Indeed, the introduction of an electron-donating group (methyl) at C4 of the phenyl
group at position 5 in the 1,3-thiazole ring (20f and 20e) enhanced the antitumor activity.
In contrast, the introduction of an electron-withdrawing group (chlorine) decreased the
antitumor activity (20b > 20a > 20c). Moreover, the in vitro inhibitory activity of the 6-
methoxybenzofuran was higher than 6-hydroxybenzofuran (20e > 20a, 20f > 20b and
20g > 20c), probably due to the +I (inductive) effect of the methyl group. The activity of
4-methylthiazole was greater than that of 4-phenylthiazole (20b > 20d), also in this case
because of the +I effect of the methyl group.

In another study, Ibrahim et al. synthesized phenylazo coumarin 21 and its complexes
with Co(II) (21a), Ni(II) (21b), and Cu(II) (21c) (Scheme 5); they evaluated the cytotoxic
activity of the ligand and complexes against breast cancer cells [34].
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Table 2. The antitumor activities of the tested compounds 20a–g against MCF-7.

Compounds R R′ X IC50 (µM)

20a H Me H 6.49 ± 1.42

20b H Me Me 1.35 ± 1.13

20c H Me Cl 9.42 ± 2.20

20d H Ph Me 15.37 ± 1.46

20e Me Me H 3.71 ± 1.33

20f Me Me Me 0.69 ± 1.10

20g Me Me Cl 19.05 ± 1.84

Doxorubicin -- -- -- 0.44 ± 1.07
‘--’ indicates that the compound was inactive.

The test revealed that cell proliferation was much more highly inhibited by the ligand
21 and complexes Cu (21c), Co (21a), and Ni (21b), with cell viability of 5.21%, 17.36%,
46.20%, and 74.43%, respectively, at a concentration of 30 mg/mL compared to untreated
control cells, and the IC50 values of ligand 21 and complexes of Cu (21c), Co (21a), and Ni
(21b) were 1.87, 1.87, 30, and >30 g/mL, respectively. This study demonstrated that ligand
21 and its complex with Cu (21c) had the most promising phenylazo coumarin activity
against breast cancer cells.
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Scheme 5. Synthesis of metal complexes 21a–c starting from 6-hydroxy-4-methyl-5,7-(bisphenylazo)
coumarin 21.

Recently, Tang et al. synthesized different azobenzene coumarin derivatives [35];
between them, compounds 22a–I (reported in Table 3), where the coumarin moiety was
linked to substituted phenyl and pyridine groups via amide bonds, were tested to evalu-
ate their anticancer activities. Compounds 22a–i showed different degrees of anticancer
activities against four cancer cell lines (HeLa, A549, MCF-7, and HepG-2). Among
them, fluorobenzene-modified 6-azophenylcoumarin-3-formamido derivative 22f exhib-
ited stronger cytotoxicity (IC50 = 0.51 ± 0.22 µM) against A549 cell lines and was less
toxic to normal cells than doxorubicin (DOX) (IC50 = 1.18 ± 0.03 µM). Pyridine-modified
6-azophenylcoumarin-3-formamido derivative 22g exhibited stronger cytotoxicity against
MCF-7 cell lines than DOX, with an IC50 value 48 times higher than that of DOX (IC50 = 0.42
± 0.23 µM for 22g; IC50 = 20.64 ± 3.67 µM for DOX). Meanwhile, compound 22g was much
less toxic to normal human umbilical vein endothelial cells (HUVECs) than DOX, with a
3000 times higher selectivity index (SI) (SI > 238.10 for 22g; SI = 0.078 for DOX).

In particular, analyzing the data in Table 3, compounds 22e and 22g exhibited high
biological activity against A549 and MCF-7 cancer cells, respectively. Moreover, compound
22g not only exhibited strong cytotoxicity against MCF-7 cell lines but also was less toxic to
normal cells, with SI > 238.10. These two compounds also induced apoptosis and arrested
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the cell cycle of A549 and MCF-7 cells in the S phase in a dose-dependent manner and were
proven to bind to HS-DNA via intercalation.

Table 3. Chemical structures of 22a–i and complex 22g-CuCl2 and their anticancer activity against
axenic cancer cells and cytotoxicity.
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3.6. Carbonic Anhydrase Inhibitors

Azo compounds have been studied for their potential carbonic anhydrase (CA) inhibi-
tion. For example, Arslan et al. reported a series of azo sulfonamide derivatives (23a–f)
incorporating substituted chalcone moieties that are able to inhibit CA isoforms I and
II [36].

The data (reported in Table 4) showed good results, and the selectivity of the inhibitors
was distinguishable. The best performer against hCA I was compound 23f, with a KI of
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9.88 nM. Other compounds (23 and 23a–e) showed powerful inhibitory profiles compared
to acetazolamide (AZA), with Kı values between 13.25 and 24.4 nM. Against hCA II, all
new compounds showed good results, with Kıs ranging between 18.25 and 55.43 nM.
Compound 23a (KI 18.25 nM) is a promising CA I, with inhibition properties comparable
to the clinically used sulfonamide, AZA.

Table 4. hCA I and II inhibition data with sulphonamides 23, 23a–f, and clinically used inhibitor AZA
and the selectivity ratio of hCA I to hCA II.
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Figure 20. Chemical structures of azobenzenes 24a–e.

Diazo dyes 24a–e showed weak hCA II inhibitions, with inhibition constants (KI) in
the range of 277–863 nM compared to that of AZA (12 nM). It is possible to observe that
derivative 24c with three methyls in its structure (KI = 863 nM) was the worst hCA II
inhibitor compared to its des-methylated congeners 24b, 24d, and 24e, which showed KI
values of 665 nM, 312 nM, and 277 nM, respectively. Indeed, these compounds possessed
either a SO2NH2, SO2NHMe, or OH moiety that could interact either with the Zn(II) ion
or the zinc-bound water molecule, thus acting as better inhibitors than 24c, in which only
hydrophobic interactions between the inhibitor and the enzyme active site could occur. Azo
dyes 24a and 24b revealed a better affinity for hCA VII compared to hCA II and referred to
AZA (KI = 2.5 nM). Thus, these p-phenyldiazenyl derivatives showed good selectivity for
inhibiting hCA VII (KIs of 30–46 nM against hCA VII) over hCA II (KIs of 638–665 nM), as
already mentioned.

The possibility of finding new hCA VII inhibitors could be interesting and help re-
searchers better understand this cytosolic enzyme, largely expressed in the human brain, in
order to develop new classes of compounds with better CA VII selective profiles.

Recently, a new series of azobenzenesulfonamides (Figure 21) were synthesized and
tested against a large panel of human and bacterial CAs to evaluate their inhibitory activ-
ity [38]. In particular, compounds 25a–j were tested versus H. pylori because targeting H.
pylori Carbonic Anhydrases (HpCAs) represents a good option for the treatment of infec-
tions sustained by the pathogen’s drug-resistant strains [39]. Compounds 25c,e reported in
Figure 21 were the best, with interesting inhibitory activities on HpCAs.
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Figure 21. Chemical structures of azobenzenes 25a–j.

For HpαCA, compound 25c showed a Kis value of 70.9 nM, while the trifluoromethyl
derivative 25e showed a Kis value of 89.2 nM. KIs on E. coli CA from the β-class had low
nanomolar concentrations, with the lowest values shown by 25c and 25e (KI = 17.1 and
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68.8 nM, respectively). To further demonstrate the antimicrobial potential of these two
compounds, they were also tested in vitro against the reference strain H. pylori ATCC 43504,
and the Minimal Inhibitory Concentrations (MICs) and Minimal Bactericidal Concentra-
tions (MBCs) were studied. Compounds 25c and 25e showed the same values for the MIC
and MBC (4 and 16 µg/mL, respectively). Moreover, the evaluation of their toxicity on a
G. mellonella larva in vivo model indicated a safe profile for 25c and 25e, considering these
azobenzenesulfonamides as an interesting starting point for the development of a new
class of anti-H. pylori agents.

3.7. COX-2 Inhibitors

A further field of application for azobenzene compounds is that of the inhibition of
cyclooxygenase-2 (COX-2) enzymes, as Tsai et al. demonstrated in their study [40]. The
researchers designed and synthesized phenylazobenzenesulfonamide derivatives 26a–l
(Figure 22) for their evaluation as selective COX-2 inhibitors in a cellular assay using human
whole blood (HWB) and an enzymatic assay using purified ovine enzymes. To identify
the selective inhibitor of COX-2, these series of compounds were subject to structure–
activity relationship analyses, and several selective COX-2 inhibitors were identified. For
example, compound 3,4-dihydroxyl (26c) exhibited moderate COX-2 inhibitory potency
(IC50 = 12.42 µM). However, the replacement of the 3-hydroxy moiety with 3-chloro (26j)
retained some COX-2 potency (IC50 = 11.34 µM), but was less active than that of the 3-
carboxy group (26i) (IC50 = 8.89 µM). The introduction of the 3,4-dimethoxy moiety in 26g
(IC50 = 4.28 µM) provided excellent activity and selectivity compared to the parent com-
pound 26c. Compound 26g was found to be a preferential COX-2 inhibitor (IC50 = 4.28 µM)
and compound 26h displayed a greater COX-2 inhibitory profile when compared to pheny-
lazobenzenesulfonamide in this series (IC50 = 2.04 µM).
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3.8. Anti MAO-B Activity

One of the most common approaches to treating neurological disorders is the inhibition
of monoamine oxidase B (MAO-B) [41]. MAO-B is a flavin adenine dinucleotide (FAD)-
containing enzyme that plays a major role in the oxidative deamination of biogenic amines
and neurotransmitters. Lee et al. reported a series of 2-aryl-1,3,4-oxadiazin-5(6H)-one
derivatives based on an analysis of the binding sites of hMAO-A and hMAO-B [42]. They
designed linear analogs of 2-aryl-1,3,4-oxadiazin-5(6H)-one with an additional phenyl ring
(27a–c, 28). In particular, these compounds (reported in Figure 23) potently inhibited MAO-
B, with IC50 values of 4–25 nM and excellent SI over MAO-A (27a > 25,000, 27b > 8333,
27c > 4000, and 28 > 4545). According to docking results, which suggested that an optimal
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linker between two aromatic rings on the 2-aryl-1,3,4-oxadiazin-5(6H)-one scaffold was a
key element in the binding and inhibition of MAO-B, compounds with azo linkers (27a–c)
showed greater inhibition of MAO-B than compounds with olefin or imine linkers. In
addition, compounds with a small (F, 27b, and 28) or no (27a) substituent at the meta
position were more potent inhibitors in the presence of azo or olefin linkers, with IC50
values of 4, 12, and 22 nM, respectively. These results indicate that the steric effect of the
substituent in the distal phenyl ring in the presence of an azo or an olefin linker plays a key
role in the modulation of MAO-B inhibitory activity.
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Figure 23. Chemical structures of compounds 27a–c and 28 with the best activity against MAO-B.

Geldenhuys et al. focused their studies on the inhibition of MAO using a chemical
library composed of stilbene-like derivatives that have potential applications in Alzheimer’s
disease (AD) and dementia with Lewy bodies (DLB), with the ability to modulate metal-
induced amyloid-β (Aβ) aggregation and neurotoxicity in vitro and in living cells [43].
From their studies, Geldenhuys et al. obtained some compounds (29a,b, 30a–c, and 31a,b)
with potent and relatively selective inhibitory effects on MAO-B (Figure 24). In particular,
azostilbene derivative 31b showed a good inhibitory effect on MAO-B, with an IC50 of
0.14 µM. The dimethylamino moiety on these compounds is important for the MAO
inhibition activity. These findings suggest that stilbene-like scaffolds and azo derivatives
could be utilized to develop promising multifunctional, neuroprotective agents for several
neurodegenerative diseases.
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3.9. Neuroprotective Activities

Tomoshige et al. investigated the role of mutant huntingtin (mHtt), a protein whose
aggregation caused the autosomal dominant neurodegenerative disorder Huntington’s
disease (HD), assuming that protein knockdown could be a potential therapeutic option [44].
Inexpression of the protein is achieved by using hybrid small molecules (Htt degraders)
consisting of BE04, a ligand of ubiquitin ligase (E3), linked to probes for protein aggregates.
In their studies, Tomoshige et al. synthesized a similar Htt degrader utilizing MV1, an
antagonist of the inhibitor of the apoptosis protein (IAP) family (a subgroup of ubiquitin
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E3 ligases), replacing the original ligand with one expected to have a higher affinity
and specificity for IAP. A new Htt degrader 32 (Figure 25) was synthesized and showed
a decrease in both wild-type Htt (wtHtt) and mHtt levels. Compound 32 induced an
interaction between GST-BIR3 and insoluble model aggregates of 62Q peptides, supporting
the idea that compound 32 works by forming a non-physiological complex consisting of
Htt aggregate, IAPs, and compound 32. In addition, this compound induced an interaction
between GST-BIR3 and soluble GST-62Q, which is consistent with the finding that it reduces
the levels of both mHtt and wtHtt.
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Figure 25. Chemical structure of azobenzene Htt degrader 32.

In the brain, senile plaques (SPs) composed of β-amyloid, peptides, and neurofib-
rillary tangles (NFTs) composed of hyperphosphorylated tau protein are considered the
cause of AD, one of the most common neurodegenerative disorders. Based on previous
studies in which the phenyldiazenyl benzothiazole (PDB) derivative 4-[2-(5-methoxy-2-
benzothiazolyl)diazenyl]-N,N-dimethyl-benzenamine (33) (Figure 26) had a good ability to
distinguish tau aggregates from Aβ aggregates [45], Matsumura et al. reported the syn-
thesis and biological evaluation of novel PDB derivatives (33a–c) (Figure 26) as probes for
imaging NFTs in patients with AD [46]. During the last few years, the use of radiolabeled
probes has demonstrated promising applications in the field of nuclear medicine [47]. Based
on this assumption, Matsumura et al. successfully synthesized these three PDB derivatives
(33a–c) using a diazo coupling reaction [46]. From the in vitro obtained results, compound
33c had more affinity with tau aggregates; also, from fluorescent staining experiments
using AD brain sections, 33c visualized NFTs clearly. From biodistribution assays with
normal mice, the PDB derivatives showed uptake into the brain, sufficient for imaging
NFTs, ranging from 0.94 to 3.2% ID g−1, but a relatively slow washout. This study could be
useful to make new compounds with improved pharmacokinetics qualities obtained from
some modifications.
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3.10. Tyrosinase Inhibitors

Tyrosinase is a multifunctional enzyme that controls the production of melanin from
tyrosine in animals [48]. The multifunctional, glycosylated, copper-containing metalloen-
zyme is involved in two distinct reactions of melanin synthesis: the hydroxylation of
a monophenol and the conversion of an O-diphenol to the corresponding O-quinones.
Based on previous studies that considered kojic acid, resveratrol, and azo-resveratrol as
potential tyrosinase inhibitors, Bae et al. synthesized a novel series of (E)-2-((substituted
phenyl)diazenyl)phenyl 4-methylbenzenesulfonate derivatives (34a and 34b) and (E)-2-
((substituted phenyl)diazenyl)phenol derivatives (34c and 34d), conducting their evaluation



Molecules 2024, 29, 5872 23 of 35

on mushroom tyrosinase (Table 5) [49]. Compounds 34b–d exhibited good inhibitory effects,
higher than that of kojic acid (IC50 = 49.08 µM), a representative tyrosinase inhibitor. In
particular, the novel synthesized compound (E)-2-((2,4-dihydroxyphenyl)diazenyl)phenyl
4-methylbenzenesulfonate (34b) was the best performer, with an IC50 of 17.85 µM. This
molecule had competitive inhibition on Lineweaver–Burk plots, as further confirmed by the
docking results. One of the most important goals of the study was the non-cytotoxicity of
compounds 34b–d to cultured B16F10 cells. These new derivatives inhibited both tyrosinase
and melanin synthesis. For the development of new candidates against diseases associated
with hyperpigmentation, active compounds (34b–d) might have an important role.

Table 5. Substitution pattern, inhibitory effects on mushroom tyrosinase, and kinetic analysis of
active compounds 34a–d.
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As previously reported, the natural compound resveratrol and its derivatives have
potent antioxidant, anti-inflammation, anticancer, cardio-protection, and anti-tyrosinase
activities [50,51]. Using a modified Curtius rearrangement and diazotization followed by
coupling reactions with various phenolic analogs, Song et al. synthesized azo compounds
(35a–i) (Table 6) including azo-resveratrol (35b) and azo-oxyresveratrol (35f) [52]. In the
study, they replaced the linker between the two phenyl rings of resveratrol with an azo
linker to obtain new non-symmetric azo compounds (35a–i). From all compounds evaluated
for their mushroom tyrosinase inhibitory activity, compounds 35a and 35b exhibited high
tyrosinase inhibitory activity (56.25% and 72.75% at 50 µM, respectively). Song et al.
highlighted that the introduction of a hydroxyl or methoxy group into the 4-hydroxyphenyl
moiety significantly reduced mushroom tyrosinase inhibition (Table 6). Azo-resveratrol
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(35b) was the most potent mushroom tyrosinase inhibitor, with a percentage of 72.75 ± 1.70
and an IC50 value of 36.28 ± 0.72 µM, comparable to that of resveratrol (26.63 ± 0.55 µM),
a well-known tyrosinase inhibitor. The 4-hydroxyphenyl moiety is essential for high
inhibition, and 3,5-dihydroxyphenyl and 3,5-dimethoxyphenyl derivatives are better for
tyrosinase inhibition than 2,5-dimethoxyphenyl derivatives. These results may be useful as
a basis for the further synthesis of tyrosinase inhibitors.

Table 6. Tyrosinase inhibition and substitution pattern of substituted azo analogs 35a–i.
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3.11. Anti-Ulcerative Colitis Activities

5-ASA has been widely used for the treatment of various diseases such as IBD, UC,
and Crohn’s disease (CD), but one of the more recent purposes is to be able to reduce
the side effects of the compound [53]. Jilani et al. reported the synthesis of an analog
of a known nonsteroidal anti-inflammatory drug [NSAID], 4-aminophenylbenzoxazol-
2-yl-5-acetic acid (36), considered a good anti-ulcerative colitis compound, and 5-[4-
(benzoxazol-2-yl-5-acetic acid)phenylazo]-2-hydroxybenzoic acid (37) (a novel mutual
azo prodrug of 5-aminosalicylic acid [5-ASA]) (Figure 27) [54]. Azo compound 37 and
4-aminophenylbenzoxazol-2-yl-5-acetic acid (36) were evaluated for trinitrobenzenesul-
fonic acid (TNB)-induced colitis in rats. The results demonstrated that the prepared azo
prodrug was stable under acidic conditions similar to those of the upper gastrointestinal
tract, which ensured its ability to reach the lower intestine intact. From the in vitro study, it
was reported that bacterial azo reductase acted on the azo prodrug, and it was possible to
correlate this with the capacity of the bacteria within the large intestine to digest the azo
component, leading to a release of the 5-ASA and aminobenzoxazole.

Concerning diazo compound 37, results showed that it had similar activity to 4-
aminophenylbenzoxazole acetic acid compound 36 and 5-ASA. The similar potency be-
tween diazo compound 36 and both 5-ASA and 36 could be attributed to poor solubility
and/or incomplete diazo reduction in the large intestine. However, since the absorption
of this compound was expected to be low, it could represent a promising colon delivery
system for both 5-ASA and aminobenzoxazole 36. Synthesized diazo compound 37 and
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4-aminophenylbenzoxazol-2-yl-5-acetic acid (36) were found to be as effective as 5-ASA for
ulcerative colitis.

Molecules 2024, 29, x FOR PEER REVIEW 26 of 36 
 

 

the capacity of the bacteria within the large intestine to digest the azo component, leading 

to a release of the 5-ASA and aminobenzoxazole. 

O

N

NH2

HO

O

36

O

N

N

HO

O

N

CO2H

OH

37  

Figure 27. Chemical structures of aminobenzoxazole 36 and its azobenzene derivative 37. 

Concerning diazo compound 37, results showed that it had similar activity to 4-ami-

nophenylbenzoxazole acetic acid compound 36 and 5-ASA. The similar potency between 

diazo compound 36 and both 5-ASA and 36 could be attributed to poor solubility and/or 

incomplete diazo reduction in the large intestine. However, since the absorption of this 

compound was expected to be low, it could represent a promising colon delivery system 

for both 5-ASA and aminobenzoxazole 36. Synthesized diazo compound 37 and 4-amino-

phenylbenzoxazol-2-yl-5-acetic acid (36) were found to be as effective as 5-ASA for ulcer-

ative colitis. 

3.12. PPAR Ligands 

With the aim of developing compounds for the treatment of metabolic disorders, 

molecules based on a combination of fibric acid [55] and lipophilic groups derived from 

natural products such as chalcone and stilbene were synthesized [56]. In particular, some 

azobenzene derivatives (38a–c) were found to be active at micromolar concentrations as 

dual agonists PPARα/γ (Peroxisome Proliferator–Activated Receptors α/γ) (Figure 28). 

N
N

O

O
OH

O

n

38a n = 1

38b n = 2

38c n = 3

n = 2

PPAR agonist

38a-c  

Figure 28. Chemical structures of azo compounds 38a–c. 

The replacement of the double bond of stilbene with a diazenyl function gave a con-
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3.12. PPAR Ligands

With the aim of developing compounds for the treatment of metabolic disorders,
molecules based on a combination of fibric acid [55] and lipophilic groups derived from
natural products such as chalcone and stilbene were synthesized [56]. In particular, some
azobenzene derivatives (38a–c) were found to be active at micromolar concentrations as
dual agonists PPARα/γ (Peroxisome Proliferator–Activated Receptors α/γ) (Figure 28).
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The replacement of the double bond of stilbene with a diazenyl function gave a
considerable increase in activity against PPARα, especially for compound 38b (linker of
two methylenes), which was also an activator of PPARγ (PPARα EC50 = 0.6 µM, PPARγ
EC50 = 1.4 µM); this molecule probably fit better into the receptor pockets than the other
two analogs (38a PPARα EC50 = 5.6 ± 0.3 µM, PPARγ EC50 = 21.0 ± 0.9 µM; 38c PPARα
EC50 = 42.8 ± 0.4 µM, EC50 = 10.0 ± 0.7 µM) [57].

Starting from these results, two series of new phenyldiazenyl fibrate derivatives of
PPARα/γ dual agonist 38b were synthesized and tested (39a–m) (Figure 29) [58]. Com-
pound 39a (R = H, X = CH2, Y = O) showed balanced activity on the three PPAR isoforms
α, γ, and δ with EC50 = 0.25 µM, 6.0 µM, and 2.8 µM, respectively, and, for this reason, 39a
was identified as a PPAR pan-agonist.

Continuing this study, Ammazzalorso et al. synthesized some 38b derivatives bearing
the sulfonimide functional group to switch the activity from PPAR agonists to PPAR
antagonists [59]. The bioisosteric replacement of the carboxylic group with a sulfonimidic
one is a useful strategy in drug discovery because the sulfonimidic moiety shows a very
similar profile to the carboxylic group in terms of acidity and H bond properties [60]. Five
of them, reported in Figure 30 (40a–e), were tested on PPARα and PPARγ and showed IC50
values versus PPARα of 0.17 ± 0.12 µM, 0.33 ± 0.14 µM, 0.21 ± 0.13 µM, 1.1 ± 0.7 µM, and
1.5 ± 0.5 µM, respectively, and were considered novel PPARα antagonists.

With the aim of discovering new PPAR agonists, De Filippis et al. synthesized tyrosine
derivatives (41a–f) based on the combination of GW409544, a potent agonist of both PPARα
and PPARγ, and a phenyldiazene scaffold (Figure 31) [61].
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These molecules showed potent and selective PPARγ agonistic activity. Compounds
41c–e with EC50 values of 0.039 ± 0.14 µM, 0.047 ± 0.012 µM, and 0.029 ± 0.07 µM,
respectively, showed an activation of PPARγ comparable to the reference compound
resveratrol (EC50 = 0.039 ± 0.003 µM), a potent and selective PPARγ agonist.

4. Conclusions

The azobenzene scaffold is studied in medicinal chemistry with the aim of developing
novel agents implicated in a wide range of pathologies. This moiety is inserted in molecules
to obtain anticolitic, antidiabetic, anti-inflammatory, antimicrobial, antiviral, anticancer,
neuroprotective agents and compounds that act as enzymatic inhibitors or nuclear receptor
ligands (Table 7).
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Table 7. Summary of the general structures of the most representative azobenzene derivatives and
their main activities.

Compounds Structures Pharmacological
Effects References
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Table 7. Cont.

Compounds Structures Pharmacological
Effects References
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In this review, the typical method for synthesizing azobenzene was described; more-
over, it summarized the main pharmacological activities of these azo compounds that have
been shown in recent years up until now. Furthermore, the chemical modification of the
azo linker, substitution of aromatic rings, and replacement of one of the aromatic rings
with heterocycles (Figure 32) were described in relation to the activity, with particular
attention to SAR studies. It is not possible to obtain a single SAR analysis for all azoben-
zene derivatives summarized in this review, but each figure reports the importance of the
chemical modification in reference to the biological activity. As a result, this work provides
significant insight into azobenzene-containing compounds, with the aim of providing a
useful tool in the design of novel azo-bearing molecules involved in various biological
pathways through the combination of all modifications reported in this review.
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